Nutritional Value of Apiaceae Seeds as Affected by 11 Species and 43 Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Growing Conditions
2.2. Total Dissolved Solids (TDS)
- 50: extract volume (mL);
- a: seed powder weight (g).
2.3. Total Polyphenols (TP)
2.4. Antioxidant Activity (AOA)
2.5. Selenium
2.6. Water Soluble Protein
2.7. Potassium (K)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Dissolved Solids (TDS), Potassium (K) and Water Soluble Protein Content (WSP)
3.2. Antioxidants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aćimović, M.; Kostadinović, M.L.; Popović, S.J.; Dojčinović, N.S. Apiaceae seeds as functional food. J. Agr. Sci. 2015, 60, 237–246. [Google Scholar] [CrossRef]
- Ebert, A.W. Sprouts, microgreens, and edible flowers: The potential for high value specialty produce in Asia. In Proceedings of the SEAVEG 2012 Regional Symposium, Chiang Mai, Thailand, 24–26 January 2012; pp. 216–227. [Google Scholar]
- Idowu, A.T.; Olatunde, O.O.; Adekoya, A.E.; Idowu, S. Germination: An alternative source to promote phytonutrients in edible seeds. FQS 2020, 4, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Koley, T.K. Microgreens from Vegetables: More Nutrition for Better Health. In Training Manual on “Advances in Genetic Enhancement of Underutilized Vegetable Crops”; Indian Institute of Vegetable Research: Varanasi, India, 18–27 October 2016; pp. 194–197. [Google Scholar]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization Comprehensive Reviews. J. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.S.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.B.; Yamagishi, C.; Hayashi, K.; Hayashi, T. Antiviral and immune stimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Biosci. Biotechnol. Biochem. 2011, 75, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajeshwari, C.U.; Vinay Kumar, A.V.; Andallu, B. Protective Role of Aniseeds (Pimpinella anisum L.) in Type 2 Diabetes: Under Supervision of Dr (Mrs.) B Andallu; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Pavlyuk, I.; Stadnytska, N.; Jasicka-Misiak, I.; Górka, B.; Wieczorek, P.P.; Novikov, V. A Study of the Chemical Composition and Biological Activity of Extracts from Wild Carrot (Daucus carota L.) Seeds Waste. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 603–611. [Google Scholar]
- Fenner, M. The effects of the parent environment on seed germinability. Seed Sci. Res. 1991, 1, 75–84. [Google Scholar] [CrossRef]
- Christova-Bagdassarian, V.; Bagdassarian, K.S.; Atanassova, M. Phenolic Profile, Antioxidant and Antibacterial Activities from the Apiaceae Family Dry Seeds. Mintage J. Pharm. Med. Sci. 2013, 2, 26–31. [Google Scholar]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod. 2016, 79, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar] [CrossRef]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Sebnem, S.I.; Ayten, S. Antioxidant Potential of Different Dill (Anethum Graveolens L.) Leaf Extracts. Int. J. Food Prop. 2011, 14, 894–902. [Google Scholar] [CrossRef]
