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Abstract: Light dependent anthocyanin accumulation contributes to the red pigmentation of the fruit
skin of mango (Mangifera indica L.). Light-independent pigmentation has also been reported, but
remains poorly characterized. In this study, the pigmentation patterns in the skin of two red mango
cultivars, ‘Ruby’ and ‘Sensation’, were evaluated. Metabolomic profiling revealed that quercetin-3-
O-glucoside, cyanidin-3-O-galactoside, procyanidin B1, and procyanidin B3 are the predominant
flavonoid compounds in the skin of ‘Ruby’ and ‘Sensation’ fruit. Young fruit skin mainly accumulates
flavonol and proanthocyanidin, while anthocyanin is mainly accumulated in the skin of mature
fruit. Bagging treatment inhibited the biosynthesis of flovonol and anthocyanin, but promoted the
accumulation of proanthocyanidin. Compared with ‘Sensation’, matured ‘Ruby’ fruit skin showed
light red pigmentation at 120 days after full bloom (DAFB), showing a light-independent anthocyanin
accumulation pattern. However, the increase of anthocyanin concentration, and the expression of
key anthocyanin structural and regulatory genes MiUFGT1, MiUFGT3, and MiMYB1 in the skin of
bagged ‘Ruby’ fruit versus ‘Sensation’ at 120 DAFB was very limited. There was no mutation in
the crucial elements of MiMYB1 promoter between ‘Ruby’ and ‘Sensation’. We hypothesize that
the light-independent anthocyanin accumulation in the skin of mature ‘Ruby’ fruit is regulated
by plant hormones, and that ‘Ruby’ can be used for breeding of new more easily pigmented red
mango cultivars.

Keywords: mango; anthocyanin; light-independent; gene expression; MiMYB promoter

1. Introduction

Mango (Mangifera indica L.) is one of the most popular tropical fruits in the world
and is often referred to as the ‘king of fruits’ [1]. Fruit color is an important index of fruit
quality, and normally red-colored mango fruits are preferred by the customers [2]. The red
color of mango fruit is due to the accumulation of anthocyanin, and the major components
of anthocyanin in mango are cyanidin 3-O-galactoside and 7-O-methylcyanidin 3-O-β-D
galactopyranoside [3,4]. Anthocyanin is water soluble pigment, derived from a branch of
the flavonoid biosynthesis pathway. So far, a number of anthocyanin biosynthetic genes
in mango have been isolated, including PAL (phenylalanine ammonia-lyase), CHS (chal-
cone synthase), CHI (chalcone isomerase), F3H (flavanone 3-hydroxylase), F3’H (flavonoid
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3’-hydroxylase), DFR (dihydroflavonol 4-reductase), ANS (anthocyanidin synthase), and
UFGT (UDP-glucose: flavonoid 3-O-glucosyltransferase) [5,6]. The expression of antho-
cyanin biosynthetic genes is regulated through the MYB-bHLH-WD40 complex, and among
these R2R3-MYB has been showed to be the most important transcription factor (TF) [7,8].
The best known R2R3-MYB is MYB75/PAP1 (Production of Anthocyanin Pigment 1) which
was identified in Arabidopsis [9]. Its homologs called MYB1 or MYB10 were isolated
from diverse fruit species including apple [10–12], grape [13], orange [14], pear [15], straw-
berry [16] and peach [17]. In addition, a R2R3-MYB TF, PyMYB114 has been reported to
regulate anthocyanin biosynthesis in pear [18]. Recently, a MYB TF controlling anthocyanin
biosynthesis in mango was isolated from mango cv. ‘Irwin’, and named MiMYB1 [19].

