Effects of Fertilizer Source and Rate on Zinnia Cut Flower Production in a High Tunnel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Plant Growth
3.2. Marketable Yield of Zinnia Cut Flower Stems
3.3. Soil Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lamont, W.J.; McGann, M.; Orzolek, M.; Mbugua, N.; Dye, B.; Reese, D. Design and construction of the Penn State high tunnel. HortTechnology 2002, 12, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Lamont, W.J. Overview of the use of high tunnels worldwide. HortTechnology 2009, 19, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Lamont, W.J. Plastics: Modifying the microclimate for the production of vegetable crops. HortTechnology 2005, 15, 477–481. [Google Scholar] [CrossRef]
- Lamont, W.J.; Orzolek, M.D.; Holcomb, E.J.; Demchak, K.; Burkhart, E.; White, L.; Dye, B. Production system for horticultural crops grown in Penn State high tunnel. HortTechnology 2003, 13, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.A. High tunnel tree fruit production: The final frontier? HortTechnology 2009, 19, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Wien, H.C. Floral crop production in high tunnels. HortTechnology 2009, 19, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Wittwer, S. World-wide use of plastics in horticultural production. HortTechnology 1993, 3, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Carey, E.E.; Jett, L.; Lamont, W.J.; Nennich, T.T.; Orzolek, M.D.; Williams, K.A. Horticultural crop production in high tunnels in the United States: A snapshot. HortTechnology 2009, 19, 37–43. [Google Scholar] [CrossRef]
- Guan, W.; Haseman, D.; Nowaskie, D. Rootstock evaluation for grafted cucumbers grown in high tunnels: Yield and plant growth. HortScience 2020, 55, 914–919. [Google Scholar] [CrossRef]
- Izaba, R.F.R.; Guan, W.; Torres, A.P. Economic analysis of growing grafted cucumber plants for high tunnel production. HortTechnology 2021, 31, 181–187. [Google Scholar] [CrossRef]
- Panter, K.L.; Gergeni, T.M.; Seals, C.P.; Garfinkel, A.R. Orientation of small hobby high tunnels and potential effects on cut sunflowers and fresh herbs. HortTechnology 2019, 29, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Santos Hecher, E.A.; Constance, L.F.; Enfield, J.; Guldan, S.J.; Uchanski, M.E. The economics of low-cost high tunnels for winter vegetable production in the Southwestern United States. HortTechnology 2014, 24, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Guldan, S.; Heyduck, R. High tunnel apricot production in frost-prone Northern New Mexico. HortTechnology 2019, 29, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gu, M.; Bi, G.; Evans, W.B.; Harkess, R. Planting date effect on yield of tomato, eggplant, pepper, zinnia, and snapdragon in high tunnel in Mississippi. J. Crop Improv. 2014, 28, 27–37. [Google Scholar] [CrossRef]
- Zhao, X.; Carey, E.E. Summer production of lettuce, and microclimate in high tunnel and open field plots in Kansas. HortTechnology 2009, 19, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Knewtson, S.J.B.; Kirkham, M.B.; Janke, R.R.; Murray, L.W.; Carey, E.E. Soil quality after eight years under high tunnels. HortScience 2012, 47, 1630–1633. [Google Scholar] [CrossRef] [Green Version]
- Montri, A.; Biernbaum, J.A. Management of the soil environment in high tunnels. HortTechnology 2009, 19, 34–36. [Google Scholar] [CrossRef]
- Reeve, J.; Drost, D. Yields and soil quality under transitional organic high tunnel tomatoes. HortScience 2012, 47, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Dumanski, J.; Pieri, C. Land quality indicators: Research plan. Agric. Ecosyst. Environ. 2000, 81, 93–102. [Google Scholar] [CrossRef]
- Aggelides, S.M.; Londra, P.A. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and clay soil. Bioresour. Technol. 2000, 71, 253–259. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Till. Res. 2004, 66, 97–205. [Google Scholar] [CrossRef]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of organic and mineral fertilizers on soil biological and physical properties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson: London, UK, 2013. [Google Scholar]
- Gaskell, M.; Smith, R. Nitrogen sources for organic vegetable crops. HortTechnology 2007, 17, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Gravel, V.; Dorais, M.; Ménard, C. Organic fertilization and its effect on development of sweet pepper transplants. HortScience 2012, 47, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Bi, G.; Evans, W.B.; Spiers, J.M.; Withcher, A.L. Effects of organic and inorganic fertilizers on marigold growth and flowering. HortScience 2010, 45, 1373–1377. [Google Scholar] [CrossRef]
- Larco, H.; Strik, B.C.; Bryla, D.R.; Sullivan, D.M. Mulch and fertilizer management practices for organic production of highbush blueberry. I: Plant growth and allocation of biomass during establishment. HortScience 2013, 48, 1250–1261. [Google Scholar] [CrossRef]
- Granitz, H.M. Improving the North Carolina Cut Flower Industry: A Production and Marketing Survey, Field and Postharvest Cut Flower Variety Evaluations, and Preemergence Herbicide Trials on Unlabeled Cut Flower Crops. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2014. [Google Scholar]
- Loyola, C.E.; Dole, J.M.; Dunning, R. North American specialty cut flower production and postharvest survey. HortTechnology 2019, 29, 338–359. [Google Scholar] [CrossRef] [Green Version]
- Association of Specialty Cut Flower Growers (ASCFG). Available online: https://www.ascfg.org/ (accessed on 20 July 2021).
