Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mediums and Reagents
2.2. Experiment Design
2.2.1. Study Site
2.2.2. Field Intercropping Experiment
2.3. Analytical Methods
2.3.1. Determination of the Moisture Content, Microbe Numbers, Enzyme Activities and Nutrient of Kiwifruit Rhizosphere Soils
2.3.2. Determination of the Growth Parameters of Kiwifruit Plants
2.4. Statistical Analyses
3. Results
3.1. Effects of Interplanting V. sativa on Moisture Content in Rhizosphere Soils of Young Kiwifruit Plants
3.2. Effects of Interplanting V. sativa on Microbe Numbers in Rhizosphere Roils of Young Kiwifruit Plants
3.3. Effects of Interplanting V. sativa on Enzyme Activities in Rhizosphere Soils of Young Kiwifruit Plants
3.4. Effects of Interplanting V. sativa on Nutrients in Rhizosphere Soils of Young Kiwifruit Plants
3.5. Effects of Interplanting V. sativa on Growth of Young Kiwifruit Plants
3.6. Correlation of Soil Parameters and Growth Parameters
4. Discussion
4.1. Soil Moisture
4.2. Soil Microbial Community
4.3. Soil Enzyme Activities
4.4. Soil Nutrient
4.5. Plant Growth and Weeds Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Zhou, H.; Li, P. Lacquer wax coating improves the sensory and quality attributes of kiwifruit during ambient storage. Sci. Hortic. 2019, 244, 31–41. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L.; Zhang, L.; Guo, Y.; Qi, X.; He, L. Effects of quercetin on postharvest blue mold control in kiwifruit. Sci. Hortic. 2018, 228, 18–25. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Nedunchezhiyan, M.; Ravindran, C.S.; Velumani, R. Weed management in root and tuber crops in India: Critical analysis. J. Root Crop. 2013, 39, 13e20. [Google Scholar]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2014, 206, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Martin-Guay, M.-O.; Paquette, A.; Dupras, J.; Rivest, D. The new green revolution: Sustainable intensification of agriculture by intercropping. Sci. Total. Environ. 2017, 615, 767–772. [Google Scholar] [CrossRef]
- Weerarathne, L.; Marambe, B.; Chauhan, B.S. Intercropping as an effective component of integrated weed management in tropical root and tuber crops: A review. Crop. Prot. 2017, 95, 89–100. [Google Scholar] [CrossRef]
- Weerarathne, L.; Marambe, B.; Chauhan, B. Does intercropping play a role in alleviating weeds in cassava as a non-chemical tool of weed management?—A review. Crop. Prot. 2017, 95, 81–88. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Zhao, C.; Yu, A.; Fan, Z.; Hu, F.; Fan, H.; Guo, Y.; Coulter, J.A. Water utilization in intercropping: A review. Agric. Water Manag. 2020, 241, 106335. [Google Scholar] [CrossRef]
- Bančič, J.; Werner, C.R.; Gaynor, R.C.; Gorjanc, G.; Odeny, D.A.; Ojulong, H.F.; Dawson, I.K.; Hoad, S.P.; Hickey, J.M. Modeling Illustrates that genomic selection provides new opportunities for intercrop breeding. Front. Plant Sci. 2021, 12, 605172. [Google Scholar] [CrossRef]
- Khanal, U.; Stott, K.; Armstrong, R.; Nuttall, J.; Henry, F.; Christy, B.; Mitchell, M.; Riffkin, P.; Wallace, A.; McCaskill, M.; et al. Intercropping—evaluating the advantages to broadacre systems. Agriculture 2021, 11, 453. [Google Scholar] [CrossRef]
- Weih, M.; Karley, A.; Newton, A.; Kiær, L.; Scherber, C.; Rubiales, D.; Adam, E.; Ajal, J.; Brandmeier, J.; Pappagallo, S.; et al. Grain yield stability of cereal-legume intercrops is greater than sole crops in more productive conditions. Agriculture 2021, 11, 255. [Google Scholar] [CrossRef]
