Effect of Root Restriction on the Performance of Three-Truss Cultivated Tomato in the Low-Node Pinching Order at High-Density Cultivation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Recirculating Hydroponic System
2.2. Treatments
2.3. Cultivation
2.4. Data Collection
2.5. Experimental Design and Data Analysis
3. Results
3.1. Plant Height
3.2. Growth Parameters
3.2.1. Leaf Number
3.2.2. Leaf Area
3.2.3. Leaf Area Ratio
3.3. Dry Matter Partitioning
3.3.1. Total Plant Dry Matter
3.3.2. Dry Matter Partitioned to Root
3.3.3. Dry Matter Partitioned to Fruit
3.3.4. Root to Shoot Ratio
3.3.5. Root Tissue Density
3.4. Yield and Total Soluble Solids
3.4.1. Fruit Number Per Plant
3.4.2. Yield Per Unit Area
3.4.3. Total Soluble Solids
4. Discussion
4.1. Plant Growth Parameters
4.2. Dry Matter Partitioning
4.3. Yield and Total Soluble Solids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takahashi, T.; Ishigami, Y.; Goto, E.; Niibori, K.; Goto, K. Modeling the growth and yield of tomatoes cultivated with a low node-order pinching system at high plant density. Environ. Control Biol. 2012, 54, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Tamai, D. The practical cultivation and technologist training in tomato low node order pinching and high-density planting cultivation. Shisetsu-To-Engei 2014, 165, 62–65. [Google Scholar]
- Watanabe, S. New growing system for tomato with low node-order pinching and high-density planting. Proceed. Vege. Tea Sci. 2006, 3, 91–98. [Google Scholar]
- Johkan, M.; Ishii, M.; Maruo, T.; Na, L.; Tsukagoshi, S.; Hojoh, M.A.; Nakaminami, A.; Shinohara, Y. Improved light conditions at the fruit truss accelerate harvest time and enhance ascorbic acid concentration in a low-truss, high-density tomato production system. J. Jpn. Soc. Hort. Sci. 2013, 82, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Ayarna, A.W.; Tsukagoshi, S.; Nkansah, G.O.; Lu, N.; Maeda, K. Evaluation of Tropical Tomato for Growth, Yield, Nutrient, and Water Use Efficiency in Recirculating Hydroponic System. Agriculture 2020, 10, 252. [Google Scholar] [CrossRef]
- Pires, R.C.d.M.; Furlani, P.R.; Ribeiro, R.V.; Décio, B.J.; Sakai, E.; Lourenção, A.L.; Neto, A.T. Irrigation frequency and substrate volume affect the growth and yield of tomato plants under greenhouse conditions. Sci. Agric. (Piracicaba Braz.) 2011, 68, 400–405. [Google Scholar] [CrossRef]
- Zhang, Y.; Kiriiwa, Y.; Nukaya, A. Influence of Nutrient Concentration and Composition on the Growth, Uptake Patterns of Nutrient Elements, and Fruit Coloring Disorder for Tomatoes Grown in Extremely Low-volume Substrate. Jpn. Soc. Hortic. Sci. 2015, 84, 37–45. [Google Scholar]
- Saito, T.F.; Iikubo, N.; Inai, T.; Fuji, S.T.; Konishi, C.; Ezura, H. Effects of Root-volume Restriction and Salinity on the Fruit Yield and Quality. J. Japan. Soc. Hort. Sci. 2008, 77, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, R.A.; Ramos, S.J.; Guilherme, D.O.; Costa, C.A.; Fernandes, L.A. Tomato seedlings production using substrates with coconut fiber and rock waste. Hort. Bras. 2008, 26, 499–503, (In Portuguese, with abstract in English). [Google Scholar] [CrossRef] [Green Version]
- Sezen, S.M.; Celikel, G.; Yazar, A.; Tekin, S.; Kapur, B. Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Sci. Res. Essay 2010, 5, 41–48. [Google Scholar]
- Pires, R.C.M.; Furlani, P.R.; Sakai, E.; Lourenção, A.L.; Silva, E.A.; Torre, N.A.; Melo, A.M.T. Tomato development and yield under different irrigation frequencies in the greenhouse. Hort. Bras. 2009, 27, 228–234, (In Portuguese, with abstract in English). [Google Scholar] [CrossRef] [Green Version]
- Mugnai, S.; Ferrante, A.; Petrognani, L.; Serra, G.; Vernieri, P. Stress-induced variation in leaf gas exchange and chlorophyll a fluorescence in Callistemon plants. Res. J. Biol. Sci. 2009, 4, 913–919. [Google Scholar]