- Kołodziejek, J. Effect of seed position and soil nutrients on seed mass, germination and seedling growth in Peucedanum oreoselinum (Apiaceae). Sci. Rep. 2017, 7, 1959. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Egea-Gilabert, C.; Conesa, E.; Ochoa, J.; Vicente, M.J.; Franco, J.A.; Bañon, S.; Martínez, J.J.; Fernández, J.A. The Importance of Ion Homeostasis and Nutrient Status in Seed Development and Germination. Agronomy 2020, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, J.P.; Kharchenko, V.A.; Shevchenko, G.S.; Soldatenko, A.V. Green and Spicy-Flavoring Crops; Federal Scientific Center of Vegetable Production: Moscow, Russia, 2019; ISBN 978-5-901695-80-7. [Google Scholar]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Plants Antioxidants and Methods of Their Determination; Infra-M: Moscow, Russia, 2020. [Google Scholar] [CrossRef]
- Alfthan, G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta 1984, 165, 187–194. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kharchenko, V.A.; Moldovan, A.I.; Golubkina, N.A.; Koshevarov, A.A.; Caruso, G. Antioxidant status of celery (Apium graveolens L.). Veg. Crops Russia 2020, 2, 82–86. (In Russian) [Google Scholar] [CrossRef]
- Zhang, D.; Lü, H.; Chu, S.; Zhang, H.; Zhang, H.; Yang, Y.; Li, H.; Yu, D. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean. Sci. Rep. 2017, 7, 5053. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhang, H.; Yan, H.; Qiu, L.; Baskin, C.C. Mobilization and role of starch, protein and fat reserves during seed germination of six wild grassland species. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Christova-Bagdassarian, V.L.; Bagdassarian, K.S.; Atanassova, M.S. Phenolic Compounds and Antioxidant Capacity in Bulgarian Plans (dry seeds). Int. J. Adv. Res. 2013, 1, 186–197. [Google Scholar]
- Faudale, M.; Vilasomat, F.; Bastida, J.; Poli, F.; Codina, C. Antioxidant Activity and Phenolic Composition of Wild, Edible, and Medicinal Fennel from Different Mediterranean Countries. J. Agric. Food Chem. 2008, 56, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Tomsone, L.; Kruma, Z. Comparison of different extraction methods for isolating phenolic compounds from lovage (Levisticum officinale L.) seeds. In Proceedings of the Conference on Innovations in Science, Education and Business, Kaliningrad, Russia, 25–27 September 2013; pp. 94–197. (In Russian). [Google Scholar]
- Uddin, Z.; Shad, A.A.; Bakht, J.; Ullah, I.; Jan, S. In vitro antimicrobial, antioxidant activity and phytochemical screening of Apium graveolens. Pak. J. Pharm. Sci. 2015, 28, 1699–1720. [Google Scholar] [PubMed]
- Odeh, A.; Allaf, A.W. Determination of polyphenol component fractions and integral antioxidant capacity of Syrian aniseed and fennel seed extracts using GC–MS, HPLC analysis, and photochemiluminescence assay. Chem. Pap. 2017, 71, 1731–1737. [Google Scholar] [CrossRef]
- Sriti, J.; Aidi Wannes, W.; Talou, T.; Ben Jemia, M.; Elyes Kchouk, M.; Marzouk, B. Antioxidant properties and polyphenol contents of different parts of coriander (Coriandrum sativum L.) fruit. La Riv. Ital. Delle Sostanze Grasse 2012, LXXXIX, 253–262. [Google Scholar]
