Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Leaf Drying
2.3. Extraction Preparation for Total Phenolic Content and Antioxidant Activity Assays
2.4. Total Phenolic Content
2.5. 2,2-Diphenyl-1-Picrylhydrazyl Hydrate (DPPH) Free Radical Scavenging Assay
2.6. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7. Extracion of Phenolic Compounds
2.8. Phenolic Compounds’ Characterization
2.9. Total Ascorbic Acid Content
2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhouibi, R.; Affes, H.; Salem, M.B.; Hammami, S.; Sahnoun, Z.; Zeghal, K.M.; Ksouda, K. Screening of pharmacological uses of Urtica dioica and others benefits. Prog. Biophys. Mol. Biol. 2020, 150, 67–77. [Google Scholar] [CrossRef]
- Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary plants with extraordinary properties. Molecules 2018, 23, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grauso, L.; de Falco, B.; Lanzotti, V.; Motti, R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2020, 19, 1341–1377. [Google Scholar] [CrossRef]
- Coklar, H.; Akbulut, M.; Kilinc, S.; Yildirim, A.; Alhassan, I. Effect of freeze, oven and microwave pretreated oven drying on color, browning index, phenolic compounds and antioxidant activity of hawthorn (Crataegus orientalis) fruit. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 449–456. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Fan, H.; Li, Y.; Zhang, L. Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale. J. Food Meas. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Perera, C.O.; Shafiur, R.M. Heat pump dehumidifier drying of food. Trends Food Sci. Technol. 1997, 8, 75–79. [Google Scholar] [CrossRef]
- Ong, S.P.; Law, C.L. Drying Kinetics and Antioxidant Phytochemicals Retention of Salak Fruit under Different Drying and Pretreatment Conditions. Dry. Technol. 2011, 29, 429–441. [Google Scholar] [CrossRef]
- Phoungchandang, S.; Wichayawadee, S.; Borwonsak, L. Kaffir lime leaf (Citrus hystric DC.) drying using tray and heat pump dehumidified drying. Dry. Technol. 2008, 26, 1602–1609. [Google Scholar] [CrossRef]
- Hawlader, M.N.A.; Perera, C.O.; Tian, M.; Yeo, K.L. Drying of guava and papaya: Impact of different drying methods. Dry. Technol. 2006, 24, 77–87. [Google Scholar] [CrossRef]
- Niruthchara, S.; Srzednicki, G.; Craske, J. Effects of drying treatments on the composition of volatile compounds in dried nectarines. Dry. Technol. 2007, 25, 877–881. [Google Scholar]
- Dewanto, V.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Brand Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Chan, S.W.; Tseng, H.L.; Deng, Y.; Hoi, P.M.; Choi, P.S.; Or, P.M.; Yang, J.M.; Lam, F.F.; Lee, S.M.; et al. Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine 2012, 19, 1263–1269. [Google Scholar] [CrossRef]
- Negro, C.; Sabella, E.; Nicolì, F.; Pierro, R.; Materazzi, A.; Panattoni, A.; Aprile, A.; Nutricati, E.; Vergine, M.; Miceli, A.; et al. Biochemical Changes in Leaves of Vitis vinifera cv. Sangiovese Infected by Bois Noir Phytoplasma. Pathogens 2020, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Blank, D.E.; Bellaver, M.; Fraga, S.; Lopes, T.J.; de Moura, N.F. Drying kinetics and bioactive compounds of Bunchosia glandulifera. J. Food Process Eng. 2018, 41, e12676. [Google Scholar] [CrossRef]