- Shi, K.; Fu, L.J.; Ding, X.T.; Dong, D.K.; Zhou, Y.H.; Yu, J.Q. Root restriction-induced limitation to photosynthesis in tomato leaves. Sci. Hort. 2008, 117, 197. [Google Scholar] [CrossRef]
- Mugnai, S.; Al-Debei, H.S. Growth reduction in root-restricted tomato plants is linked to photosynthetic impairment and starch accumulation in the leaves. Adv. Hortic. Sci. 2011, 25, 99–105. [Google Scholar]
- Mugnai, S.; Vernieri, P.; Tognoni, F. Container volume effects on morphology and physiology of tomato seedlings. Acta Hortic. 2000, 516, 49–56. [Google Scholar] [CrossRef]
- Ismail, M.R.; Noor, K.M. Growth, water relations and physiological processes of starfruit plants under root growth restriction. Sci. Hort. 1996, 66, 51–55. [Google Scholar] [CrossRef]
- Hori, H. Gravel culture of vegetable and ornamental crops. (Japanese text). Agric. Hortic. 1966, 210. [Google Scholar]
- Birouste, M.; Zamora Ledezma, E.; Bossard, C.; Pérez-Ramos, I.M.; Roumet, C. Measurement of fine root tissue density: A comparison of three methods reveals the potential of root dry matter content. Plant Soil 2014, 374, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Kharkina, T.G.; Ottosen, C.O.; Rosenqvist, E. Effects of root restriction on growth and physiology of cucumber plants. Physiol. Plant. 1999, 105, 434. [Google Scholar] [CrossRef]
- Franck, N.; Vaast, P.; Génard, M.; Dauzat, J. Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol. 2006, 26, 517–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, H.; Muramatsu, S.; Makino, A.; Mae, T. Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Funct. Plant Biol. 2000, 27, 167–173. [Google Scholar] [CrossRef]
- Scofield, G.N.; Ruuska, S.A.; Aoki, N.; Lewis, D.C.; Tabe, L.M.; Jenkins, C.L.D. Starch storage in the stems of wheat plants: Localization and temporal changes. Ann. Bot. 2009, 103, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; van Poppel, P.M.; Heuvelink, E.; Millenaar, F.F. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Commun. 2014, 5, 4549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dueck, T.A.; Janse, J.; Schapendonk, A.H.C.M.; Kempkes, F.L.K.; EveleensClark, B.A.; Scheffers, C.P. Lichtbenutting van Tomaat onder LED en SON-T Belichting; Wageningen UR Glastuinbouw/Plant Dynamics BV, Rapporten GTB: Wageningen, The Netherlands, 2010; p. 1040. [Google Scholar]
- Li, T.; Heuvenlink, E.; Marcelis, L.F.M. Quantifying the source-sink balance and carbohydrate contents in three tomato cultivars. Front. Plant Sci. 2015, 6, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, T.; Dieleman, J.A.; Elings, A.; Marcelis, L.F.M. Leaf photosynthetic and morphological responses to elevated CO2 concentration and altered fruit number in the semi-closed greenhouse. Sci. Hortic. 2012, 145, 1–9. [Google Scholar] [CrossRef]
- Higashide, T.; Yasuba, K.I.; Suzuki, K.; Nakano, A.; Ohmori, H. Yield of Japanese tomato cultivars has been hampered by a breeding focus on flavor. HortScience 2012, 47, 1408–1411. [Google Scholar] [CrossRef] [Green Version]
Cultivar × RR Interactions | Leaf Number Per Plant | Leaf Area (cm2 Plant−1) | Leaf Area Ratio (cm2 g−1) | |||
---|---|---|---|---|---|---|
Jaguar | MY | Jaguar | MY | Jaguar | MY | |
Complete RR in 1.0 L pot | 14.7 d | 16.3 c | 2779 f | 3494 d | 35.1 e | 39.5 c,d |
Complete RR in 1.5 L pot | 14.7 d | 16.7 c | 2784 f | 3671 c | 35.2 e | 41.5 c |
Partial RR in Cocowool | 16.7 c | 18.3 b | 2969 e | 3972 b | 37.5 d | 45.7 b |
No RR in 1.5 L trough | 17.3 b,c | 19.7 a | 3040 e | 4219 a | 38.4 d | 47.8 a |
HSD(0.05) | 1.11 | 138.4 | 2.1 | |||
Root restriction | ||||||
Complete RR in 1.0 L pot | 15.5 c | 3137 c | 37.3 c | |||
Complete RR in 1.5 L pot | 15.7 c | 3227 c | 38.3 c | |||
