Evaluation of Air Temperature, Photoperiod and Light Intensity Conditions to Produce Cucumber Scions and Rootstocks in a Plant Factory with Artificial Lighting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Temperature and Light Treatments
2.2.1. Air Temperature and Light Intensity Treatments (Exp. 1)
2.2.2. Photoperiod and Light Intensity Treatments (Exp. 2)
2.3. Growth of Cucumber Scions and Rootstocks
2.4. Statistical Analysis
3. Results
3.1. The Effect of Air Temperature and Light Intensity Conditions on the Growth of Cucumber Scions and Rootstocks in a PFAL (Exp. 1)
3.2. The Effect of Photoperiod and Light Intensity Conditions on the Growth of Cucumber Scions and Rootstocks in a PFAL (Exp. 2)
3.3. The LUEs of Cucumber Scions and Rootstocks as Affected by Air Temperature, Light Intensity and Photoperiod Conditions in a PFAL
4. Discussion
4.1. Growth of Cucumber Scions and Rootstocks as Affected by Air Temperature, Light Intensity and Photoperiod in a PFAL
4.2. Quality of Cucumber Scions and Rootstocks as Affected by Air Temperature, Light Intensity and Photoperiod in a PFAL
4.3. LUEs of Cucumber Scions and Rootstocks as Affected by Air Temperature, Light Intensity and Photoperiod in a PFAL
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.M.; Kuboda, C.; Tsao, S.J.; Bie, Z.; Hoyos Echevarria, P.; Morra, L.; Oda, M. Current status of fruit vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hort. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Bie, Z.; Nawaz, M.A.; Huang, Y.; Lee, J.M.; Golla, G. Introduction to Vegetable Grafting. Vegetable Grafting, Principles and Practices; Colla, G., Alfocea, F.P., Schwarz, D., Eds.; CABI Publishing: Oxfordshire, UK, 2017; pp. 1–21. [Google Scholar]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hort. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Leonardi, C.; Romano, D. Recent issues on vegetable grafting. Acta Hort. 2004, 631, 163–174. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.S.; Blake, M.M. Securing horticulture in a changing climate-a mini review. Horticulturae 2019, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Kozai, T.; Niu, G. Role of the plant factory with artificial lighting (PFAL) in urban area. In Plant Factory an Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: New York, NY, USA, 2020; pp. 237–269. [Google Scholar]
- Kozai, T.; Fang, W.; Chun, C.; Tong, Y.; Yang, Q.; Chintakovid, W.; Supaibulwatan, K.; Kubota, C. PFAL business and R&D in the world: Current status and perspectives. In Plant Factory an Indoor Vertical Farming System for Efficient Quality Food Production, 1st ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier: London, UK, 2016; pp. 35–68. [Google Scholar]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Kubota, C. Growth, development, transpiration and translocation as affected by abiotic environmental factors. In Plant Factory an Indoor Vertical Farming System for Efficient Quality Food Production, 1st ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier: London, UK, 2016; pp. 151–164. [Google Scholar]
- Kozai, T.; Niu, G. Plant factory as a resource-efficient closed plant production system. In Plant Factory an Indoor Vertical Farming System for Efficient Quality Food Production, 1st ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier: London, UK, 2016; pp. 69–90. [Google Scholar]
