Suitability of On-Farm Green Compost for the Production of Baby Leaf Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compost and Growing Media
2.2. Biological Assay
2.3. Pot Experiment
2.4. Statistical Analyses
3. Results and Discussion
3.1. Compost and Growth Media Characteristics
3.2. Biological Assay
3.3. Greenhouse Pot Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Wurff, A.W.G.; Fuchs, J.G.; Raviv, M.; Termorshuizen, A.J. Handbook for Composting and Compost Use in Organic Horticulture; BioGreenhouse COST Action FA 1105; BioGreenhouse: Wageningen, The Netherlands, 2016. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.W.; Chia, S.R.; Yen, H.W.; Nomanbhay, S.; Ho, Y.C.; Show, P.L. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Villecco, D.; Zaccardelli, M. Effects of compost and defatted oilseed meals as sustainable organic fertilisers on cardoon (Cynara cardunculus L.) production in the Mediterranean basin. J. Hortic. Sci. Biotechnol. 2019, 94, 664–675. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Pane, C.; Di Mola, I.; Ronga, D.; Mori, M. Municipal organic waste compost replaces mineral fertilization in the horticultural cropping systems, reducing the pollution risk. Ital. J. Agron. 2021, 16. [Google Scholar] [CrossRef]
- Cooperband, L. The Art and Science of Composting—A Resource for Farmers and Compost Producers; University of Wisconsin-Madison, Center for Integrated Agricultural Systems: Madison, WI, USA, 2002; 14p. [Google Scholar]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. Appl. Soil. Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Xu, L.; Geelen, D. Developing Biostimulants From Agro-Food and Industrial By-Products. Front. Plant Sci. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronga, D.; Vitti, A.; Zaccardelli, M.; Pane, C.; Caradonia, F.; Cardarelli, M.; Colla, G.; Rouphael, Y. Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops. Agronomy 2021, 11, 630. [Google Scholar] [CrossRef]
- Islam, M.T.; Faruq, A.N. Effect of selected soil amendments on seed germination, seedling growth and control of dampig-off of chilli seedlings. J. Sher-e-Bangla Agric. Univ. 2008, 2, 12–16. [Google Scholar]
- Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J.G.; Dominguez, J. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of spent coffee ground compost in peat-based growing media for the production of basil and tomato potting plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Gavilanes-Terán, I.; Jara-Samaniego, J.; Idrovo-Novillo, J.; Bustamante, M.A.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; López, M.; Paredes, C. Agroindustrial compost as a peat alternative in the horticultural industry of Ecuador. J. Environ. Manag. 2017, 186, 79–87. [Google Scholar] [CrossRef]