Bagging, i.e., covering young fruits with paper bags, can improve fruit pigmentation
and protect the fruit from diseases and pests, and this practice is widely used during fruit
production including for pear [20], apple [21], grape [22], and mango [19,23]. Since the
anthocyanin accumulation in fruit skin (also in mango) is usually dependent on sunlight,
bags should be removed before harvest to re-expose the fruit to sunlight and induce antho-
cyanin biosynthesis and the consequent red pigmentation. Unlike other mango cultivars,
cv. ‘Ruby’ fruit skin can still accumulate anthocyanin at the later stages of development
when bagged (Figure 1). So, this light-independent cultivar is of particular interest for
commercial reasons (labor saving by skipping of bag removal) as well as scientific reasons
(elucidation of the molecular mechanism of light-independent anthocyanin biosynthesis).
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were highly expressed in ‘Jingyan’ with or without sunlight, although expression of these 
genes was down-regulated by bagging in light-dependent ‘Jingxiu’ [22]. No differences 
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Figure 1. Representative images of bagged and control (un-bagged) ‘Ruby’ (A) and ‘Sensation’ (B) mango fruits during
different developmental stages (DAFB is Days after full bloom).

Light-independent anthocyanin accumulation has also been found in grape berry [24–26],
the flesh of apple [27], blood orange [14], peach [28], tuberous roots of purple-fleshed sweet
potato [29], and the purple head of Chinese cabbage [30]. In grape berries, bagging changed the
concentration of specific anthocyanin compounds but had no effect on the total concentration
of anthocyanin in ‘Shiraz’ [24,26], and ‘Crimson Seedless’ [25]. Comparing light-independent
grape berry cv. ‘Jingyan’ with light-dependent cv. ‘Jingxiu’, researchers found that the key
structural gene UFGT and the regulatory gene MYB-A1 were highly expressed in ‘Jingyan’
with or without sunlight, although expression of these genes was down-regulated by bagging
in light-dependent ‘Jingxiu’ [22]. No differences were found in the sequences of these two
genes between the two cultivars. In the red-fleshed apple cultivar ‘Red Field’, an allelic
rearrangement in the promoter of MYB10 has generated an autoregulatory locus, which
increases the transcription of MYB10, and subsequently leads to the anthocyanin accumulation
in flesh [27]. In blood orange, anthocyanin accumulation in flesh is due to the high expression
of Ruby gene (encoding a MYB TF) caused by a retrotransposon insertion in the Ruby promoter
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region [14]. The red-fleshed trait in peach cultivar ‘Dahongpao’ is controlled by a BLOOD (BL)
gene encoding a NAC transcription factor, which acts as a heterodimer with PpNAC1 activating
the transcription of PpMYB10.1, resulting in anthocyanin pigmentation [28]. Anthocyanin
accumulation in the tuberous roots of purple-fleshed sweet potato is regulated by IbMYB1,
which shows the specific expression in tuberous roots, and over-expression of IbMYB1 could
up-regulate the expression of all the anthocyanin biosynthetic genes and cause anthocyanin
accumulation [29]. In purple head Chinese cabbage cultivar 11S91, a large deletion in intron 1
of gBrMYB2 increases the expression of BrMYB2, causing purple pigmentation in the head of
Chinese cabbage [30]. All these results indicated light-independent anthocyanin biosynthesis
in plants is highly relevant to MYB. So far, there is no report about the light-independent
accumulation of anthocyanin in mango, and it is worthy to see the role of MYB during
this process.

In this study, concentration of different flavonoid components (mainly anthocyanins)
in fruit skin was compared between two red mango cultivars with similar developmental
period (blooming in early March, and maturing in late June), i.e., light-independent cv.
‘Ruby’ and light-dependent cv. ‘Sensation’. Bagged and un-bagged fruit peel from these
two cultivars was sampled at different developmental stages, i.e., 50 days after full bloom
(DAFB), 80 DAFB, and 120 DAFB. Expression of anthocyanin biosynthetic genes and
regulatory genes was analyzed, and the promoter sequence of MiMYB1 was cloned and
compared between these two cultivars. This study will provide novel insight in light
independent anthocyanin biosynthesis in fruits.