- Ortiz, M.A.; Hyrczyk, K.; Lopez, R.G. Comparison of high tunnel and field production of specialty cut flowers in the Midwest. HortScience 2012, 47, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, J.D. Mississippi Soil Test Method and Interpretation; Mississippi Agricultural Experiment Station Mimeograph: Mississippi State, MS, USA, 1980. [Google Scholar]
- Debolt, D.C. A high sample volume procedure for the colorimetric determination of soil organic matter. Comm. Soil Sci. Plant Analy. 1974, 5, 131–137. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P.; Whaley, E. Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves. J. Am. Soc. Hort. Sci. 2005, 130, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Jeong, J.H.; Nackley, L.L. Photosynthetic and transpiration responses to light, CO2, temperature, and leaf senescence in garlic: Analysis and modeling. J. Am. Soc. Hort. Sci. 2013, 138, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Netto, A.T.; Campostrini, E.; Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll α fluorescence and SPAD-502 readings in coffee leaves. Sci. Hort. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Niu, G.; Wang, M.; Rodriguez, D.; Zhang, D. Response of zinnia plants to saline water irrigation. HortScience 2012, 47, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Hartz, T. Nitrogen availability from liquid organic fertilizers. Hort. Technol. 2010, 20, 169–172. [Google Scholar] [CrossRef] [Green Version]
- DeMoranville, C. Fish hydrolysate fertilizer: Its potential role in commercial production. HortScience 1990, 25, 626. [Google Scholar] [CrossRef]
- Schupp, J.R.; Schupp, H.A.; Bates, M.H. Effects of foliar applications of fish hydrolysate fertilizer or urea on apple yield and quality. HortScience 1993, 28, 254. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, P.A.; Conn, K.L.; Lazarovits, G. Suppression of Rhizoctonia and Pythium damping-off of radish and cucumber seedlings by addition of fish emulsion to peat mix or soil. Can. J. Plant Pathol. 2004, 26, 177–187. [Google Scholar] [CrossRef]
- Johnson, C.N.; Kessler, J.R. Greenhouse Production of Bedding Plant Zinnias; The Alabama Cooperative Ext. System: Auburn, AL, USA, 2007; ANR-1311; Available online: https://ssl.acesag.auburn.edu/pubs/docs/A/ANR-1311/ANR-1311-archive.pdf (accessed on 20 July 2021).
- Xiao, C.L.; Chandler, C.K.; Price, J.F.; Duval, J.R.; Mertely, J.C.; Legard, D.E. Comparison of epidemics of Botrytis fruit rot and Powdery mildew of strawberry in large plastic tunnels and field production systems. Plant Dis. 2001, 85, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.; Pottorff, L.P. Powdery Mildews; Colorado State University Ext.: Fort Collins, CO, USA, 2013; No. 2.902; Available online: https://extension.colostate.edu/docs/pubs/garden/02902.pdf (accessed on 20 July 2021).
- Wyenandt, A.; Kline, W.; Both, A.J. Important Diseases of Tomatoes Grown in High Tunnels and Greenhouses in New Jersey; Rutgers, The State University of New Jersey Cooperative Ext.: New Brunswick, NJ, USA, 2020; FS358; Available online: https://njaes.rutgers.edu/fs358/ (accessed on 20 July 2021).