- Herring, P.L.; Noah, A.C.; Kraus, H.T. Swine Lagoon Compost as Transplant Substrate for Basil, Chives, and Dill. HortTech 2018, 28, 337–343. [Google Scholar] [CrossRef]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of vineyard by-products to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production. Agronomy 2019, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. Composting: The way for a sustainable agriculture. Appl. Soil Ecol. 2018, 123, 744–750. [Google Scholar] [CrossRef]
- Aleandri, M.P.; Chilosi, G.; Muganu, M.; Annamaria Vettraino, A.; Marinari, S.; Paolocci, M.; Luccioli, E.; Vannini, A. On farm production of compost from nursery green residues and its use to reduce peat for the production of olive pot plants. Sci. Hortic. 2015, 193, 301–307. [Google Scholar] [CrossRef]
- Nicola, S.; Fontana, E. Fresh-Cut Produce Quality: Implications for a Systems Approach. In Postharvest Handling: A Systems Approach, 3rd ed.; Florkowski, W., Shewfelt, R., Brueckner, B., Prussia, S., Eds.; Academic Press/Elsevier: New York, NY, USA, 2014; pp. 217–273. [Google Scholar]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, G.Y.; Tokashiki, Y.; Arachchi, I.D.L.; Arakaki, M. Sewage sludge sugarcane trash based compost and synthetic aggregates as peat substitutes in containerized media for crop production. J. Hazard. Mater. 2010, 174, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Marcelis, L.F.M.; Van Hooijdonk, J. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 1999, 215, 57–64. [Google Scholar] [CrossRef]
- Giandon, P.; Bortolami, P. L’interpretazione Delle Analisi del Terreno—Strumento per la Sostenibilità Ambientale, 2nd ed.; Centrooffset s.r.l. for ARPAV: Mestrino, Italy, 2007; pp. 15–16. ISBN 88-7504-115-6. [Google Scholar]
- Charles, J.; Sancey, B.; Morin-Crini, N.; Badot, P.M.; Degiorgi, F.; Trunfio, G.; Crini, G. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol. Environ. Saf. 2011, 74, 2057–2064. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Nasri, N.; Saïdi, I.; Kaddour, R.; Lachaâl, M. Effect of Salinity on Germination, Seedling Growth and Acid Phosphatase Activity in Lettuce. Am. J. Plant Sci. 2015, 6, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Li, S.; Sun, X.; Wang, L.; Cai, L.; Zhang, J.; Wei, L. Green waste compost and vermicompost as peat substitutes in growing media for geranium (Pelargonium zonale L.) and calendula (Calendula officinalis L.). Sci. Hortic. 2018, 236, 186–191. [Google Scholar] [CrossRef]
- Erhart, E.; Hartl, W. Compost use in organic farming. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 311–345. [Google Scholar] [CrossRef]
- Getinet, A. A review on impact of compost on soil properties, water use and crop productivity. Agric. Sci. Res. J. 2016, 4, 93–104. [Google Scholar]
- Gonzalez, R.F.; Cooperband, L.R. Compost Effects on Soil Physical Properties And Field Nursery Production. Compost. Sci. Util. 2002, 10, 226–237. [Google Scholar] [CrossRef]
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Conti, S.; La Rocca, G. Influence of crop cycle and nitrogen fertilizer form on yield and nitrate content in different species of vegetables. Adv. Hortic. Sci. 2011, 25, 81–89. [Google Scholar]