2. Materials and Methods
2.1. Fruit Materials and Experimental Treatment

The experiment was carried out at the South Subtropical Crops Research Institute
(SSCRI) in Zhanjiang, China. Three mature ‘Ruby’ trees and three mature ‘Sensation’ trees
were selected, and each tree was regarded as one biological replicate. These trees were
similar in size and number of fruit and had uniform exposure to sunlight. In each tree,
about 50 fruitlets were covered with double layers of yellow-black paper bag (Qingdao
Kobayashi Co., Ltd., Qingdao, China) to block out all the light at 20 DAFB. The remaining
non-bagged fruitlets were set as controls. Per tree, 10 fruits were harvested at 50, 80, and
120 DAFB, stored in an ice box, and carried back to the lab as soon as possible. Fruit skin
was peeled, instantly frozen in liquid nitrogen and stored at −80 ◦C for assays.

2.2. Metabolomic Profiling

Skin of bagged and natural grown ‘Ruby’ and ‘Sensation’ mango fruits at three stages
of development was used for metabolomic analysis. Extraction and measurement of
flavonoid metabolites was performed by Metware Biotechnology Co. Ltd. (Wuhan, China).
Briefly, the freeze-dried sample was ground to powder for 1.5 min at 30 Hz using a mill
(MM400, Retsch, Germany). Next, 0.05 g powder was added to 500 µL extraction solution
containing 50% methanol and 0.1% HCl. After two 5 min vortexes, 5 min ultrasound, and
3 min centrifuge (12,000 r/min, 4 ◦C), the supernatant was filtered through a microporous
membrane (0.22 µm) and stored in a vial for subsequent analysis on a high-performance
liquid chromatography with tandem mass Spectrometric (HPLC−MS/MS) system (UPLC,
ExionLC™ AD, https://sciex.com.cn/ (accessed on 2 October 2021); MS, QTRAP® 6500+,
https://sciex.com.cn/ (accessed on 2 October 2021). The HPLC conditions were as follows:
column, Waters ACQUITY BEH C18 (1.7 µm, 2.1 mm× 100 mm); mobile phase, water (0.1%
formic acid): methanol (0.1% formic acid); gradient program, 95:5 v/v at 0 min, 50:50 v/v
at 6 min, 5:95 v/v at 12 min, hold for 2 min, 95:5 v/v at 14 min, hold for 2 min; flow rate,
0.35 mL/min; temperature, 40 ◦C; injection volume: 2 µL. An electrospray ion source
(ESI) was used for positive ion detection. The spray voltage was 5.5 kV, the ion source
temperature was 550 ◦C, and the curtain gas pressure was 35 psi.

Different flavonoid compounds detected by mass spectrometry were identified based
on Metware Database (MWDB). The quantitative analysis of anthocyanins was performed
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by multiple reaction monitoring (MRM) of triple quadrupole mass spectrometry. Different
concentrations of standard solutions (93 anthocyanins, 6 Procyanidins, and 9 other types
of flavonoid) including 0.01 ng/mL, 0.02 ng/mL, 0.05 ng/mL, 0.1 ng/mL, 0.5 ng/mL,
1 ng/mL, 5 ng/mL, 10 ng/mL, 50 ng/mL, 100 ng/mL, 500 ng/mL, 1000 ng/mL, 2000 ng/mL,
50,000 ng/mL were prepared to obtain the mass spectrum peak intensity data for the
corresponding quantitative signals of each concentration standard. The standard curve linear
equation was obtained with standard concentration as abscissa and peak area as ordinate,
which is used to calculate the concentration of detected substance.

The concentration of metabolites in the sample (µg/g) = C × V/1,000,000/m.
C is the concentration value (ng/ml) calculated by substituting the integral peak area

of the sample into the standard curve; V is the volume of extraction solution (µL); m is the
dry weight of the sample (g).