- López-Vidaña, E.C.; Pilatowsky Figueroa, I.; Cortés, F.B.; Rojano, B.A.; Ocaña, A.N. Effect of temperature on antioxidant capacity during drying process of mortiño (Vaccinium meridionale Swartz). Int. J. Food Prop. 2017, 20, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Weigend, M.; Luebert, F.; Brokamp, G.; Wessjohann, L.A. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry 2013, 96, 170–183. [Google Scholar] [CrossRef]
- Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Rusak, G.; Likić, S.; Berendika, M. Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochem. Anal. 2011, 22, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, P.; Ieri, F.; Vignolini, P.; Bacci, L.; Baronti, S.; Romani, A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J. Agric. Food Chem. 2008, 56, 9127–9132. [Google Scholar] [CrossRef] [PubMed]
- Giada, M.D.L.R. Food phenolic compounds: Main classes, sources and their antioxidant power. Oxidative stress and chronic degenerative diseases—A role for antioxidants. InTech 2013, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Barros, L.; Dueñas, M.; Carvalho, A.M.; Ferreira, I.C.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod. 2016, 79, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Zeković, Z.; Cvetanović, A.; Švarc-Gajić, J.; Gorjanović, S.; Sužnjević, D.; Mašković, P.; Savic, S.; Radojkovic, M.; Đurović, S. Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Ind. Crops Prod. 2017, 108, 423–430. [Google Scholar] [CrossRef]
- Shonte, T.T.; Duodu, K.G.; de Kock, H.L. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon 2020, 6, e03938. [Google Scholar] [CrossRef]
- Carvalho, A.R.; Costa, G.; Figueirinha, A.; Liberal, J.; Prior, J.A.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities. Food Res. Intern. 2017, 99, 485–494. [Google Scholar] [CrossRef]
- Hudec, J.; Burdová, M.; Kobida, L.U.; Komora, L.; Macho, V.; Kogan, G.; Turianica, I.; Kochanová, R.; Ložek, O.; Habán, M.; et al. Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators. J. Agric. Food Chem. 2007, 55, 5689–5696. [Google Scholar] [CrossRef]
- Bai, Y.P.; Zhou, H.M.; Zhu, K.R.; Li, Q. Effect of thermal treatment on the physicochemical, ultrastructural and nutritional characteristics of whole grain highland barley. Food Chem. 2020, 128657. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Grevsen, K.; Frette, X.; Christensen, L.P. Concentration and composition of flavonol glycosides and phenolic acids in areal parts of stinging nettle (Urtica dioica L.) are affect by high nitrogen fertilization and harvest time. Eur. J. Hortic. Sci. 2008, 73, 20–27. [Google Scholar]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Vajić, U.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Gođevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 2015, 74, 912–917. [Google Scholar]
- Klava, D.; Kampuse, D.; Tomsone, L.; Kince, T.; Ozola, L. Effect of drying technologies on bioactive compounds maintenance in pumpkin by-products. Agron. Res. 2018, 16, 1728–1741. [Google Scholar]
- Parsons, H.T.; Fry, S.C. Oxidation of dehydroascorbic acid and 2, 3-diketogulonate under plant apoplastic conditions. Phytochemistry 2012, 75, 41–49. [Google Scholar] [CrossRef]