- Guo, X.-X.; Liu, H.-T.; Wu, S.-B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.; Nebioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Morales-Corts, M.; Gómez-Sánchez, M.; Pérez-Sánchez, R. Evaluation of green/pruning wastes compost and vermicompost, slumgum compost and their mixes as growing media for horticultural production. Sci. Hortic. 2014, 172, 155–160. [Google Scholar] [CrossRef]
- Eklind, Y.; Rämert, B.; Wivstad, M. Evaluation of Growing Media Containing Farmyard Manure Compost, Household Waste Compost or Chicken Manure for the Propagation of Lettuce (Lactuca sativa L.) Transplants. Biol. Agric. Hortic. 2001, 19, 157–181. [Google Scholar] [CrossRef]
Parameter | Compost |
---|---|
Cadmium (mg kg−1 d.m.) | 0.426 |
Chrome VI (as Cr) (mg kg−1 d.m.) | <0.1 |
Mercury (mg kg−1 d.m.) | <0.5 |
Nickel (mg kg−1 d.m.) | 3.78 |
Lead (mg kg−1 d.m.) | 9.23 |
Copper (mg kg−1 d.m.) | 115 |
Zinc (like Zn) (mg kg−1 d.m.) | 75.6 |
Thallium (mg kg−1 d.m.) | <0.5 |
Enumeration of Escherichia coli (n. 1) (MPN g−1) | 67 |
Enumeration of Escherichia coli (n. 2) (MPN g−1) | 67 |
Enumeration of Escherichia coli (n. 3) (MPN g−1) | 44 |
Enumeration of Escherichia coli (n. 4) (MPN g−1) | <11 |
Enumeration of Escherichia coli (n. 5) (MPN g−1) | <11 |
Salmonella spp. (n = 5) (Present or Absent) | Absent |
Moisture (105 °C) (%) | 4.8 |
Total organic carbon (TOC) of biological origin (% d.m.) | 20.1 |
Humic and fulvic acids HA + FA (as humic C) (% d.m.) | 7.8 |
Total nitrogen (as N) (% d.m.) | 1.96 |
C/N ratio | 10.3 |
Organic nitrogen (as % of total N) (% NTK) | 90.9 |
Total phosphorus (as P) (% d.m.) | 0.56 |
Total potassium (as K) (% d.m.) | 1.34 |
Plastic, glass and metals (≥2 mm) | <0.01 |
Lithoids inerts (≥5 mm) | <0.01 |
Suspension | pH | EC (μS cm−1) |
---|---|---|
GC | 8.40 ± 0.05 a | 4363.33 ± 25.17 a |
T | 6.07 ± 0.01 d | 1049.67 ± 1.53 f |
C100 | 6.36 ± 0.02 b | 1843.68 ± 3.21 b |
C75 | 6.20 ± 0.03 c | 1798.32 ± 10.02 c |
C50 | 6.17 ± 0.03 c | 1685.67 ± 3.21 d |
C25 | 6.14 ± 0.03 cd | 1523.33 ± 15.01 e |
Species | Growing Medium | Emerged Seedlings % | Leaves Number % | Seedlings Height % | Shoot Dry Weight % | Root Dry Weight % | Main Root LENGTH % |
---|---|---|---|---|---|---|---|
Radish | C100 | 84.6 ± 1.2 c | 101.1 ± 1.1 c | 86.1 ± 1.1 d | 74.9 ± 1.3 c | 105.7 ± 1.8 c | 107.0 ± 1.0 b |
C75 | 92.3 ± 1.0 b | 119.3 ± 1.1 b | 104.9 ± 1.1 c | 112.0 ± 1.2 b | 110.6 ± 1.1 c | 134.0 ± 1.5 a | |
C50 | 92.3 ± 1.3 b | 122.3 ± 1.0 b | 108.6 ± 1.2 b | 117.0 ± 1.1 b | 115.5 ± 1.8 b | 138.8 ± 1.2 a | |
C25 | 100.0 ± 1.3 a | 136.3 ± 1.0 a | 122.9 ± 1.2 a | 187.7 ± 1.2 a | 201.9 ± 1.5 a | 136.5 ± 1.0 a | |
Lettuce | C100 | 93.3 ± 1.1 b | 88.7 ± 1.0 b | 77.0 ± 1.1 d | 57.5 ± 1.2 c | 63.4 ± 1.2 b | 73.6 ± 1.1 d |
C75 | 93.3 ± 1.1 b | 87.8 ± 1.1 b | 79.7 ± 1.1 c | 65.4 ± 1.3 c | 112.2 ± 1.4 ab | 94.4 ± 1.0 b | |