- An, S.; Park, S.W.; Kwack, Y. Growth of cucumber scions, rootstocks, and grafted seedlings as affected by different irrigation regimes during cultivation of ‘Joenbaekdadagi’ and ‘Heukjong’ seedlings in a plant factory with artificial lighting. Agronomy 2020, 10, 1943. [Google Scholar] [CrossRef]
- Went, F.W. The effect of temperature on plant growth. Annu. Rev. Plant Physiol. 1953, 4, 347–362. [Google Scholar] [CrossRef]
- Heuvelink, E.; Dorais, M. Crop growth and yield. In Tomatoes, 1st ed.; Heuvelink, E., Ed.; CABI Publishing: Oxfordshire, UK, 2011; pp. 85–144. [Google Scholar]
- Hernánde, R.; Eguchi, T.; Deveci, M.; Kubota, C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hort. 2016, 213, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Oda, M.; Tsuji, K.; Sasaki, H. Effect of hypocotyl morphology on survival rate and growth of cucumber seedlings grafted on Cucurbita spp. Jpn. Agri. Res. Qtly. 1993, 26, 259–263. [Google Scholar]
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menezes, G.; Dangitsis, C.; Kintzonidis, D. Assessing quantitative criteria for characterization of quality categories for grafted watermelon seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Currey, C.J.; Hutchinson, V.A.; Lopez, R.G. Growth, morphology, and quality of rooted cuttings of several herbaceous annual bedding plants are influenced by photosynthetic daily light integral during root development. Hortic. Sci. 2012, 47, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Vu, N.T.; Kim, Y.S.; Kang, H.M.; Kim, I.S. Influence of short-term irradiation during pre- and post-grafting period on the graft-take ratio and quality of tomato seedlings. Hortic. Environ. Biotechnol. 2014, 55, 27–35. [Google Scholar] [CrossRef]
- Lee, J.W.; Kang, W.H.; Moon, T.; Hwang, I.; Kim, D.; Son, J.E. Estimating the leaf area index of bee peppers according to growth stage using ray-tracing simulation and a long short-term memory algorithm. Hortic. Environ. Biotech. 2020, 61, 255–265. [Google Scholar] [CrossRef]
- Grimstad, S.O.; Frimanslund, E. Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Sci. Hort. 1993, 53, 191–204. [Google Scholar] [CrossRef]
- Koyano, Y.; Chun, C.; Kozai, T. Controlling the lengths of hypocotyl and individual internodes of tomato seedlings by changing DIF with time. J. SHITA 2005, 17, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Heuvelink, E. Influence of day and night temperature on the growth of young tomato plants. Sci. Hort. 1989, 38, 11–22. [Google Scholar] [CrossRef]
- Thomas, J.F.; Raper, C.D. Effect of day and night temperature during floral induction on morphology of soybeans. Agron. J. 1978, 70, 893–898. [Google Scholar] [CrossRef]
- Erwin, J.E.; Heins, R.D.; Karlsson, M.G. Thermomorphogenesis in Lilium longiflorum. Am. J. Bot. 1989, 76, 47–52. [Google Scholar] [CrossRef]
- Erwin, J.E.; Heins, R.D. Thermomorphogenic responses in stem and leaf development. HortScience 1995, 30, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Berghage, R. Controlling height with temperature. HortTech 1998, 8, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, S.M.P.; Heuvelink, E.; Cascais, R.; Van Kooten, O. Effect of day and night temperature on internode and stem length in chrysanthemum: Is everything explained by DIF? Ann. Botany 2002, 90, 111–118. [Google Scholar] [CrossRef] [PubMed]
