The Effects of Post-Harvest Treatments on the Quality of Agastache aurantiaca Edible Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Post-Harvest Treatments
2.3. Biochemical Analyses
2.4. Volatilomes
2.5. Statistical Analysis
3. Results and Discussion
Biochemical Analyses
4. Volatilome Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunningham, E. What nutritional contribution do edible flowers make? J. Acad. Nutr. Diet. 2015, 115, 856. [Google Scholar] [CrossRef]
- Najar, B.; Marchioni, I.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Volatilomic analysis of four edible flowers from Agastache Genus. Molecules 2019, 24, 4480. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Song, X.; Hua, Y.; Tao, J.; Zhou, C. Effects of different harvest times on nutritional component of herbaceous peony flower petals. J. Chem. 2020, 2020. [Google Scholar] [CrossRef]
- Drava, G.; Iobbi, V.; Govaerts, R.; Minganti, V.; Copetta, A.; Ruffoni, B.; Bisio, A. Trace elements in edible flowers from Italy: Further insights into health benefits and risks to consumers. Molecules 2020, 25, 2891. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, I.; Najar, B.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Bioactive compounds and aroma profile of some Lamiaceae edible flowers. Plants 2020, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Skrajda-Brdak, M.; Dąbrowski, G.; Konopka, I. Edible flowers, a source of valuable phytonutrients and their pro-healthy effects–A review. Trends Food Sci. Technol. 2020, 103, 179–199. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants–A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Lucarini, M.; Copetta, A.; Durazzo, A.; Gabrielli, P.; Lombardi-Boccia, G.; Lupotto, E.; Santini, A.; Ruffoni, B. A Snapshot on Food Allergies: A Case Study on Edible Flowers. Sustainability 2020, 12, 8709. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Pires, T.C.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56, S130–S148. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Stefaniak, A.; Meller, E.; Wysocka, G. Mineral composition of some edible flowers. J. Elem. 2018, 23, 151–162. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Bai, C.; Sanahuja, G.; Yuan, D.; Farré, G.; Naqvi, S.; Shi, L.; Capell, T.; Christou, P. The regulation of carotenoid pigmentation in flowers. Arch. Biochem. Biophys. 2010, 504, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E. Quantitative and Qualitative Identification of Bioactive Compounds in Edible Flowers of Black and Bristly Locust and Their Antioxidant Activity. Biomolecules 2020, 10, 1603. [Google Scholar] [CrossRef]
- Landi, M.; Ruffoni, B.; Combournac, L.; Guidi, L. Nutraceutical value of edible flowers upon cold storage. Ital. J. Food Sci. 2017, 30, 1–18. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Malheiro, R.; Rodrigues, N.; Saraiva, J.A.; Ramalhosa, E. Borage, calendula, cosmos, Johnny Jump up, and pansy flowers: Volatiles, bioactive compounds, and sensory perception. Eur. Food Res. Technol. 2019, 245, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Marchioni, I.; Pistelli, L.; Ferri, B.; Copetta, A.; Ruffoni, B.; Pistelli, L.; Najar, B. Phytonutritional content and aroma profile changes during postharvest storage of edible flowers. Front. Plant Sci. 2020, 11, 590968. [Google Scholar] [CrossRef] [PubMed]