C50 | 100.0 ± 1.0 a | 98.0 ± 1.0 a | 86.2 ± 1.2 b | 94.2 ± 1.2 ab | 138.4 ± 1.7 a | 99.3 ± 1.0 a | |
C25 | 100.0 ± 1.0 a | 102.5 ± 1.1 a | 93.0 ± 1.1 a | 110.0 ± 1.2 a | 163.4 ± 1.5 a | 90.3 ± 1.0 c | |
Rocket | C100 | 66.7 ± 1.2 a | 103.1 ± 1.1 a | 93.9 ± 1.2 a | 59.3 ± 1.2 a | 83.6 ± 1.1 b | 185.6 ± 1.0 a |
C75 | 80.0 ± 1.3 a | 89.9 ± 1.1 a | 83.4 ± 1.1 a | 51.6 ± 1.9 a | 73.4 ± 2.5 b | 117.2 ± 1.6 b | |
C50 | 93.3 ± 1.1 a | 97.5 ± 1.2 a | 92.2 ± 1.1 a | 66.1 ± 1.6 a | 103.4 ± 1.1 a | 114.3 ± 1.0 b | |
C25 | 86.7 ± 1.1 a | 96.5 ± 1.1 a | 89.2 ± 1.0 a | 62.1 ± 1.2 a | 102.4 ± 1.1 a | 111.8 ± 1.5 b | |
Chard | C100 | 60.0 ± 1.3 b | 95.9 ± 1.4 b | 99.8 ± 1.1 b | 115.4 ± 2.5 b | 76.3 ± 4.5 b | 134.8 ± 1.2 a |
C75 | 60.0 ± 1.4 b | 114.8 ± 1.2 a | 107.5 ± 1.2 b | 95.2 ± 2.4 b | 77.9 ± 2.5 b | 132.0 ± 1.0 a | |
C50 | 80.0 ± 2.3 b | 109.2 ± 1.8 ab | 102.5 ± 1.1 b | 106.3 ± 6.4 b | 82.2 ± 1.5 b | 124.9 ± 1.6 a | |
C25 | 100.0 ± 1.0 a | 122.5 ± 1.1 a | 124.0 ± 1.0 a | 181.6 ± 1.2 a | 206.0 ± 1.8 a | 128.4 ± 1.2 a | |
Sorrel | C100 | 100.0 ± 1.3 b | 88.8 ± 1.5 b | 91.1 ± 1.1 c | 51.8 ± 1.7 b | 52.3 ± 1.9 b | 55.9 ± 1.0 d |
C75 | 108.3 ± 1.1 b | 96.6 ± 1.1 ab | 106.2 ± 1.1 b | 81.4 ± 1.2 ab | 85.4 ± 1.2 ab | 77.3 ± 1.0 c | |
C50 | 116.7 ± 1.1 a | 97.2 ± 1.2 ab | 119.2 ± 1.0 a | 100.4 ± 1.1 a | 104.4 ± 1.3 a | 92.3 ± 1.3 a | |
C25 | 125.0 ± 1.0 a | 112.3 ± 1.1 a | 121.5 ± 1.1 a | 128.3 ± 1.2 a | 142.3 ± 1.3 a | 88.3 ± 1.0 b | |
Dill | C100 | 116.0 ± 1.1 b | 82.0 ± 1.1 b | 80.4 ± 1.1 c | 49.4 ± 1.3 b | 35.6 ± 1.4 b | 64.6 ± 1.1 b |
C75 | 112.0 ± 1.3 b | 82.7 ± 1.2 b | 79.4 ± 1.1 c | 46.7 ± 1.3 b | 30.8 ± 1.4 b | 64.7 ± 1.1 b | |
C50 | 125.0 ± 1.0 a | 92.8 ± 1.1 ab | 93.4 ± 1.0 b | 93.7 ± 1.3 a | 61.4 ± 1.7 ab | 69.4 ± 1.0 b | |
C25 | 125.0 ± 1.0 a | 105.4 ± 1.0 a | 106.9 ± 1.1 a | 116.6 ± 1.3 a | 95.5 ± 1.2 a | 81.6 ± 1.0 a |
H 1 | LN 2 | SDW 3 | RDW 4 | MRL 5 | |
---|---|---|---|---|---|
H1 | 0.68 ** | 0.73 ** | 0.51 ** | 0.67 ** | |
LN2 | 0.74 ** | 0.56 ** | 0.49 ** | ||
SDW3 | 0.77 ** | 0.34 | |||
RDW4 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Falco, E.; Vitti, A.; Celano, G.; Ronga, D. Suitability of On-Farm Green Compost for the Production of Baby Leaf Species. Horticulturae 2021, 7, 512. https://doi.org/10.3390/horticulturae7110512
De Falco E, Vitti A, Celano G, Ronga D. Suitability of On-Farm Green Compost for the Production of Baby Leaf Species. Horticulturae. 2021; 7(11):512. https://doi.org/10.3390/horticulturae7110512
Chicago/Turabian StyleDe Falco, Enrica, Antonella Vitti, Giuseppe Celano, and Domenico Ronga. 2021. "Suitability of On-Farm Green Compost for the Production of Baby Leaf Species" Horticulturae 7, no. 11: 512. https://doi.org/10.3390/horticulturae7110512
APA StyleDe Falco, E., Vitti, A., Celano, G., & Ronga, D. (2021). Suitability of On-Farm Green Compost for the Production of Baby Leaf Species. Horticulturae, 7(11), 512. https://doi.org/10.3390/horticulturae7110512