Partial RR in Cocowool | 17.5 b | 3471 b | 41.6 b | |||
No RR in 1.5 L trough | 18.5 a | 3629 a | 43.1 a | |||
HSD(0.05) | 0.8 | 97.8 | 1.5 | |||
Cultivar | ||||||
Jaguar | 15.8 b | 2893 b | 36.5 b | |||
Momotaro York | 17.8 a | 3839 a | 43.6 a | |||
HSD(0.05) | 0.6 | 69.2 | 1.0 |
Cultivar × RR Interactions | TPDM | RDM | FDM | Root:Shoot Ratio | Root Tissue Density | |||||
---|---|---|---|---|---|---|---|---|---|---|
(g plant−1) | (g plant−1) | (g plant−1) | (×10−3) | (mg g−1) | ||||||
Jaguar | MY | Jaguar | MY | Jaguar | MY | Jaguar | MY | Jaguar | MY | |
Complete RR in 1.0 L pot | 171.9 e | 205.7 b,c | 31.5 c | 31.7 c | 83.6 d | 108.8 b | 561 b | 488 c,d | 109.7 b,c | 106.4 b,c |
Complete RR in 1.5 L pot | 174.1 e | 212.6 a,b | 31.9 c | 33.1 b,c | 85.8 d | 115.8 a,b | 567 a,b | 520 b,c | 90.4 c,d | 116.2 b |
Partial RR in Cocowool | 202.2 c | 218.8 a | 26.8 d | 27.9 d | 116.9 a | 121.9 a | 457 d | 404 e | 74.7 d | 96.3 c |
No RR in 1.5 L trough | 188 d | 220.3 a | 34.4 a,b | 35.9 a | 100.1 c | 123.4 a | 609 a | 560 b | 117.2 b | 147.4 a |
HSD(0.05) | 8.6 | 2.1 | 7.3 | 45.1 | 19.9 | |||||
Root restriction (RR) | ||||||||||
Complete RR in 1.0 L pot | 188.8 c | 31.6 b | 96.2 c | 524 b | 108.1 b | |||||
Complete RR in 1.5 L pot | 193.4 c | 32.5 b | 100.8 c | 544 b | 103.3 b | |||||
Partial RR in cocowool | 210.5 a | 27.3 c | 118.6 a | 431 c | 85.6 c | |||||
No RR in 1.5 L trough | 204.3 b | 35.2 a | 111.8 b | 585 a | 132.3 a | |||||
HSD(0.05) | 6.1 | 1.5 | 5.13 | 32 | 14.1 | |||||
Cultivar | ||||||||||
Jaguar | 184.1 b | 31.2 b | 96.2 b | 549 a | 98 b | |||||
Momotaro York | 214.4 a | 32.2 a | 117.5 a | 493 b | 116.5 a | |||||
HSD(0.05) | 4.3 | 1.0 | 3.6 | 23 | 10 |
Cultivar × RR Interactions | Fruit Number Plant−1 | Yield (kg m−2) | Total Soluble Solids (%Brix) | |||
---|---|---|---|---|---|---|
Jaguar | MY | Jaguar | MY | Jaguar | MY | |
Complete RR in 1.0 L pot | 12.7 a | 13.7 a | 7.7 f | 8.3 e | 3.9 d | 6.3 a |
Complete RR in 1.5 L pot | 12.7 a | 13.3 a | 8.0 e,f | 8.9 d | 3.9 d | 5.8 b |
Partial RR in cocowool | 12.7 a | 13.3 a | 9.2 c,d | 9.8 b | 3.3 e | 4.6 c |
No RR in 1.5 L trough | 12.7 a | 13.3 a | 9.4 c | 10.6 a | 3.3 e | 4.8 c |
HSD(0.05) | 2.0 | 0.4 | 0.4 | |||
Root Restriction (RR) | ||||||
Complete RR in 1.0 L pot | 13.2 a | 8.2 c | 5.1 a | |||
Complete RR in 1.5 L pot | 12.7 a | 8.3 c | 4.9 a | |||
Partial RR in cocowool | 13.0 a | 9.5 b | 4.0 b | |||
No RR in 1.5 L trough | 13.0 a | 10 a | 4.1 b | |||
HSD(0.05) | 1.4 | 0.3 | 0.3 | |||
Cultivar | ||||||
Jaguar | 12.7 a | 8.6 b | 3.6 b | |||
Momotaro York | 13.3 a | 9.4 a | 5.4 a | |||
HSD(0.05) | 1.0 | 0.2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayarna, A.W.; Tsukagoshi, S.; Oduro Nkansah, G. Effect of Root Restriction on the Performance of Three-Truss Cultivated Tomato in the Low-Node Pinching Order at High-Density Cultivation System. Horticulturae 2021, 7, 60. https://doi.org/10.3390/horticulturae7030060
Ayarna AW, Tsukagoshi S, Oduro Nkansah G. Effect of Root Restriction on the Performance of Three-Truss Cultivated Tomato in the Low-Node Pinching Order at High-Density Cultivation System. Horticulturae. 2021; 7(3):60. https://doi.org/10.3390/horticulturae7030060
Chicago/Turabian StyleAyarna, Alex Williams, Satoru Tsukagoshi, and George Oduro Nkansah. 2021. "Effect of Root Restriction on the Performance of Three-Truss Cultivated Tomato in the Low-Node Pinching Order at High-Density Cultivation System" Horticulturae 7, no. 3: 60. https://doi.org/10.3390/horticulturae7030060
APA StyleAyarna, A. W., Tsukagoshi, S., & Oduro Nkansah, G. (2021). Effect of Root Restriction on the Performance of Three-Truss Cultivated Tomato in the Low-Node Pinching Order at High-Density Cultivation System. Horticulturae, 7(3), 60. https://doi.org/10.3390/horticulturae7030060