- Vallverdú-Queralt, A.; Regueiro, J.; Alvarenga, J.F.R.; Martinez-Huelamo, M.; Leal, L.N.; Lamuela-Raventos, R.M. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: Caraway, turmeric, dill, marjoram and nutmeg. Food Sci. Technol. Campinas. 2015, 35, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Atalar, M.N.; Karadağ, M.; Koyuncu, M.; Alma, M.H. Determination of Phenolic Components of Apium graveolens (Celery) Seeds. In Proceedings of the Aromatic Plants and Cosmetics Symposium, Iğdir, Turkey, 3–6 October 2019. [Google Scholar]
- Tadros, L.K.; El-Rafey, H.H.; Elfadaly, H.A.; Taher, M.A.; Elhafny, A. Phenolic Profile, Essential oil Composition, Purification of Kaempferol 3-arabinofuranoside and Antimicrobial Activity of Parsley Cultivated in Dakhalia Governorate. J. Agric. Chem. Biotechnol. Mansoura Univ. 2017, 8, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Mert, A.; Timur, M. Essential Oil and Fatty Acid Composition and Antioxidant Capacity and Total Phenolic Content of Parsley Seeds (Petroselinum crispum) Grown in Hatay Region. Ind. J. Pharm. Educ. Res. 2017, 51, s437–s440. [Google Scholar] [CrossRef] [Green Version]
- Paven, C.S.J.; Radu, D.; Alexa, E.; Pintilie, L.S.; Rivis, A. Anethum Graveolens- an important source of antiozidant compounds for food industry. In Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 2–8 July 2018. [Google Scholar]
- Ksouri, A.; Dob, T.; Belkebir, A.; Krimat, S.; Chelghoum, C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. ssp. carota. (L.). J. Mater. Environ. Sci. 2015, 6, 784–791. [Google Scholar]
- Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Vir. 2020, 92, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Gupta, S. An overview of selenium content metabolism and toxicity in plant. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | 2018 | 2019 | ||
---|---|---|---|---|
Mean Temperature (°C) | Rainfall (mm) | Mean Temperature (°C) | Rainfall (mm) | |
May | 16.2 | 61 | 16.3 | 57 |
June | 17.3 | 56 | 19.6 | 64 |
July | 20.5 | 92 | 16.8 | 69 |
August | 19.8 | 28 | 16.4 | 57 |
Species | Cultivar | TDS (g kg−1 d.w.) | K (g kg−1 d.w.) | WSP (%) | Weight of 1000 Seeds (g) |
---|---|---|---|---|---|
Fennel | Udalets | 45.45 a | 19.28 a | 4.1 b | 3.8 b |
№ 15-07 | 37.20 b | 15.93 b | 6.4 a | 6.1 a | |
Lovage | Leader | 36.90 b | 14.17 b | 6.1 a | 3.0 c |
Leafy celery | Elixir | 21.90 d | 11.28 c | 2.27 c,d | 0.5 j |
Samurai | 23.75 d,e | 11.27 c | 2.53 c | 0.6 j | |
Zakhar | 21.25 d | 11.50 c | 2.32 c,d | 0.4 k | |
Stem celery | Atlant | 46.15 a | 20.48 a | 2.0 d,e | 0.5 j |
Root celery | Gribovsky | 33.00 b,c | 17.86 a | 1.19 g | 0.4 k |
Egor | 28.85 c | 13.04 b,c | 1.59 f | 0.5 j | |
Dobrynya | 27.05 c,e | 12.69 b,c | 1.59 f | 0.6 j | |
Judinka | 33.10 b,c | 19.71 a | 1.0 g | 0.4 k | |
Leafy parsley | Nezhnost | 32.15 b | 20.62 a | 1.56 f | 1.9 d |
Moskvichka | 18.20 f | 9.20 d | 1.75 e,f | 1.8 d,e | |
Breeze | 28.35 c | 14.00 b | 1.81 e,f | 1.6 e | |