- RDA. The Guideline for Smart Greenhouse Environment Management, 1st ed.; Rural Development Administration: Jeonju, Korea, 2017; pp. 194–200. [Google Scholar]
- Kozai, T. Basic of Plant Factory, 1st ed.; Seibundo Shinkosha Publishing: Tokyo, Japan, 2014; pp. 86–94. [Google Scholar]
- Kelly, N.; Ghoe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hort. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hort. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. HortScience 2019, 54, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, D.; Niu, G.; Yan, Z.; Song, J. Effect of environmental lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Intl. J. Agr. Biol. Eng. 2018, 11, 33–40. [Google Scholar]
- Hwang, H.; An, S.; Pham, M.D.; Cui, M.; Chun, C. The combined conditions photoperiod, light intensity, and air temperature control the growth and development of tomato and red pepper seedlings in a closed transplant production system. Sustainability 2020, 12, 9939. [Google Scholar] [CrossRef]
- Dreesen, D.R.; Langhans, R.W. Temperature effects on growth of Impatiens plug seedlings in controlled environments. J. Am. Soc. Hort. Sci. 1992, 117, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Phys. Biol. Sci. 2013, 89, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kanai, N. Seedling production method. In Cucumber, 2nd ed.; Noubunkyo Publishing: Tokyo, Japan, 2004; pp. 223–226. [Google Scholar]
Air Temperature (°C) | PPF (μmol·m−2·s−1) | Hypocotyl Length (cm) | Stem Diameter (mm) | Leaf Area (cm2) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
25/20 | 50 | 7.8 | bc z | 1.5 | d | 13.7 | de | 0.60 | de | 0.027 | gh |
100 | 8.2 | b | 1.7 | ab | 19.0 | a | 0.88 | a | 0.044 | ef | |
150 | 7.0 | d | 1.8 | a | 19.6 | a | 0.85 | a | 0.052 | cd | |
200 | 5.2 | fg | 1.7 | ab | 18.0 | ab | 0.74 | b | 0.053 | cd | |
250 | 3.9 | ij | 1.6 | b–d | 16.1 | bc | 0.68 | b–d | 0.061 | ab | |
26/18 | 50 | 9.2 | a | 1.5 | cd | 13.0 | e | 0.67 | b–d | 0.027 | gh |
100 | 6.8 | de | 1.6 | a–d | 15.8 | c | 0.67 | b–d | 0.037 | f | |
150 | 6.3 | e | 1.7 | ab | 16.2 | bc | 0.71 | bc | 0.044 | e | |
200 | 4.7 | gh | 1.7 | ab | 16.0 | bc | 0.65 | cd | 0.055 | b–d | |
250 | 4.8 | gh | 1.7 | ab | 16.5 | bc | 0.71 | bc | 0.064 | a | |
27/16 | 50 | 7.1 | cd | 1.4 | e | 8.6 | f | 0.42 | g | 0.022 | h |
100 | 5.5 | f | 1.5 | cd | 11.7 | e | 0.49 | fg | 0.029 | g | |
150 | 5.6 | f | 1.7 | a–c | 16.4 | bc | 0.70 | bc | 0.057 | bc | |
200 | 4.4 | hi | 1.6 | b–d | 15.6 | cd | 0.64 | cd | 0.054 | b–d | |
250 | 3.7 | j | 1.5 | cd | 13.6 | de | 0.55 | ef | 0.049 | de | |
Significance | |||||||||||
Air temperature (A) | *** | *** | *** | *** | *** | ||||||
Light intensity (B) | *** | *** | *** | *** | *** | ||||||
Interaction (A × B) | *** | *** | *** | *** | *** |
Air Temperature (°C) | PPF (μmol·m−2·s−1) | Hypocotyl Length (cm) | Stem Diameter (mm) | Leaf Area (cm2) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
25/20 | 50 | 8.1 | bc z | 2.5 | a–d | 39.3 | cd | 2.80 | b–d | 0.155 | de |
100 | 5.8 | e | 2.3 | d–f | 37.8 | cd | 2.36 | ef | 0.152 | d–f | |
150 | 8.0 | bc | 2.6 | ab | 49.9 | a | 3.26 | a | 0.190 | a–c | |
200 | 6.3 | e | 2.5 | a–c | 47.4 | a | 2.90 | a–c | 0.174 | a–d | |
250 | 6.4 | e | 2.6 | a | 50.0 | a | 3.16 | ab | 0.194 | ab | |