- Pertot, I.; Zasso, R.; Amsalem, L.; Baldessari, M.; Angeli, G.; Elad, Y. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Prot. 2008, 27, 622–631. [Google Scholar] [CrossRef]
- Magdoff, F.; van Es, H. Building Soils for Better Crops, 4th ed.; University of Maryland: College Park, MD, USA, 2000; Available online: https://www.sare.org/wp-content/uploads/Building-Soils-for-Better-Crops.pdf (accessed on 20 July 2021).
- Reddy, K.C.; Reddy, S.S.; Malik, R.K.; Lemunyon, J.L.; Reeves, D.W. Effect of five-year continuous poultry litter use in cotton production on major soil nutrients. Agron. J. 2008, 100, 1047–1055. [Google Scholar] [CrossRef]
- Rosen, C.J.; Allan, D.L. Exploring the benefits of organic nutrient sources for crop production and quality: A review. HortTechnology 2007, 17, 422–430. [Google Scholar] [CrossRef]
Compost | N 1 | P | K | Ca | Mg | S | Al | Fe |
% | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | |
Composted Broiler Litter | 2.15 | 19,500 | 24,700 | 34,400 | 7650 | 6210 | 1710 | 3660 |
Vermicompost | 1.04 | 2840 | 4870 | 60,500 | 3270 | 2850 | 3050 | 3350 |
Cotton Gin Compost | 3.70 | 5110 | 8320 | 25200 | 4380 | 4130 | 337 | 631 |
Zn | Na | Cu | B | Mn | Moisture | Soluble Salts | pH | |
mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | % | dS m−1 | ||
Composted Broiler Litter | 470 | 7230 | 351 | 38.7 | 590 | 21.7 | 0.1 | 8.9 |
Vermicompost | 65.6 | 637 | 40.9 | 17.7 | 165 | 30.9 | 0.1 | 7 |
Cotton Gin Compost | 41.3 | 171 | 10.5 | 55.1 | 273 | 7.6 | 0.1 | 6.7 |
p-Value (Year 1) | Significance 1 | p-Value (Year 2) | Significance | |
---|---|---|---|---|
Treatments | PGI | |||
Compost | <0.0001 | S | 0.0006 | S |
Fertigation | 0.128 | NS | 0.4449 | NS |
Interaction | 0.160 | NS | 0.0553 | NS |
SPAD | ||||
Compost | <0.0001 | S | 0.0734 | NS |
Fertigation | 0.0024 | S | 0.0193 | S |
Interaction | 0.3367 | NS | 0.7558 | NS |
Marketable Stems per Plant 2 | ||||
Compost | 0.2156 | NS | 0.1610 | NS |
Fertigation | 0.0004 | S | 0.2005 | NS |
Interaction | 0.7658 | NS | 0.0715 | NS |
PGI (cm) | SPAD | ||
---|---|---|---|
Compost | Year 1 | Year 2 | Year 1 |
Composted Broiler Litter | 19.2 a 1 | 31.5 a | 34.3 a |
Vermicompost | 17.3 b | 27.8 b | 32.4 b |
Cotton Gin Compost | 16.7 bc | 25.3 c | 32.3 bc |
No Compost | 16.0 c | 25.5 c | 31.4 c |
Fertigation 1 | SPAD (Year 1) | SPAD (Year 2) | Marketable Stems per Plant (Year 1) 3 |
---|---|---|---|
Organic High | 33.4 a 2 | 38.3 abc | 27.1 a |
Organic Low | 32.7 ab | 37.8 bc | 23.1 b |
Conventional High | 33.4 a | 38.6 ab | 26.0 ab |
Conventional Low | 32.0 b | 38.9 a | 23.7 b |
No Fertilizer | 31.5 b | 37.8 c | 16.6 c |
P 1,2 | K | Ca | Mg | S | ||||||
Compost | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | |||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Composted Broiler Litter | 39.9 aB | 67.8 aA | 127.6 a | 116.7 a | 975.7 b | 1067.1 b | 141.0 a | 152.0 a | 46.8 | 47.6 |
Vermicompost | 25.0 bB | 32.3 bA | 92.3 b | 73.9 bc | 1103.5 a | 1203.9 a | 139.5 a | 136.2 b | 52.6 | 49 |
Cotton Gin Compost | 24.1 bA | 27.7 bA | 98 b | 77.2 b | 975.1 b | 1017.7 b | 127.9 b | 118.8 c | 42.4 | 43.4 |