Curly parsley | Krasotka | 29.90 c | 20.64 a | 1.7 e,f | 1.3 f |
Root parsley | Sakharnaya | 32.55 b,c | 17.73 a | 1.7 e,f | 1.2 f,g |
Zolushka | 18.95 f | 9.06 d | 1.77 e | 1.3 f | |
Parsnip | Krugly | 21.05 d | 14.33 b | 1.72 e,f | 6.5 a |
Bely aist | 22.20 d | 13.09 b,c | 1.8 e | 7.1 a | |
Zhemchug | 22.70 d | 13.30 b,c | 1.96 d,e | 6.4 a | |
Carrot | Moskovskaya zimnya | 19.40 f | 5.60 e | 1.2 g | 1.0 g |
F1 Nadezhda | 15.15 g | 8.16 d | 1.18 g | 1.2 f,g | |
Minor | 16.25 | 8.95 d | 1.2 g | 1.6 e | |
Nantskaya-11 | 14.50 g,h | 9.56 d | 1.28 g | 1.3 f | |
F1 Riff | 12.45 h | 6.91 d | 1.25 g | 2.1 d | |
Marlinka | 12.40 h | 6.93 d | 1.2 g | 1.6 e | |
Shantane | 18.75 f | 9.27 d | 1.2 g | 1.3 f | |
CV (%) | 30.2 | 32.0 | 40.0 | 71.4 |
Species | Cultivar | TDS (g kg−1 d.w.) | K (g kg−1 d.w.) | WSP (%) | Weight of 1000 Seeds (g) |
---|---|---|---|---|---|
Anise | Vityaz | 36.65 a | 15.47 d,e | 6.3 a | 2.4 b |
Dill | Alligator | 37.75 a | 24.17 a | 1.1 e | 1.4 e,f |
Spartak | 38.80 a | 25.20 a | 1.06 e | 1.6 d,e | |
Zontik | 21.15 b,c | 13.23 e | 1.43 c,d | 1.2 f,g | |
Kibray | 32.25 a | 20.44 b,c | 1.08 e | 1.3 e,f | |
Lesnogorodsky | 24.30 b | 13.77 e | 1.23 d | 1.8 c,d | |
Salut | 35.00 a | 23.83 a,b | 1.43 c,d | 1.1 g | |
Culinar | 22.80 b,c | 12.10 e | 1.14 e | 2.1 b | |
Gribovsky | 19.60 c,d | 10.77 e | 1.06 e | 2.0 b,c | |
Rusich | 18.45 d | 12.39 e | 1.48 c | 1.5 e | |
Coriander | Stimul | 17.25 d | 11.98 e | 5.3 a | 5.2 a |
№ 07-19 | 25.90 b | 16.68 c,d | 5.8 a | 5.4 a | |
Caraway | Peresvet | 19.85 c,d | 14.59 d,e | 4.2 b | 2.2 b |
Chervil | №21-20 | 9.85 e | 5.30 f | 1.66 c | 1.8 c,d |
№22-20 | 10.60 e | 5.70 f | 1.49 c | 1.7 c,d | |
№24-20 | 9.45 e | 5.09 f | 2.30 b | 2.1 c | |
CV % | 31.6 | 31.3 | 66.7 | 40.9 |
Species | Polyphenol Composition | Seed TP ** | Extraction Conditions | References |
---|---|---|---|---|
Lovage | No data available | 5.68–10.43 | 95% EtOH | [27] |
Fennel * | Caffeic acid and quercetin derivatives, rosmarinic acid | 80% EtOH sonication | [26] | |
Anise | Rutin, tannin | 46.17 | 80% MeOH | [11,29] |
Caraway | 25.96 | |||
Fennel | 115.96 | |||
Coriander | 17.04 | |||
p-hydroxybenzoic acid, cumarin; p-cumaric acid | 15.55 | MeOH | [30] | |
Caraway | 3.99 | 50% EtOH + 0.1% formic acid | [31] | |
Dill | 0.94 | |||
Celery | Gallic, Caffeic, Trans-ferulic, o-cumaric acids | - | - | [32] |
caffeic acid,p-coumaric acid, ferulic acid; apigenin, luteolin, and kaempferol. | 63.46–36.60 | MeOH | [28] | |
Parsley | Resveratrol, pyrogallol, salicylic acids, benzoic acid, naringin | 91.29 | MeOH | [33] |
No data | 67.25 | MeOH | [34] | |
Dill | cafeic acid, epicatechin, resveratrol, rutin, quercetin, kaempherol | 26.41 | EtOH, 60 min | [35] |
Carrot | No data available | 7.08 | MeOH | [36] |
Chervil | No data available | |||
Parsnip |
Species | Cultivar | AOA mg GAE g−1 d.w. | TP mg GAE g−1 d.w. | Se µg kg−1 d.w. |
---|---|---|---|---|
Lovage | Leader | 61.2 a | 16.1 a | 26 g |
Leafy parsley | Nezhnost | 54.1 a,b | 10.4 e | 23 g |
Mokvichka | 53.1 a,b | 12.5 c,d | 142 a | |
Breeze | 55.3 a,b | 10.3 e | 137 a | |