2.3. DNA Isolation, RNA Extraction and cDNA Synthesis

Genomic DNA was extracted from fruit skin of ‘Ruby’ and ‘Sensation’ mango har-
vested at 50 DAFB using Super Plant Genomic DNA Kit (Tiangen, DP360, Beijing, China),
and DNA concentration was measured by NanoDrop Lite Spectrophotometer (Thermo
Scientific, Waltham, MA, USA). Total RNA was extracted using an RNA prep pure plant
kit special for plant tissues rich in polysaccharides and polyphenolics (Tiangen, DP441,
Beijing, China). The concentration of total RNA was measured by NanoDrop Lite Spec-
trophotometer (Thermo Scientific, Waltham, USA) after genomic DNA had been digested
by DNase I supplied with the RNA extraction kit. First-strand cDNA was synthesized
from 1 µg of DNA-free RNA using HiScript IIQ RT SuperMix (Vazyme, R223-01, Nanjing,
China). The cDNA was diluted 20 fold and 5.5 µL of the diluted cDNA was used as the
template for real-time quantitative PCR (Q-PCR) analysis.

2.4. Q-PCR Analysis

The Q-PCR reaction solution (total volume 15 µL) was composed of 7.5 µL of SYBR
Premix Ex TaqTM II (Takara, Japan), 1 µL of each primer (10 µM), and 5.5 µL of cDNA.
The reaction, performed on a real-time PCR machine (qTOWER3 G, Jena, Germany),
was initiated with a preliminary step of 30 seconds at 95 ◦C followed by 40 cycles of
95 ◦C for 5 seconds and 60 ◦C for 30 seconds. Templateless controls (5.5 µL ddH2O)
for each primer pair were necessary for each run. The Q-PCR primers for MiMYB114
were as follows: MiMYB114-F: 5′-GAAGCTGCCCTTCAAGACAC-3′ and MiMYB114-
R: 5′-CCGTAGGATCCTTCAGTGGA-3′. The Q-PCR primers for the rest structural and
regulatory genes were used as reported by Kanzaki et al. [19]. All Q-PCR reactions were
normalized using the Ct value corresponding to the mango actin gene [31]. Analysis was
performed in three biological replicates.

2.5. Cloning of Promoter Regions of MiMYB1

The primers used to amplify the MiMYB1 promoter region in ‘Ruby’ and ‘Sensa-
tion’ were based on the genomic sequence obtained from the mango genome database
(BIG Genome Sequence Archive database, accession number: PRJCA002248), and the
primers were as follows: forward primer: 5′-TAAGAATGGTAGACAAAGGATG-3′, re-
verse primers: 5′-TCTTAGGGGAACTTGATGCC-3′. PCR products were analyzed on
1.0% agarose gels, and a single fragment was recovered from gels and purified using a
DNA purification kit (Takara). The fragment was then ligated into the plasmid pMD18-T
vector, transformed into Escherichia coli DH5α competent cells (Takara), and then sequenced
(Sangong, Shanghai, China).

2.6. Statistical Analysis

Data were subjected to a one-way Analysis of Variance (ANOVA), with mean val-
ues separated by Tukey’s multiple range test using SPSS 19.0 (SPSS, Chicago, IL, USA).
Probability values of <0.05 were considered statistically significant.
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3. Results
3.1. Fruit Color and Metabolomic Profiling