- Orphanides, A.; Goulas, V.; Gekas, V. Drying technologies: Vehicle to high-quality herbs. Food Eng. Rev. 2016, 8, 164–180. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Ferreira, I.C. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Garcìa, L.M.; Ceccanti, C.; Negro, C.; De Bellis, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Effect of Drying Methods on Phenolic Compounds and Antioxidant Activity of Urtica dioica L. Leaves. Horticulturae 2021, 7, 10. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Duda, M.M.; Varban, D.I.; Muntean, S.; Moldovan, C.; Olar, M. Use of species Agastache foeniculum (Pursh) Kuntze. Hop Med. Plants 2014, 21, 52–54. [Google Scholar]
- Husti, A.; Cantor, M.; Buta, E.; Horţ, D. Current trends of using ornamental plants in culinary arts. ProEnvironment 2013, 6, 52–58. [Google Scholar]
- Myadelets, M.A.; Vorobyeva, T.A.; Domrachev, D.V. Composition of the essential oils of some species belonging to genus Agastache Clayton ex Gronov (Lamiaceae) cultivated under the conditions of the middle Ural. Chem. Sustain. Dev. 2013, 21, 397–401. [Google Scholar]
- Sanders, R.W. Taxonomy of Agastache section Brittonastrum (Lamiaceae-Nepeteae). Syst. Botany Monogr. 1987, 15, 1–92. [Google Scholar] [CrossRef]
- Kovalenko, N.A.; Supichenko, G.N.; Leontiev, V.N.; Shutova, A.G. Composition of essential oil of plants some species of the genus Agastache l. Introduced in Belarus. Proceedings of the National Academy of Sciences of Belarus. Biol. Ser. 2019, 64, 147–155. [Google Scholar] [CrossRef]
- Exner, J.; Ulubelen, A.; Mabry, T.J. Chemistry of Agastache. Part II. Flavonoids of Agastache aurantiaca. Rev. Latinoamer. Quim. 1981, 12, 37–38. [Google Scholar]
- Saito, N.; Harborne, J.B. Correlations between anthocyanin type, pollinator and flower color in the Labiatae. Phytochemistry 1992, 31, 3009–3015. [Google Scholar] [CrossRef]
- Holloway, P.S.; Matheke, G.E.; Hanscom, J.; Gardiner, A.; Hill, V.; Van Wyhe, E. Annual Flower Evaluations 2003; University of Alaska Fairbanks, Agricultural and Forestry Experiment Station, Georgeson Botanical Garden: Sitka, AK, USA, 2003; pp. 1–37. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Kim, D.; Jeong, S.; Lee, C. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Szôllôsi, R.; Szôllôsi Varga, I. Total antioxidant power in some species of Labiatae (adaptation of FRAP method). Acta Biol. Szeged. 2002, 46, 125–127. [Google Scholar]
- Das, B.; Choudhury, B.; Kar, M. Quantitative estimation of changes in biochemical constituents of mahua (madhuca indica syn. bassia latifolia) flowers during postharvest storage. J. Food Process. Preserv. 2010, 34, 831–844. [Google Scholar] [CrossRef]
- Najar, B.; Nardi, V.; Cervelli, C.; Pistelli, L. Volatilome analyses of four South African Helichrysum spp. grown in Italy. Nat. Prod. Res. 2020. [Google Scholar] [CrossRef]
- Choi, S.W.; Park, J.H.; Lee, I.B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28, 1377–1387. [Google Scholar] [CrossRef]