Peaks | RT (min) | Molecular Ion [M-H]− (m/z) | m/z Exp. | m/z Calc. | Error (ppm) | Tentative Identification | Quantification (mg/g DW) | References | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | FD | OD | HPD | ||||||||
1 | 0.580 | C7H11O6 | 191.0574 | 191.0561 | −6.72 | Quinic acid * | 0.08 ± 0.05 c | 0.19 ± 0.05 b | 0.18 ± 0.04 b | 0.25 ± 0.03 a | [16] |
2 | 2.534 | C13H11O9 | 311.0424 | 311.0409 | −4.86 | Unknown | nd | nd | nd | nd | - |
3 | 3.925 | C16H17O9 | 353.0916 | 353.0878 | −10.67 | Caffeoylquinic acid 1 | 0.80 ± 0.05 d | 3.88 ± 0.04 b | 3.02 ± 0.03 c | 7.60 ± 0.02 a | [33,34] |
4 | 5.636 | C9H7O4 | 179.0364 | 179.0350 | −8.01 | Caffeic acid * | 0.15 ± 0.01 b | 0.16 ± 0.03 b | 0.16 ± 0.03 b | 0.40 ± 0.02 a | [33,34] |
5 | 6.177 | C16H17O9 | 353.0907 | 353.0878 | −8.27 | Caffeolquinic acid 2 | 0.10 ± 0.01 d | 0.88 ± 0.04 b | 0.60 ± 0.03 c | 1.92 ± 0.02 a | [33,34] |
6 | 6.754 | C16H17O9 | 353.0885 | 353.0878 | 1.98 | Caffeoylquinic acid 3 | 0.75 ± 0.02 d | 5.32 ± 0.03 b | 4.32 ± 0.03 c | 9.60 ± 0.03 a | [33,34] |
7 | 7.255 | C16H17O9 | 353.0914 | 353.0878 | −10.13 | Caffeoylquinic acid 4 | 0.10 ± 0.01 d | 0.68 ± 0.02 c | 1.04 ± 0.03 b | 1.61 ± 0.03 a | [33,34] |
8 | 7.795 | C26H23O16 | 591.1059 | 591.0992 | −11.44 | Caffeoylmalic acid dimer | 0.85 ± 0.02 d | 24.72 ± 0.04 b | 19.20 ± 0.02 c | 35.81 ± 0.03 a | [22,33,35] |
9 | 8.303 | C13H11O8 | 295.0470 | 295.0450 | 6.77 | Caffeoylmalic acid | 0.10 ± 0.01 d | 3.02 ± 0.02 c | 8.02 ± 0.04 b | 13.68 ± 0.05 a | [22,33,35] |
10 | 9.639 | C10H9O4 | 193.0526 | 193.0506 | −10.11 | Ferulic acid * | 0.02 ± 0.01 c | 0.08 ± 0.01 a | 0.05 ± 0.02 b | 0.10 ± 0.03 a | [34] |
11 | 9.910 | C27H19O12 | 609.1499 | 609.1461 | −6.27 | Rutin * | 0.30 ± 0.02 d | 1.40 ± 0.03 b | 0.44 ± 0.02 c | 2.25 ± 0.04 a | [22,33,34] |
12 | 10.020 | C21H31O16 | 463.0912 | 463.0882 | −6.58 | Isoquercetin * | 0.21 ± 0.03 d | 0.24 ± 0.03 b | 0.12 ± 0.04 c | 0.84 ± 0.02 a | [33] |
13 | 11.184 | C28H31O16 | 623.1639 | 623.1618 | −3.45 | Isorhamnetin rutinoside | 0.05 ± 0.01 b | 0.04 ± 0.02 c | 0.02 ± 0.01 d | 0.06 ± 0.01 a | [22] |
14 | 16.379 | C14H17O4 | 249.1130 | 249.1132 | 1.05 | Unknown | nd | nd | nd | nd | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcìa, L.M.; Ceccanti, C.; Negro, C.; De Bellis, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. Horticulturae 2021, 7, 10. https://doi.org/10.3390/horticulturae7010010
Garcìa LM, Ceccanti C, Negro C, De Bellis L, Incrocci L, Pardossi A, Guidi L. Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. Horticulturae. 2021; 7(1):10. https://doi.org/10.3390/horticulturae7010010
Chicago/Turabian StyleGarcìa, Leani Martìnez, Costanza Ceccanti, Carmine Negro, Luigi De Bellis, Luca Incrocci, Alberto Pardossi, and Lucia Guidi. 2021. "Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves" Horticulturae 7, no. 1: 10. https://doi.org/10.3390/horticulturae7010010
APA StyleGarcìa, L. M., Ceccanti, C., Negro, C., De Bellis, L., Incrocci, L., Pardossi, A., & Guidi, L. (2021). Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. Horticulturae, 7(1), 10. https://doi.org/10.3390/horticulturae7010010