Under the natural condition of sunlight exposure, both ‘Ruby’ and ‘Sensation’ fruits
exhibited dark red skin color (Figure 1). The bagged fruits of ‘Sensation’ showed no red
pigmentation during any developmental stage. In contrast, bagged, mature ‘Ruby’ fruit
showed bright red pigmentation at 120 DAFB (Figure 1). According to the standard of
93 anthocyanins, 6 Procyanidins, and 9 other types of flavonoid, major substances includ-
ing cyanidin-3-O-galactoside (anthocyanin, Figure 2A), quercetin-3-O-glucoside (flavonol,
Figure 2B), procyanidin B1 (proanthocyanidin, Figure 2C), and procyanidin B3 (proantho-
cyanidin, Figure 2D), and minor substances including procyanidin C1 (proanthocyani-
din, Figure 2E), afzelin (flavonol, Figure 2F), and Naringenin-7-O-glucoside (flavonone,
Figure 2G), were identified in the fruit skin of ‘Ruby’ and ‘Sensation’ mangoes. Apart from
seven substances listed in Figure 2, all the other substances showed very low concentration,
trace amount, or could not even be detected.
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The concentration of anthocyanin increased with development (Figure 2A), while
the concentration of flavonol, and proanthocyanidin, and flavonone decreased during
the development of fruits (Figure 2B–G). Sunlight exposure significantly induced the
accumulation of anthocyanin and flavonol in the fruit skin of mango but repressed the
biosynthesis of proanthocyanidin (Figure 2A–F). The cyanidin-3-O-galactoside concentra-
tion in the fruit skin of bagged ‘Ruby’ was around five times higher than that of bagged
‘Sensation’ (15.87 vs. 3.22 µg/g DW) at 120 DAFB (Figure 2A), yet the difference was not
statistically significant.

3.2. Expression of Anthocyanin Biosynthetic and Regulatory Genes in Fruit Skin

In general, anthocyanin biosynthetic genes were highly expressed at the early stages of
development, i.e., 50 DAFB and 80 DAFB, especially the late biosynthetic genes including
MiDFR, MiANS, MiUFT1, and MiUFT3 (Figure 3). Moreover, compared with bagged
fruit, control (non-bagged) fruit skin showed a higher expression level, particularly for
late biosynthetic genes (Figure 3). It is remarkable that two family members of UFGT,
which encode the enzyme catalyzing the last step of anthocyanin biosynthesis and is
regarded as the most crucial structural gene, MiUFGT1 and MiUFGT3, showed relatively
higher expression in bagged ‘Ruby’ fruit skin than in bagged ‘Sensation’ fruit at 120 DAFB,
although this effect was not significant (Figure 3). Among three regulatory genes, MiMYB1
was also highly expressed in the skin of fruitlet or sunlight-exposed fruit (Figure 4). The
expression of MiMYB1 in ’Ruby’ bagged fruit skin at 120 DAFB was 2.6 times higher than
in ’Sensation’ bagged fruit, without significant difference (Figure 4). The expression of
MiMYB114 and MibHLH2 was not correlated to anthocyanin concentration (Figure 4).
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3.3. MiMYB1 Promoter Sequence Isolation and Comparison in ’Ruby’ and ‘Sensation’

Due to the important role of MiMYB1 (MYB10 homolog) in regulating anthocyanin
biosynthesis, the promoter region of MiMYB1 was obtained from the mango genome
database, and a circa 1500 bp promoter sequence was cloned for both ’Ruby’ and ‘Sensa-
tion’. The obtained sequence was designated as proMYB1. A number of light-responsive
elements including AE-box, Box4, GATA-motif, G-box, and GT1-motif, and plant hormone-
responsive elements such as ABRE (abscisic acid), CGTCA-motif (MeJA), TCA-element
(salicylic acid), and TGA-element (auxin) were identified in proMYB1 (Table 1). Also,
three MYB binding sites (MBS) were found in proMYB1 (Table 1). The proMYB1 in ’Ruby’
and ‘Sensation’ shared 99.73% identity, but two SNPs and one 2-bp mutation were found
between two cultivars, although none of these were located on any of the identified motifs
(Figure 5).

Table 1. Cis-acting elements within the promoter region of MiMYB1.