- Yeo, H.J.; Park, C.H.; Park, Y.E.; Hyeon, H.; Kim, J.K.; Lee, S.Y.; Park, S.U. Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. Physiol. Mol. Biol. Plants 2021, 27, 445–455. [Google Scholar] [CrossRef]
- Barani, Y.H.; Zhang, M.; Wang, B.; Devahastin, S. Influences of four pretreatments on anthocyanins content, color and flavor characteristics of hot-air dried rose flower. Drying Technol. 2020, 38, 1988–1995. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, M.; Fang, Z.; Wang, B. Degradation and regulation of edible flower pigments under thermal processing: A review. CRC Rev. Food Sci. 2021, 61, 1038–1048. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Food Res. Int. 2019, 126, 108660. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, M.; Strelec, I.; Moslavac, T.; Šubarić, D.; Pavić, V.; Molnar, M. Lipoxygenase Inhibition by Plant Extracts. Biomolecules 2021, 11, 152. [Google Scholar] [CrossRef]
- Vamos-Vigyàzò, L. Polyphenol oxidase and peroxidase infruits and vegetables. CRC Rev. Food Sci. 1981, 15, 49–127. [Google Scholar] [CrossRef]
- Severini, C.; Baiano, A.; De Pilli, T.; Romaniello, R.; Derossi, A. Prevention of enzymatic browning in sliced potatoes by blanching in boiling saline solutions. LWT Food Sci. Technol. 2003, 36, 657–665. [Google Scholar] [CrossRef]
- Olley, C.M.; Joyce, D.C.; Irving, D.E. Changes in sugar, protein, respiration, and ethylene in developing and harvested Geraldton waxflower (Chamelaucium uncinatum) flowers. N. Z. J. Crop Hortic. 1996, 24, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.J. From models to ornamentals: How is flower senescence regulated? Plant Mol. Biol. 2013, 82, 563–574. [Google Scholar] [CrossRef]
- Yangkhamman, P.; Tanase, K.; Ichimura, K.; Fukai, S. Depression of enzyme activities and gene expression of ACC synthase and ACC oxidase in cut carnation flowers under high-temperature conditions. Plant Growth Regul. 2007, 53, 155–162. [Google Scholar] [CrossRef]
- Mashkani, M.R.D.; Larijani, K.; Mehrafarin, A.; Badi, H.N. Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Ind. Crops Prod. 2018, 112, 389–395. [Google Scholar] [CrossRef]
- Asekun, O.T.; Grierson, D.S.; Afolayan, A.J. Characterization of essential oils from Helichrysum odoratissimum using different drying methods. J. Appl. Sci. 2007, 7, 1005–1008. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Xing, Y.; Lei, H.; Wang, J.; Wang, Y.; Wang, J.; Xu, H. Effects of different drying methods on the total phenolic, rosmarinic acid and essential oil of purple perilla leaves. J. Essent. Oil-Bearing Plants 2017, 20, 1594–1606. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Palomo, E.S.; Castro, L.; González Viñas, M.A.; Pérez-Coello, M.S. Changes produced in the aroma compounds and structural integrity of basil (Ocimum basilicum L) during drying. J. Sci. Food Agric. 2004, 84, 2070–2076. [Google Scholar] [CrossRef]
- Öztürk, B.; Özek, G.; Özek, T.; Baser, K.H.C. Chemical diversity in volatiles of Helichrysum plicatum DC. subspecies in Turkey. Rec. Nat. Prod. 2014, 8, 373–384. [Google Scholar]