- Yin, R.J.; Wen, X.X.; Liao, Y.C.; Huang, J.H.; Gao, M.S. Effect of tillage and mulching on enzyme activities of apple orchard soil. Acta Hortic. Sin. 2009, 36, 717–722. (In Chinese) [Google Scholar]
- Xi, Z.M.; Yue, T.X.; Zhang, J.; Cheng, J.M.; Li, H. Relationship between soil biological characteristics and nutrient content under intercropping system of vineyard in northwestern semiarid area. Sci. Agric. Sin. 2011, 44, 2310–2317. (In Chinese) [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Zhang, M.; Liao, E.H. Relationship between biological factors and soil nutrients in artificial fruit-grass ecosystem. J. Soil Water Conserv. 2005, 19, 178–181. (In Chinese) [Google Scholar] [CrossRef]
- Moreno, B.; Garcia-Rodriguez, S.; Cañizares, R.; Castro, J.; Benítez, E. Rainfed olive farming in South-Eastern Spain: Long-term effect of soil management on biological indicators of soil quality. Agric. Ecosyst. Environ. 2009, 131, 333–339. [Google Scholar] [CrossRef]
- Floch, C.; Capowiez, Y.; Criquet, S. Enzyme activities in apple orchard agroecosystems: How are they affected by management strategy and soil properties. Soil Biol. Biochem. 2009, 41, 61–68. [Google Scholar] [CrossRef]
- Yin, W.; Yu, A.; Guo, Y.; Wang, Y.; Zhao, C.; Fan, Z.; Falong, H.; Chai, Q. Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat-maize intercropping systems. Field Crop. Res. 2018, 229, 78–94. [Google Scholar] [CrossRef]
- Ouma, G.; Jeruto, P. Sustainable horticultural crop production through intercropping: The case of fruits and vegetable crops: A review. Agric. Biol. J. N. Am. 2010, 1, 1098–1105. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.P.; Zhou, K.T.; Wu, X.M.; Long, Y.H.; Li, J.H.; Yin, X.Y. Effects of intercropping Reineckia carnea on soil enzyme activity and kiwifruit fruit yield, quality in kiwifruit orchard. Sci. Agric. Sin. 2018, 51, 1556–1567. (In Chinese) [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.; Nan, Z.; Unkovich, M.; Coulter, J.A. Effects of cultivar and growing degree day accumulations on forage partitioning and nutritive value of common vetch (Vicia sativa L.) on the Tibetan plateau. J. Sci. Food Agric. 2020, 101, 3749–3757. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C. Assessment of interactions between yield components of common vetch cultivars in both conventional and low-input cultivation systems. Agriculture 2021, 11, 369. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, X.L.; Nan, Z.B.; Zhang, Z.X. Potential value of the common vetch (Vicia sativa L.) as an animal feedstuff: A review. J. Anim. Physiol. Anim. Nutr. 2017, 101, 807–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Rosa, L.; López-Román, M.I.; González, J.M.; Zambrana, E.; Marcos-Prado, T.; Ramírez-Parra, E. Common vetch, valuable germplasm for resilient agriculture: Genetic characterization and Spanish core collection development. Front. Plant Sci. 2021, 12, 617873. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, G.; Yang, Y.; Zeng, Z.; Hu, Y.; Zang, H. Sowing ratio determines forage yields and economic benefits of oat and common vetch intercropping. Agron. J. 2021, 113, 2607–2617. [Google Scholar] [CrossRef]
- Hu, K.H. Microbiology Experiment; China Forestry Press: Beijing, China, 2004; pp. 35–38. (In Chinese) [Google Scholar]
- Long, Y.H.; Yin, X.H.; Wang, M.; Wu, X.M.; Li, R.Y.; Tian, X.L.; Li, M. Effects of sulfur on kiwifruit canker caused by Pseudomonas syringae pv. Actinidae. Bangladesh J. Bot. 2017, 46, 1183–1192. [Google Scholar]