Motif Sequence Distance from ATG Strand Function

ABRE ACGTG 1030 − cis-acting element involved in the abscisic acid
responsiveness

AE-box AGAAACAA 756 + part of a module for light response

Box 4
ATTAAT 1311 + part of a conserved DNA module involved in light

responsivenessATTAAT 697 −

CGTCA-motif
CGTCA 149 + cis-acting regulatory element involved in the

MeJA-responsivenessCGTCA 136 +

GATA-motif
GATAGGA 1407 + part of a light responsive element
GATAGGA 433 +

G-box
CACGAC 783 − cis-acting regulatory element involved in light

responsivenessCACGTT 1030 +
GT1-motif GGTTAA 1333 − light responsive element

LTR CCGAAA 876 + cis-acting element involved in low-temperature
responsiveness

MBS
CAACTG 1340 +

MYB binding site involved in drought-inducibilityCAACTG 244 −
CAACAG 991 +

TCA-element CCATCTTTTT 1074 − cis-acting element involved in salicylic acid responsiveness
TGA-element AACGAC 731 + auxin-responsive element
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4. Discussion

In many fruits, flavonol, and proanthocyanidin are the major flavonoid compounds at
the early stage of fruit development, while the flavonoid pathway switches to anthocyanin
biosynthesis when the ripening begins [32,33]. In the present study, the same phenomenon
of flavonoid accumulation pattern was detected in the fruit skin of ‘Ruby’ and ‘Sensation’
(Figure 2). It has been indicated that the astringent taste of proanthocyanidin in unripe
fruits could protect the fruits against early feeding [34], while anthocyanin is needed in
ripe fruits to attract seed dispersers including insects and animals [35]. In addition, non-
bagged mango fruit skin accumulated high levels of anthocyanin (Figure 2A) and low
levels of proanthocyanidin (Figure 2C–E), while bagged fruit skin showed the opposite
accumulation pattern (Figure 2A,C–E), suggesting competition between proanthocyanidin
and anthocyanin pathways. Proanthocyanidin and anthocyanin are derived from the same
precursor, anthocyanidin, by the activity of ANR and UFGT, respectively [36,37]. Ectopic
expression of both Arabidopsis ANR gene (BANYULS) and apple MdANR genes in tobacco
promoted and inhibited the accumulation of proanthocyanidin and anthocyanin in tobacco,
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respectively [37,38]. High concentration of proanthocyanidin in the skin of bagged ‘Ruby’
and ‘Sensation’ also indicated sufficient accumulation of precursor anthocyanidin in the
fruit skin under darkness, which means UFGT, rather than the other structural genes, is
the limiting factor for anthocyanin accumulation in bagged mango fruit skin. Due to low
expression of UFGT gene and subsequent low level of UFGT protein, most anthocyanidin
was converted to proanthocyanidin instead of anthocyanin in bagged fruit skin.

Fruit bagging is a safe and eco-friendly technique widely used in Asian countries
(China, Japan, and Korea), Australia and The USA for producing high quality fruits. This
practice can protect fruit from fungi, bacteria, insects, and even birds, and minimize of
the need for pesticide applications [39]. In the case of fruits whose commercial value
is determined by anthocyanin accumulation (e.g., apple, grape, pear, and mango), bags
should be removed before harvest to ensure light-dependent fruit pigmentation [20,21,23].
Bag treatment and bag removal is labor intensive, so the light-independent pigmentation
phenotype reported in this study is regarded as an excellent horticultural trait (bag-removal
skipping and labor saving).

Although bagged ‘Ruby’ fruit skin exhibited visible red pigmentation at 120 DAFB
(Figure 1), the anthocyanin concentration (Figure 2A), and the expression of MiUFGT1, Mi-
UFGT3, and MiMYB1 (Figure 3A,B) were still highly repressed by the bagging treatment. The
relatively higher anthocyanin concentration and gene expression in the skin of bagged ‘Ruby’
compared to ‘Sensation’ at 120 DAFB was not statistically significant (Figures 2A and 3).
Since UFGT expression is well-known to be regulated by R2R3-MYB [40,41], low expression
of MYB is fundamental reason for low levels of anthocyanin in bagged mango fruit skin.
Several light-responsive elements in the promoter region of MiMYB1 (Table 1) indicate light
is essential for activating the expression of MiMYB1. Meanwhile, MYB protein undergoes
COP1-mediated ubiquitination and degradation in darkness [42]. Mutations in the promoter
region of R2R3-MYB, changing the MYB expression into almost a constitutive pattern, could
lead to high level of MYB mRNA and protein in darkness, and subsequently result in the
light-independent anthocyanin accumulation in plants [14,27], which is obviously not the
case in the present study (Figure 5).