- Chapuis, C. The Jubilee of methyl jasmonate and Hedione. Helv. Chim. Acta 2012, 95, 1479–1511. [Google Scholar] [CrossRef]
- Kovalenko, N.N.; Supichenko, G.N.; Akhramovich, T.T.; Shutova, A.G.; Léontiev, V.N. Antibacterial activity of essential oil of Agastache aurantiaca. Chem. Plant Raw Mater. 2018, 2, 63–70. [Google Scholar] [CrossRef]
- Yamani, H.; Mantri, N.; Morrison, P.D.; Pang, E. Analysis of the volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache rugosa. BMC Complement. Altern. Med. 2014, 14, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, A.; Muste, S.; Păucean, A.; Chiș, M.S.; Man, S.; Salanță, L.; Romina Marc, G.M. A Review of the Drying and Storage Effect on Some Aromatic and Medicinal Plants. Hop Med. Plants 2020, 28, 142–149. [Google Scholar]
- Ion, V.A.; Nicolau, F.; Petre, A.; Bujor, O. Variation of bioactive compounds in organic Ocimum basilicum L. during freeze-drying processing. Sci. Papers Ser. B Hortic. 2020, LXIV, 397–404. [Google Scholar]
- Shi, L.; Gu, Y.; Wu, D.; Wu, X.; Grierson, D.; Tu, Y.; Wu, Y. Hot air drying of tea flowers: Effect of experimental temperatures on drying kinetics, bioactive compounds and quality attributes. Int. J. Food Sci. Technol. 2019, 54, 526–535. [Google Scholar] [CrossRef]
- Başer, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 2nd ed.; CRC Press Taylor Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Wen Chua, L.Y.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Lech, K. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules 2019, 24, 1625. [Google Scholar] [CrossRef] [Green Version]
- Antal, T.; Figiel, A.; Kerekes, B.; Sikolya, L. Effect of drying methods on the quality of the essential oil of spearmint leaves (Mentha spicata L.). Dry. Technol. 2011, 29, 1836–1844. [Google Scholar] [CrossRef]
Fresh Flowers 1 | Freeze-Drying (FD) | Air Dried (AD) 30 °C | Air Dried (AD) 50 °C | Air Dried (AD) 60 °C | Air Dried (AD) 70 °C | |
---|---|---|---|---|---|---|
Total Carotenoids µg/g DW | 125.93 ± 6.73 | 222.49 ± 4.88 a | 177.83 ± 2.64 c | 86.77 ± 0.46 e | 187.07 ± 3.68 b | 146.05 ± 1.8 d |
Total Anthocyanins µg C3G/g DW | 55.80 ± 2.51 | 366.65 ± 28.32 a | 185.31 ± 42.2 b | 360.96 ± 58.65 ab | 422.56 ± 15.91 a | 245.7 ± 19.74 b |
Total phenolics (TPC) mg GAE/g DW | 3.33 ± 0.12 | 32.58 ± 2.01 ab | 34.26 ± 1.38 a | 24.60 ± 1.40 b | 25.84 ± 1.90 b | 26.07 ± 1.38 b |
Total flavonoids (TFC) mg CE/g DW | 1.768 ± 0.03 | 29.77 ± 0.58 a | 30.93 ± 0.56 a | 22.66 ± 0.67 b | 23.35 ± 0.81 b | 22.62 ± 0.21 b |
Total soluble sugars (TSS) mg GLU/g DW | 26.12 ± 0.37 | 358.91 ± 5.55 c | 212.12 ± 2.96 d | 512.18 ± 2.68 a | 461.31 ± 4.11 b | 341.99 ± 4.77 c |
FRAP activity µmolFeSO4/g DW | 19.33 ± 0.07 | 403.4 ± 21.78 ab | 458.79 ± 12.88 a | 281.75 ± 17.62 c | 306.84 ± 24.77 c | 318.53 ± 4.63 bc |
DPPH activity mg TEAC/g DW | 1.49 ± 0.03 | 19.4 ± 0.48 b | 23.26 ± 0.52 a | 14.87 ± 0.05 c | 17.88 ± 0.81 b | 17.67 ± 0.01 b |
Compounds | Class | LRI | Fresh | (AD) 30 °C | (AD) 50 °C | (AD) 60 °C | (AD) 70 °C | FD | |
1 | 3-Methylcyclohexanone | nt | 958 | − | 0.1 ± 0.01 | − | 0.2 ± 0.03 | − | − |
2 | Sabinene | mh | 974 | − | 0.1 ± 0.01 | − | − | − | − |