No Compost | 24.2 bB | 28.6 bA | 87.6 b | 68.5 c | 991.9 b | 1003.5 b | 148.7 a | 138.3 b | 47.5 | 46.2 |
Significance 3 | S | S | S | S | S | S | S | S | NS | NS |
Zn | Na | Organic Matter | pH | |||||||
Compost | mg kg−1 | mg kg−1 | % | |||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |||
Composted Broiler Litter | 1.19 aB | 1.80 aA | 76 a | 86.4 a | 0.65 | 0.66 | 5.88 b | 6.00 b | ||
Vermicompost | 0.84 bA | 0.77 bA | 52.8 c | 58.3 b | 0.77 | 0.68 | 6.21 a | 6.32 a | ||
Cotton Gin Compost | 0.73 bA | 0.65 bA | 62.6 b | 61.1 b | 0.59 | 0.6 | 5.84 b | 5.97 b | ||
No Compost | 0.81 bA | 0.78 bA | 52.8 c | 62.8 b | 0.66 | 0.64 | 5.73 b | 6.00 b | ||
Significance | S | S | S | S | NS | NS | S | S |
P2,3 | K | Ca | Mg | S | ||||||
Fertigation1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | |||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
Organic High | 30.0 ab | 47.3 a | 99.3 | 85.5 | 1015.7 | 1037.5 | 137.8 | 131.0 | 48.2 | 47.5 |
Organic Low | 24.9 c | 43.3 ab | 102.9 | 88.5 | 992.3 | 1120.8 | 139.8 | 142.9 | 47.1 | 47.9 |
Conventional High | 31.7 a | 37.7 abc | 103.6 | 85.5 | 1036.5 | 1080.4 | 138.3 | 135.5 | 47.4 | 44.3 |
Conventional Low | 29.3 abc | 35.3 bc | 101.4 | 81.5 | 1004.6 | 1050.2 | 135.4 | 131.6 | 50.0 | 45.5 |
No Fertilizer | 25.6 bc | 32.0 c | 99.7 | 79.3 | 1008.8 | 1076.3 | 145.3 | 140.7 | 43.8 | 47.5 |
Significance 4 | S | S | NS | NS | NS | NS | NS | NS | NS | NS |
Zn | Na | Organic Matter | pH | |||||||
Fertigation | mg kg−1 | mg kg−1 | % | |||||||
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |||
Organic High | 0.89 | 1.09 | 64.5 | 63.8 b | 0.67 | 0.66 | 5.92 | 5.93 b | ||
Organic Low | 0.80 | 1.05 | 64.4 | 73.0 a | 0.71 | 0.67 | 5.88 | 6.13 a | ||
Conventional High | 1.01 | 0.95 | 59.3 | 63.8 b | 0.66 | 0.62 | 5.97 | 6.07 ab | ||
Conventional Low | 0.91 | 0.97 | 58.9 | 67.2 ab | 0.70 | 0.63 | 5.99 | 6.09 a | ||
No Fertilizer | 0.87 | 0.94 | 58.1 | 67.9 ab | 0.61 | 0.66 | 5.83 | 6.16 a | ||
Significance | NS | NS | NS | S | NS | NS | NS | S |
K 1,2 | Na | pH | |
---|---|---|---|
mg kg−1 | mg kg−1 | ||
Year 1 | 101.4 a | 61.1 b | 5.92 b |
Year 2 | 84.1 b | 67.2 a | 6.07 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, G.; Li, T.; Gu, M.; Evans, W.B.; Williams, M. Effects of Fertilizer Source and Rate on Zinnia Cut Flower Production in a High Tunnel. Horticulturae 2021, 7, 333. https://doi.org/10.3390/horticulturae7100333
Bi G, Li T, Gu M, Evans WB, Williams M. Effects of Fertilizer Source and Rate on Zinnia Cut Flower Production in a High Tunnel. Horticulturae. 2021; 7(10):333. https://doi.org/10.3390/horticulturae7100333
Chicago/Turabian StyleBi, Guihong, Tongyin Li, Mengmeng Gu, William B. Evans, and Mark Williams. 2021. "Effects of Fertilizer Source and Rate on Zinnia Cut Flower Production in a High Tunnel" Horticulturae 7, no. 10: 333. https://doi.org/10.3390/horticulturae7100333
APA StyleBi, G., Li, T., Gu, M., Evans, W. B., & Williams, M. (2021). Effects of Fertilizer Source and Rate on Zinnia Cut Flower Production in a High Tunnel. Horticulturae, 7(10), 333. https://doi.org/10.3390/horticulturae7100333