Interestingly, the bagged ‘Ruby’ fruit skin accumulated anthocyanin at 120 DAFB
rather than 50 and 80 DAFB, indicating the possible role of ripening-related plant hormones
regulating this process. The ripening of climacteric fruits is associated with ethylene
production and respiratory burst [43]. Ethylene can induce the anthocyanin accumulation
of most climacteric fruits. For example, in apple the key transcription factor involved in
ethylene signal transduction, EIN3-LIKE1 (EIL1), directly binds to the promoter region of
MdMYB1 and activates its expression, subsequently leading to anthocyanin accumulation.
Furthermore, MdMYB1 can up-regulate the expression of MdERF3, a key regulator of
ethylene biosynthesis, to produce more ethylene, thereby providing a regulatory loop
of ethylene-induced anthocyanin biosynthesis mediated by MdEIL1-MdMYB1-MdERF3
module [44]. ABA can also induce the anthocyanin accumulation. In apple the expression
of a bZIP regulatory gene MdbZIP44 is up-regulated by ABA treatment, and MdbZIP44
can interact with MdMYB1 to enhance the MdMYB1-mediated expression regulation of
anthocyanin structural genes, leading to the anthocyanin accumulation [45]. Jasmonates
(JAs) have also been reported to promote anthocyanin accumulation in apple [46], pear [47],
and mango [48], via two key JA transduction pathway proteins, JAZ and COI1 [49,50].

So, our hypothesis for light-independent anthocyanin accumulation in ‘Ruby’ mango
fruit skin is that ripening-related plant hormones such as ethylene, ABA or JA are pro-
duced at the onset of ripening, triggering the expression of hormone responsive up-stream
transcription factors, which interact with MiMYB1 to promote anthocyanin biosynthesis.
On the other hand, MiMYB1 expression is strongly repressed by darkness, and undergoes
COP1-mediated degradation, overall resulting in the limited anthocyanin accumulation in
the skin of bagged ‘Ruby’ fruit.
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5. Conclusions

Quercetin-3-O-glucoside, cyanidin-3-O-galactoside, procyanidin B1, and procyanidin
B3 are the dominant flavonoid compounds in the skin of ‘Ruby’ and ‘Sensation’ mango
fruit. Flavonol and proanthocyanidin strongly accumulate in the skin of young fruit,
while anthocyanin is mainly accumulated in the skin of mature fruit. Bagging treatment
represses the biosynthesis of flovonol and anthocyanin, but promotes the accumulation
of proanthocyanidin. Compared with ‘Sensation’, Bagged ‘Ruby’ fruit skin accumulates
anthocyanin at the late developmental stage and exhibits bright-red color, showing a
light-independent pigmentation pattern. The increase of anthocyanin concentration, and
the expression of MiUFGT1, MiUFGT3, and MiMYB1 in the skin of bagged ‘Ruby’ fruit
versus in ‘Sensation’ at 120 DAFB was very limited, and was strongly inhibited by bagging
treatment. The promoter sequence of MiMYB1 in ‘Ruby’ and ‘Sensation’ was cloned and
compared, and there was no mutation in the element of ProMiMYB1 between these two
cultivars. The present study reported a light-independent anthocyanin accumulation
mango germplasm, ‘Ruby’, which will be an excellent parent for breeding new more easily
pigmented red mango cultivars.
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