3 | 1-Octen-3-ol | nt | 980 | − | 0.2 ± 0.01 | − | 0.1 ± 0.00 | − | − |
4 | 3-Octanone | nt | 986 | − | 0.2 ± 0.01 | − | − | − | 0.3 ± 0.08 |
5 | 6-Methyl-5-heptene-2-one | nt | 986 | − | − | − | 0.2 ± 0.05 | − | − |
6 | β-Myrcene | mh | 991 | 0.6 ± 0.02 | 0.9 ± 0.14 | − | 0.1 ± 0.02 | 0.3 ± 0.07 | 0.1 ± 0.01 |
7 | Limonene | mh | 1030 | 2.5 ± 0.03 | 3.4 ± 0.40 | 1.7 ± 0.04 | 1.4 ± 0.48 | 1.8 ± 0.93 | 2.1 ± 0.48 |
8 | Benzyl alcohol | nt | 1036 | − | − | − | 0.4 ± 0.25 | − | − |
9 | Nonanal | nt | 1104 | − | − | − | 0.1 ± 0.01 | 0.5 ± 0.16 | − |
10 | p-Menthone | om | 1154 | 5.2 ± 0.06 | 50.0 ± 0.39 | 43.3 ± 0.89 | 28.9 ± 1.27 | 25.7 ± 0.88 | 43.4 ± 2.09 |
11 | Isomenthone | om | 1164 | − | 4.8 ± 0.30 | 4.4 ± 0.11 | − | 2.9 ± 0.13 | 3.7 ± 0.13 |
12 | Menthofurane | om | 1165 | 1.7 ± 0.60 | − | − | 3.3 ± 0.44 | − | − |
13 | Isopulegone | om | 1177 | 2.3 ± 0.29 | 3.4 ± 0.17 | 2.7 ± 0.03 | 1.3 ± 0.78 | 1.8 ± 0.09 | 2.5 ± 0.14 |
14 | Verbenone | om | 1205 | − | 0.2 ± 0.02 | 0.3 ± 0.13 | 0.3 ± 0.05 | 0.3 ± 0.08 | |
15 | Decanal | nt | 1206 | − | − | − | 0.3 ± 0.07 | 1.6 ± 0.62 | − |
16 | (−)-trans-Isopiperitenol | om | 1210 | − | − | − | 0.10 ± 0.03 | − | − |
17 | 1,4-Dimethyl-4-acetylcyclohexene | nt | 1226 | − | − | 1.3 ± 0.11 | 3.9 ± 0.97 | 1.1 ± 0.13 | − |
18 | 2-Hydroxycineole | om | 1228 | − | − | − | 0.2 ± 0.03 | − | − |
19 | cis-Pulegone Oxide | om | 1230 | − | − | 0.3 ± 0.03 | − | 0.2 ± 0.05 | − |
20 | Pulegone | om | 1237 | 75.5 ± 1.85 | 30.2 ± 0.23 | 32.6 ± 0.01 | 34.5 ± 1.66 | 30.8 ± 0.53 | 35.8 ± 1.39 |
21 | Piperitone | om | 1253 | − | 0.2 ± 0.00 | 1.2 ± 0.06 | 4.5 ± 0.55 | 2.3 ± 0.16 | − |
22 | 2-Hydroxy-3-isopropyl-6-methyl-2-cyclohexen-1-one | nt | 1274 | − | 0.8 ± 0.01 | 0.7 ± 0.01 | 0.8 ± 0.06 | 2.2 ± 0.00 | |
23 | 1-Cyclohexene-1-carboxaldehyde, 4-hydroxy-2,6,6-trimethyl-3-oxo- | nt | 1302 | − | − | 5.6 ± 0.04 | 5.7 ± 0.73 | 2.4 ± 0.42 | 3.5 ± 0.12 |
24 | 2-Hydroxypiperitone | om | 1302 | − | 2.0 ± 0.06 | − | − | 0.4 ± 0.04 | − |
25 | Undecanal | nt | 1307 | − | − | − | − | 0.2 ± 0.05 | − |
26 | 2-Methyl-2-(3-methyl-2-oxobutyl)cyclohexanone | nt | 1309 | − | 0.4 ± 0.02 | 0.4 ± 0.04 | 0.6 ± 0.09 | − | 1.1 ± 0.07 |
27 | Citronellic acid) | nt | 1314 | − | − | 0.3 ± 0.04 | 0.8 ± 0.06 | − | − |
28 | Piperitenone | om | 1340 | − | 0.2 ± 0.01 | 0.5 ± 0.03 | 2.1 ± 0.17 | 1.1 ± 0.05 | − |
29 | Menthofurolactone | om | 1354 | − | − | − | − | − | 0.1 ± 0.08 |
30 | Eugenol | pp | 1357 | − | 0.3 ± 0.03 | 0.9 ± 0.04 | 4.6 ± 0.42 | 1.3 ± 0.04 | |
31 | 1,2-Dimethyl-1-cyclodecene | nt | 1360 | − | − | − | − | − | 0.3 ± 0.04 |
32 | 8-Methyl-6-nonenoic acid | nt | 1373 | − | − | − | 0.1 ± 0.04 | − | |
33 | cis-trans-Nepetalactone | om | 1377 | − | − | − | − | − | 0.1 ± 0.07 |
34 | β-Caryophyllene | sh | 1419 | 9.6 ± 1.51 | 0.9 ± 0.12 | 1.0 ± 0.08 | 2.0 ± 0.31 | 1.8 ± 0.16 | 0.1 ± 0.06 |
35 | Dihydropseudoionone | nt | 1456 | − | − | − | − | 0.7 ± 0.03 | − |
36 | α-Humulene | sh | 1456 | 1.0 ± 0.32 | 0.1 ± 0.01 | 0.3 ± 0.01 | 0.9 ± 0.11 | − | − |
37 | (E)-β-Famesene | sh | 1457 | 0.6 ± 0.32 | − | − | − | − | − |
38 | 2-Hydroxy-4,5-dimethylacetophenone | nt | 1476 | − | − | 0.3 ± 0.01 | − | − | − |
