Towards a Capture and Reuse Model for Aquaculture Effluent as a Hydroponic Nutrient Solution Using Aerobic Microbial Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Facility Description
2.2. Drum Screen Effluent Collection and Analysis
2.3. Reactor Design, Operation, and Sample Analysis
2.4. Statistical Analysis
3. Results
3.1. Effluent Nutrient Analysis
3.2. Reactor Sample Analysis
3.3. Final Nutrient Analysis
4. Discussion
4.1. Untreated Effluent Nutrient Profile
4.2. Solids Reduction
4.3. Treated Effluent Nutrient Profile
4.4. Implications for Aquaponic Production
4.5. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2019, 17, 364–376. [Google Scholar] [CrossRef]
- Timmons, M.; Guerdat, T.; Vinci, B.J. Recirculating Aquaculture, 4th ed.; Ithaca Publishing Company, LLC: Vero Beach, FL, USA, 2018; pp. 2–25, 663–707. [Google Scholar]
- Hunter, M.; Smith, R.; Schipanski, M.; Atwood, L.; Mortensen, D. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Semmens, K. Waste Management in Aquaculture. Aquaculture 2002, 1–10. Available online: https://freshwater-aquaculture.extension.org/wp-content/uploads/2019/08/WasteManagemetninAquaculture.pdf (accessed on 14 July 2021).
- EPA (United States Environmental Protection Agency). Effluent Limitations Guidelines and New Source Performance Standards for the Concentrated Aquatic Animal Production Point Source Category; Final Rule. 40 CFR Part 451; EPA: Washington, DC, USA, 2004. [Google Scholar]
- Sharrer, M.; Rishel, K.; Taylor, A.; Vinci, B.J.; Summerfelt, S.T. The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems. Bioresour. Technol. 2010, 101, 6630–6641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsani, S.; Koundouri, P. A Methodological Note for the Development of Integrated Aquaculture Production Models. Front. Mar. Sci. 2018, 4, 406. [Google Scholar] [CrossRef] [Green Version]
- Lages Barbosa, G.; Almeida Gadelha, F.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- Henckens, M.L.C.M.; van Ierland, E.; Driessen, P.P.J.; Worrell, E. Mineral resources: Geological scarcity, market price trends, and future generations. Resour. Policy 2016, 49, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Yogev, U.; Sowers, K.R.; Mozes, N.; Gross, A. Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture 2017, 467, 118–126. [Google Scholar] [CrossRef]
- Chen, S.; Coffin, D.; Malone, R. Sludge Production and Management for Recirculating Aquacultural Systems. J. World Aquac. Soc. 1997, 28, 303–315. [Google Scholar] [CrossRef]
- Guerdat, T.C.; Losordo, T.M.; Delong, D.P.; Jones, R.D. An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid. Aquac. Eng. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Tetreault, J.; Fogle, R.; Guerdat, T. Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems. Conservation 2021, 1, 151–167. [Google Scholar] [CrossRef]
- Monsees, H.; Keitel, J.; Paul, M.; Kloas, W.; Wuertz, S. Potential of aquacultural sludge treatment for aquaponics: Evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquac. Environ. Interact. 2017, 9, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Delaide, B.P.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.P.; et al. Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Keesman, K.J.; Jijakli, M.H.M. A methodology to quantify the aerobic and anaerobic sludge digestion performance for nutrient recycling in Aquaponics. Biotechnol. Agron. Soc. Environ. 2018, 22, 106–112. [Google Scholar]
- Delaide, B.; Panana, E.; Teerlinck, S.; Bleyaert, P. Suitability of supernatant of aerobic and anaerobic pikeperch (Sander lucioperca L.) sludge as a water source for hydroponic production of lettuce (Lactuca sativa L. var. capitata). Aquacult Int. 2021, 29, 1721–1735. [Google Scholar] [CrossRef]
- Khiari, Z.; Kaluthota, S.; Savidov, N. Aerobic bioconversion of aquaculture solid waste into liquid fertilizers: Effects of bioprocess parameters on kinetics of nitrogen mineralization. Aquaculture 2019, 500, 492–499. [Google Scholar] [CrossRef]
- Losordo, T.M.; Hobbs, A.O.; DeLong, D.P. The design and operational characteristics of the CP&L/EPRI fish barn: A demonstration of recirculating aquaculture technology. Aquac. Eng. 2000, 22, 3–16. [Google Scholar]
- DeLong, D.; Losordo, T.; Rakocy, J. Tank Culture of Tilapia; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2009. [Google Scholar]
- Mattson, N.; Peters, C. A Recipe for Hydroponic Success. Inside Grower, January 2014; pp. 16–19. Available online: https://dokumen.tips/documents/a-recipe-for-hydroponic-successpdf.html (accessed on 14 July 2021).