- Zhang, C.; Long, Y.-H.; Wang, Q.-P.; Li, J.-H.; Wu, X.-M.; Li, M. The effect of preharvest 28.6% chitosan composite film sprays for controlling the soft rot on kiwifruit. Hortic. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Fan, Z.; Hu, F.; Yu, A.; Zhao, C.; Chai, Q.; Coulter, J.A. Innovation in alternate mulch with straw and plastic management bolsters yield and water use efficiency in wheat-maize intercropping in arid conditions. Sci. Rep. 2019, 9, 6364. [Google Scholar] [CrossRef] [PubMed]
- Kandel, H.; Samarappuli, D.; Johnson, K.; Berti, M. Soybean relative maturity, not row spacing, affected interseeded cover crops biomass. Agriculture 2021, 11, 441. [Google Scholar] [CrossRef]
- Teng, Y.-Y.; Zhao, C.; Chai, Q.; Hu, F.-L.; Feng, F.-X. Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system. Acta Agron. Sin. 2016, 42, 446–455. [Google Scholar] [CrossRef]
- Yang, C.; Huang, G.; Chai, Q.; Luo, Z. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crop. Res. 2011, 124, 426–432. [Google Scholar] [CrossRef]
- Fan, Z.; Chai, Q.; Huang, G.; Yu, A.; Huang, P.; Yang, C.; Tao, Z.; Liu, H. Yield and water consumption characteristics of wheat/maize intercropping with reduced tillage in an Oasis region. Eur. J. Agron. 2013, 45, 52–58. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Erkomaa, K.; Kukkonen, S.; Vestberg, M.; Wallenius, K.; Niemi, R.M. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure. Plant Soil 2004, 264, 273–286. [Google Scholar] [CrossRef]
- Niemi, R.; Vepsäläinen, M.; Wallenius, K.; Simpanen, S.; Alakukku, L.; Pietola, L. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Appl. Soil Ecol. 2005, 30, 113–125. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Cardina, J. Laboratory methods for breaking dormancy in garlic mustard (Alliaria petiolata) seeds. Invasive Plant Sci. Manag. 2008, 82, 122–130. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, Z.; He, X.; Chen, H.; Wang, K. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. Eur. J. Soil Biol. 2015, 68, 61–68. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Zhao, X.L.; Liu, X.H.; He, J.Z.; Wan, C.X.; Gong, M.F.; Zhang, L.L. Effects of cotton root exudates on available soil nutrition, enzyme activity and microorganism quantity. Acta Bot. Boreali-Occident. Sin. 2009, 29, 1426–1431. (In Chinese) [Google Scholar]
- Zhang, C.; Long, Y.; Li, J.; Li, M.; Xing, D.; An, H.; Wu, X.; Wu, Y. A chitosan composite film sprayed before pathogen infection effectively controls postharvest soft rot in kiwifruit. Agronomy 2020, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Arora, K.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Allelopathic potential of the essential oil of wild marigold (Tagetes minuta L.) against some invasive weeds. J. Environ. Agric. Sci. 2015, 3, 56–60. [Google Scholar]
- Seran, T.H.; Brintha, I. Review on maize based intercropping. J. Agron. 2010, 9, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Korieocha, D.S. Weed control in national root crops research institute Umudike and its recommendation. Res. J. Agric. Environ. Manag. 2014, 4, 1–4. [Google Scholar]
Time (Day/Month) | Bacteria (×108 cfu g−1) | Actinomycetes (×107 cfu g−1) | Fungi (×105 cfu g−1) | |||
---|---|---|---|---|---|---|
Intercropping | Clean Tillage | Intercropping | Clean Tillage | Intercropping | Clean Tillage | |
28/4 | 0.63 ± 0.04 aA | 0.23 ± 0.04 bB | 2.22 ± 0.07 aA | 1.33 ± 0.04 bB | 1.02 ± 0.01 aA | 0.63 ± 0.01 bB |
28/5 | 0.71 ± 0.01 aA | 0.32 ± 0.02 bB | 2.71 ± 0.12 aA | 1.63 ± 0.03 bB | 1.24 ± 0.02 aA | 0.65 ± 0.03 bB |
27/6 | 0.86 ± 0.01 aA | 0.52 ± 0.02 bB | 2.97 ± 0.05 aA | 1.83 ± 0.03 bB | 1.58 ± 0.01 aA | 0.73 ± 0.01 bB |