39 | Germacrene D | sh | 1481 | 1.0 ± 0.71 | − | − | − | − | − |
40 | Mintlactone | om | 1500 | − | 0.4 ± 0.04 | 0.8 ± 0.06 | 0.8 ± 0.04 | 0.6 ± 0.03 | 1.0 ± 0.18 |
41 | Isomintlactone | om | 1531 | − | 0.1 ± 0.01 | 0.2 ± 0.00 | 0.1 ± 0.08 | - | 0.4 ± 0.09 |
42 | Lilial | pp | 1534 | − | − | − | − | 0.7 ± 0.16 | − |
43 | Caryophyllene oxide | os | 1581 | − | 0.10 ± 0.01 | − | 0.1 ± 0.03 | − | 0.10.01 |
44 | Hedione | nt | 1649 | − | 0.1 ± 0.01 | − | − | 4.6 ± 0.59 | − |
45 | (7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl)methanol | nt | 1659 | − | − | − | − | 0.7 ± 0.16 | − |
46 | Octyl ether | nt | 1659 | − | − | 0.7 ± 0.35 | 0.7 ± 0.08 | 6.6 ± 0.17 | 0.4 ± 0.05 |
47 | α-Hexylcinnamaldehyde | pp | 1750 | − | − | − | − | 1.0 ± 0.10 | − |
48 | Dibutyl adipate | nt | 1766 | − | − | − | − | 1.0 ± 0.13 | − |
49 | Dodecahydro-3a,6,6,9a-tetramethylnaphtho[2, 1-β]furan | os | 1766 | − | − | − | − | 0.2 ± 0.03 | − |
50 | 2-Hydroxycyclopentadecanone | nt | 1846 | − | − | − | − | 1.8 ± 0.25 | − |
51 | Galaxolide | nt | 1851 | − | − | − | − | 3.2 ± 0.71 | − |
52 | Musk T | os | 1989 | − | − | − | − | 1.0 ± 0.07 | − |
Number of identified compounds | 10 | 23 | 21 | 30 | 29 | 19 | |||
Class of compounds | Fresh | (AD) 30 °C | (AD) 50 °C | (AD) 60 °C | (AD) 70 °C | FD | |||
Monoterpene hydrocarbons (mh) | 3.1 ± 0.05 | 4.4 ± 0.57 | 1.7 ± 0.04 | 1.5 ± 0.36 | 2.1 ± 0.13 | 2.2 ± 0.37 | |||
Oxygenated monoterpenes (om) | 84.7 ± 2.80 | 91.5 ± 0.40 | 88.5 ± 0.81 | 76.1 ± 1.68 | 67.1 ± 0.55 | 87.3 ± 0.50 | |||
Sesquiterpene hydrocarbons (sh) | 12.2 ± 2.86 | 1.0 ± 0.13 | 1.3 ± 0.10 | 2.9 ± 0.42 | 1.8 ± 0.16 | 0.1 ± 0.01 | |||
Oxygenated sesquiterpenes (os) | − | 0.1 ± 0.01 | − | 0.1 ± 0.00 | 1.2 ± 0.16 | 0.1 ± 0.07 | |||
Phenylpropanoids (pp) | − | 0.3 ± 0.03 | 0.9 ± 0.04 | 4.6 ± 0.42 | 1.7 ± 0.25 | − | |||
Non-terpene derivatives (nt) | − | 1.8 ± 0.04 | 8.0 ± 0.48 | 13.9 ± 1.97 | 24.4 ± 0.54 | 7.8 ± 0.68 | |||
Total identified | 100 ± 0.00 | 99.1 ± 0.33 | 99.5 ± 0.27 | 99.1 ± 0.62 | 98.3 ± 0.74 | 97.5 ± 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchioni, I.; Dimita, R.; Gioè, G.; Pistelli, L.; Ruffoni, B.; Pistelli, L.; Najar, B. The Effects of Post-Harvest Treatments on the Quality of Agastache aurantiaca Edible Flowers. Horticulturae 2021, 7, 83. https://doi.org/10.3390/horticulturae7040083
Marchioni I, Dimita R, Gioè G, Pistelli L, Ruffoni B, Pistelli L, Najar B. The Effects of Post-Harvest Treatments on the Quality of Agastache aurantiaca Edible Flowers. Horticulturae. 2021; 7(4):83. https://doi.org/10.3390/horticulturae7040083
Chicago/Turabian StyleMarchioni, Ilaria, Rosanna Dimita, Giovanni Gioè, Luisa Pistelli, Barbara Ruffoni, Laura Pistelli, and Basma Najar. 2021. "The Effects of Post-Harvest Treatments on the Quality of Agastache aurantiaca Edible Flowers" Horticulturae 7, no. 4: 83. https://doi.org/10.3390/horticulturae7040083
APA StyleMarchioni, I., Dimita, R., Gioè, G., Pistelli, L., Ruffoni, B., Pistelli, L., & Najar, B. (2021). The Effects of Post-Harvest Treatments on the Quality of Agastache aurantiaca Edible Flowers. Horticulturae, 7(4), 83. https://doi.org/10.3390/horticulturae7040083