- Anderson, T. Biological Responses of Lettuce to Hydroponic and Aquaponic Conditions. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2016. [Google Scholar]
- Goddek, S.; Schmautz, Z.; Scott, B.; Delaide, B.; Keesman, K.J.; Wuertz, S.; Junge, R. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce. Agronomy 2016, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Standard Methods. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 2012; pp. 2–71. [Google Scholar]
- Panana, E.; Delaide, B.; Teerlinck, T.; Bleyaert, P. Aerobic treatment and acidification of pikeperch (Sander lucioperca L.) sludge for nutrient recovery. Aquacult. Int. 2021, 29, 1–14. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, B.Y.; Lee, H.J. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hortic. 2006, 110, 119–128. [Google Scholar] [CrossRef]
- Yaron, S.; Römling, U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 2014, 7, 496–516. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Rakocy, J.; Masser, P.; Losordo, T. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture; SRAC-454; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2006. [Google Scholar]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer Open: Berlin/Heidelberg, Germany, 2019; pp. 163–229. [Google Scholar]
- Kloas, W.; Gross, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B.; et al. A new concept for aquaponics systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Borzacconi, L.; López, I.; Ohanian, M.; Viñas, M. Anaerobic-Aerobic Treatment of Municipal Solid Waste Leachate. Environ. Technol. 1999, 20, 211–217. [Google Scholar] [CrossRef]
- Del Pozo, R.; Diez, V. Organic matter removal in combined anaerobic–aerobic fixed-film bioreactors. Water Res. 2003, 37, 3561–3568. [Google Scholar] [CrossRef]
Nutrient | Total Drum Screen Effluent (mg/L) | Aqueous (%) | Particulate (%) |
---|---|---|---|
Macro-nutrient | |||
N | 174 | 96.36 | 3.64 |
P | 3.82 | 68.11 | 31.89 |
K † | 402 | 99.61 | 0.39 |
Ca | 30.4 | 92.78 | 7.22 |
Mg | 21.8 | 98.33 | 1.67 |
Micro-nutrient | |||
Fe † | 1.90 | 94.57 | 5.43 |
Mn | 0.27 | 97.50 | 2.50 |
B | 0.26 | 90.11 | 9.89 |
Cu | 0.17 | 94.60 | 5.40 |
Zn | 0.80 | 99.24 | 0.76 |
Na | 34.5 | 99.72 | 0.28 |
Al | 0.51 | 71.15 | 28.85 |
Parameter | Aerobic Reactors | p-Value between Reactors |
---|---|---|
Temperature (°C) | 21.1 ± 0.41 | 0.0018 |
DO (mg/L) | 8.83 ± 0.20 | 0.3818 |
pH | 7.3 ± 0.18 | 0.3639 |
Nutrient | Effluent (% Aqueous) | Aerobic (% Aqueous) | p-Value |
---|---|---|---|
Macro-nutrients | |||
N | 96.36 | 98.60 ± 0.1 | <0.0001 |
P | 68.11 | 94.97 ± 1.1 | <0.0001 |
K † | 99.61 | 99.84 ± 0.0 | <0.001 |
Ca | 92.78 | 96.59 ± 0.6 | <0.001 |
Mg | 98.33 | 99.4 ± 0.2 | <0.01 |
Micro-nutrient | |||
Fe † | 94.57 | 93.64 ± 0.9 | =0.1529 |
Mn | 97.50 | 96.67 ± 2.8 | =0.6611 |
B | 90.11 | 99.84 ± 0.1 | <0.0001 |
Cu | 94.60 | 98.57 ± 0.6 | <0.001 |
Zn | 99.24 | 99.84 ± 0.1 | <0.01 |
Na | 99.72 | 99.98 ± 0.0 | <0.001 |
Al | 71.15 | 86.74 ± 0.9 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetreault, J.; Fogle, R.; Guerdat, T. Towards a Capture and Reuse Model for Aquaculture Effluent as a Hydroponic Nutrient Solution Using Aerobic Microbial Reactors. Horticulturae 2021, 7, 334. https://doi.org/10.3390/horticulturae7100334
Tetreault J, Fogle R, Guerdat T. Towards a Capture and Reuse Model for Aquaculture Effluent as a Hydroponic Nutrient Solution Using Aerobic Microbial Reactors. Horticulturae. 2021; 7(10):334. https://doi.org/10.3390/horticulturae7100334
Chicago/Turabian StyleTetreault, Joseph, Rachel Fogle, and Todd Guerdat. 2021. "Towards a Capture and Reuse Model for Aquaculture Effluent as a Hydroponic Nutrient Solution Using Aerobic Microbial Reactors" Horticulturae 7, no. 10: 334. https://doi.org/10.3390/horticulturae7100334
APA StyleTetreault, J., Fogle, R., & Guerdat, T. (2021). Towards a Capture and Reuse Model for Aquaculture Effluent as a Hydroponic Nutrient Solution Using Aerobic Microbial Reactors. Horticulturae, 7(10), 334. https://doi.org/10.3390/horticulturae7100334