27/7 | 0.98 ± 0.01 aA | 0.63 ± 0.01 bB | 3.21 ± 0.09 aA | 1.90 ± 0.01 bB | 1.89 ± 0.07 aA | 0.78 ± 0.01 bB |
26/8 | 1.07 ± 0.05 aA | 0.70 ± 0.01 bB | 3.52 ± 0.01 aA | 2.10 ± 0.03 bB | 2.01 ± 0.12 aA | 0.81 ± 0.03 bB |
Treatments | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) |
---|---|---|---|---|
Intercropping | 55.74 ± 4.31 aA | 1.52 ± 0.04 aA | 21.38 ± 1.90 aA | 1.48 ± 0.05 aA |
Clean tillage | 38.87 ± 1.84 bB | 1.16 ± 0.03 bB | 15.36 ± 0.39 bB | 1.23 ± 0.04 bB |
Treatments | Plant Height (cm) | Stem Girth (cm) | Leaf Number | Maximum Leaf Length (cm) | Maximum Leaf Width (cm) | Chlorophyll Content (mg g−1) |
---|---|---|---|---|---|---|
Intercropping | 141.37 ± 3.23 aA | 3.05 ± 0.10 aA | 23.00 ± 2.00 aA | 15.21 ± 0.25 aA | 12.03 ± 0.66 aA | 0.62 ± 0.03 aA |
Clean tillage | 98.45 ± 3.89 bB | 2.57 ± 0.11 bB | 16.00 ± 1.00 bB | 12.88 ± 0.69 bB | 9.93 ± 0.49 bB | 0.37 ± 0.03 bB |
Parameters | Plant Height | Stem Girth | Leaf Number | Maximum Leaf Length | Maximum Leaf Width | Chlorophyll Content |
---|---|---|---|---|---|---|
Intercropping | ||||||
Moisture content | 0.488 | 0.556 * | 0.638 * | 0.275 | 0.209 | 0.521 * |
Bacteria | 0.411 | 0.629 * | 0.210 | 0.648 * | 0.644 * | 0.386 |
Actinomycetes | 0.649 * | 0.662 * | 0.474 | 0.412 | 0.672 * | 0.630 * |
Fungi | 0.428 | 0.445 | 0.235 | 0.175 | 0.459 | 0.404 |
Sucrase | 0.769 * | 0.779 * | 0.610 * | 0.549 * | 0.786 * | 0.753 * |
Urease | 0.679 * | 0.687 * | 0.547 * | 0.496 | 0.694 * | 0.667 * |
Phosphatase | 0.623 * | 0.639 * | 0.419 | 0.351 | 0.653 * | 0.600 * |
Catalase | 0.204 | 0.213 | 0.101 | 0.070 | 0.221 | 0.191 |
Organic matter | 0.998 ** | 1.000 ** | 0.901 ** | 0.850 * | 1.000 ** | 0.993 ** |
Total nitrogen | 0.989 ** | 0.983 ** | 0.971 ** | 0.940 ** | 0.976 ** | 0.996 ** |
Available phosphorus | 0.852 * | 0.831 * | 0.987 ** | 0.998 ** | 0.810 * | 0.879 * |
Available potassium | 0.980 ** | 0.972 ** | 0.982 ** | 0.957 ** | 0.963 ** | 0.990 ** |
Clean tillage | ||||||
Moisture content | 0.132 | 0.474 | 0.4 | 0.132 | 0.474 | 0.446 |
Bacteria | 0.385 | 0.661 * | 0.385 | 0.661 * | 0.643 * | 0.385 |
Actinomycetes | 0.477 | 0.747 * | 0.477 | 0.747 * | 0.731 * | 0.477 |
Fungi | 0.148 | 0.447 | 0.148 | 0.447 | 0.423 | 0.148 |
Sucrase | 0.399 | 0.647 * | 0.399 | 0.646 * | 0.631 * | 0.399 |
Urease | 0.28 | 0.569 * | 0.28 | 0.569 * | 0.548 * | 0.280 |
Phosphatase | 0.454 | 0.765 * | 0.454 | 0.765 * | 0.745 * | 0.454 |
Catalase | 0.188 | 0.373 | 0.188 | 0.373 | 0.360 | 0.188 |
Organic matter | 0.938 ** | 0.977 ** | 0.938 ** | 0.978 ** | 0.987 ** | 0.938 ** |
Total nitrogen | 0.866 * | 0.999 ** | 0.866 * | 0.999 ** | 1.000 ** | 0.866 * |
Available phosphorus | 0.998 ** | 0.877 * | 0.998 ** | 0.878 * | 0.902 ** | 0.998 ** |
Available potassium | 0.803 * | 0.998 ** | 0.803 * | 0.997 ** | 0.992 ** | 0.803 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, C.; Li, J.; Wu, X.; Long, Y.; Su, Y. Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae 2021, 7, 335. https://doi.org/10.3390/horticulturae7100335
Wang Q, Zhang C, Li J, Wu X, Long Y, Su Y. Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae. 2021; 7(10):335. https://doi.org/10.3390/horticulturae7100335
Chicago/Turabian StyleWang, Qiuping, Cheng Zhang, Jiaohong Li, Xiaomao Wu, Youhua Long, and Yue Su. 2021. "Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth" Horticulturae 7, no. 10: 335. https://doi.org/10.3390/horticulturae7100335
APA StyleWang, Q., Zhang, C., Li, J., Wu, X., Long, Y., & Su, Y. (2021). Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae, 7(10), 335. https://doi.org/10.3390/horticulturae7100335