Curley parsley | Krasotka | 48.2 b | 9.4 e | 23 g |
Root parsley | Sakharnaya | 51.2 a,b | 10.0 e | 22 g |
Zolushka | 46.5 b,c | 10.3 e | 89 b | |
Leafy celery | Elixir | 37.5 d,e | 12.2 c,d | 26 g |
Samurai | 37.5 d,e | 10.4 e | 28 g | |
Zakhar | 36.2 d,e | 12.9 b,c | 25 g | |
Stem celery | Atlant | 41.5 c,d | 13.0 b,c | 38 d |
Root celery | Gribovsky | 40.0 c,d | 13.0 b,c | 10 j |
Egor | 42.5 c,d | 15.1 a,b | 30 g | |
Dobrynya | 40.9 c,d | 13.8 a,b | 25 g | |
Judinka | 40.0 c,d | 11.8 c,d,e | 13 j | |
Fennel | Udalets | 32.4 e | 12.2 c,d | 10 j |
№ 15-07 | 36.7 d,e | 14.3 b | 49 c,e | |
Parsnip | Krugly | 17.9 f,g | 9.8 e | 37 e |
Bely aist | 19.0 f | 11.3 d,e | 51 c | |
Zhemchug | 17.9 f,g | 9.5 e | 31 f,g | |
Carrot | Moskovskaya zimnya | 15.6 g,h | 9.2 e,g | 56 c |
F1 Nadezhda | 13.4 h,j | 7.6 f,g | 40 d,e | |
Minor | 15.8 g,h | 10.3 e | 34 f | |
Nantskaya-11 | 14.1 h | 7.5 f | 33 f | |
F1 Riff | 12.5 j | 6.5 f | 54 c | |
Marlinka | 13.0 j | 7.8 f,g | 38 d | |
Shantane | 12.5 j | 7.1 f | 42 d,e | |
CV % | 40.8 | 18.3 | 50.4 |
Species | Cultivar | AOA mg GAE g−1 d.w. | TP mg GAE g−1 d.w. | Se µg kg−1 d.w. |
---|---|---|---|---|
Anise | Vityaz | 58.0 a | 15.6 a | 41 c |
Dill | Alligator | 26.7 c | 6.8 e | 35 e |
Spartak | 29.4 c | 8.3 c,d | 32 e,f | |
Zontik | 36.4 b | 10.7 b | 45 c | |
Kibray | 37.4 b | 10.1 b,c | 35 e | |
Lesnogorodsky | 37.9 b | 8.5 c,d | 44 c,d | |
Salut | 38.3 b | 8.1 d,e | 45 c | |
Culinar | 38.3 b | 11.8 b | 38 d,e | |
Gribovsky | 38.5 b | 10.9 b | 40 c,d | |
Rusich | 39.0 b | 10.1 b,c | 44 c,d | |
Coriander | Stimul | 18.3 d | 8.2 c,d | 27 f,g |
№ 07-19 | 17.0 d | 7.8 e | 28 f,g | |
Caraway | Peresvet | 12.9 e | 8.6 c,d | 25 g |
Chervil | №21-20 | 8.3 f | 4.6 f | 110 a |
№22-20 | 9.8 f | 4.9 f | 85 b | |
№24-20 | 7.6 f | 4.5 f | 82 b | |
CV (%) | 38.4 | 22.2 | 31.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkina, N.; Kharchenko, V.; Moldovan, A.; Zayachkovsky, V.; Stepanov, V.; Pivovarov, V.; Sekara, A.; Tallarita, A.; Caruso, G. Nutritional Value of Apiaceae Seeds as Affected by 11 Species and 43 Cultivars. Horticulturae 2021, 7, 57. https://doi.org/10.3390/horticulturae7030057
Golubkina N, Kharchenko V, Moldovan A, Zayachkovsky V, Stepanov V, Pivovarov V, Sekara A, Tallarita A, Caruso G. Nutritional Value of Apiaceae Seeds as Affected by 11 Species and 43 Cultivars. Horticulturae. 2021; 7(3):57. https://doi.org/10.3390/horticulturae7030057
Chicago/Turabian StyleGolubkina, Nadezhda, Viktor Kharchenko, Anastasia Moldovan, Vladimir Zayachkovsky, Viktor Stepanov, Viktor Pivovarov, Agnieszka Sekara, Alessio Tallarita, and Gianluca Caruso. 2021. "Nutritional Value of Apiaceae Seeds as Affected by 11 Species and 43 Cultivars" Horticulturae 7, no. 3: 57. https://doi.org/10.3390/horticulturae7030057
APA StyleGolubkina, N., Kharchenko, V., Moldovan, A., Zayachkovsky, V., Stepanov, V., Pivovarov, V., Sekara, A., Tallarita, A., & Caruso, G. (2021). Nutritional Value of Apiaceae Seeds as Affected by 11 Species and 43 Cultivars. Horticulturae, 7(3), 57. https://doi.org/10.3390/horticulturae7030057