26/18 | 50 | 9.4 | a | 2.4 | c–e | 30.1 | e | 2.45 | d–f | 0.139 | ef |
100 | 7.4 | cd | 2.3 | ef | 33.6 | de | 2.34 | ef | 0.141 | ef | |
150 | 8.0 | bc | 2.5 | a–c | 45.2 | ab | 3.03 | a–c | 0.170 | cd | |
200 | 7.3 | d | 2.5 | b–d | 46.8 | a | 3.15 | ab | 0.184 | a–c | |
250 | 6.2 | e | 2.6 | a–c | 47.7 | a | 3.01 | a–c | 0.198 | a | |
27/16 | 50 | 8.3 | b | 2.3 | d–f | 23.3 | f | 2.11 | fg | 0.138 | ef |
100 | 6.2 | e | 2.2 | f | 21.9 | f | 1.76 | g | 0.131 | f | |
150 | 7.7 | b–d | 2.5 | a–c | 46.0 | ab | 3.04 | ab | 0.171 | b–d | |
200 | 6.3 | e | 2.6 | ab | 38.8 | cd | 2.50 | de | 0.168 | cd | |
250 | 5.9 | e | 2.5 | a–c | 40.7 | bc | 2.66 | c–e | 0.185 | a–c | |
Significance | |||||||||||
Air temperature (A) | *** | *** | *** | *** | *** | ||||||
Light intensity (B) | *** | *** | *** | *** | *** | ||||||
Interaction (A × B) | *** | NS | *** | *** | NS |
Photoperiod (h·d−1) | PPF (μmol·m−2·s−1) | DLI (mol·m−2·d−1) | Hypocotyl Length (cm) | Stem Diameter (mm) | Leaf Area (cm2) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
12 | 50 | 2.2 | 8.3 | b z | 1.3 | e | 7.7 | h | 0.47 | i | 0.023 | j |
100 | 4.3 | 6.3 | e–g | 1.3 | de | 10.0 | h | 0.47 | i | 0.027 | j | |
150 | 6.5 | 9.2 | a | 1.6 | bc | 16.3 | e–f | 0.84 | d–g | 0.045 | fg | |
200 | 8.6 | 7.5 | bc | 1.7 | bc | 17.0 | e–f | 0.85 | c–f | 0.051 | ef | |
250 | 10.8 | 5.7 | f–h | 1.7 | bc | 16.1 | e–f | 0.76 | f–h | 0.048 | ef | |
16 | 50 | 2.9 | 9.3 | a | 1.3 | e | 14.6 | g | 0.74 | gh | 0.030 | ij |
100 | 5.8 | 7.0 | c–e | 1.5 | cd | 18.8 | b–d | 0.82 | e–g | 0.039 | gh | |
150 | 8.6 | 7.1 | cd | 1.7 | bc | 21.3 | a | 1.00 | b | 0.055 | de | |
200 | 11.5 | 5.8 | f-h | 1.6 | bc | 14.4 | g | 0.68 | h | 0.054 | de | |
250 | 14.4 | 5.3 | h | 1.7 | bc | 15.2 | gf | 0.71 | h | 0.064 | bc | |
20 | 50 | 3.6 | 8.3 | b | 1.6 | bc | 18.0 | c–e | 0.87 | c–e | 0.037 | hi |
100 | 7.2 | 7.6 | bc | 1.7 | b | 19.9 | a–c | 0.93 | b–d | 0.051 | ef | |
150 | 10.8 | 6.5 | d–f | 1.6 | bc | 19.9 | a–c | 0.86 | c–f | 0.060 | cd | |
200 | 14.4 | 5.9 | f–h | 1.7 | b | 20.4 | ab | 0.94 | bc | 0.070 | b | |
250 | 18.0 | 5.6 | gh | 1.9 | a | 21.8 | a | 1.15 | a | 0.078 | a | |
Significance | ||||||||||||
Photoperiod (A) | *** | *** | *** | *** | *** | |||||||
Light intensity (B) | *** | *** | *** | *** | *** | |||||||
Interaction (A × B) | *** | *** | *** | *** | *** |
Photoperiod (h·d−1) | PPF (μmol·m−2·s−1) | DLI (mol·m−2·d−1) | Hypocotyl Length (cm) | Stem Diameter (mm) | Leaf Area (cm2) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
12 | 50 | 2.2 | 10.9 | a z | 2.4 | d | 36.8 | f | 2.82 | e–g | 0.147 | i |
100 | 4.3 | 9.6 | b | 2.5 | cd | 43.9 | e | 3.01 | d–f | 0.156 | f–i | |
150 | 6.5 | 8.9 | bc | 2.6 | a–c | 46.9 | de | 3.34 | a–d | 0.172 | e–i | |
200 | 8.6 | 8.8 | bc | 2.7 | ab | 51.2 | a–d | 3.54 | ab | 0.184 | c–e | |
250 | 10.8 | 8.4 | cd | 2.6 | a–d | 50.8 | a–d | 3.30 | b–d | 0.170 | e–i | |
16 | 50 | 2.9 | 9.5 | b | 2.5 | b–d | 35.6 | f | 2.66 | fg | 0.150 | hi |
100 | 5.8 | 7.8 | de | 2.6 | a–d | 35.1 | f | 2.53 | g | 0.154 | g–i | |
150 | 8.6 | 8.9 | bc | 2.6 | a–d | 48.8 | b–e | 3.29 | b–d | 0.184 | c–e | |
200 | 11.5 | 7.9 | de | 2.6 | a–c | 47.2 | c–e | 3.12 | c–e | 0.182 | d–f | |
250 | 14.4 | 6.6 | f | 2.7 | ab | 52.2 | a–d | 3.27 | b–d | 0.198 | b–d | |
20 | 50 | 3.6 | 8.2 | cd | 2.7 | a | 49.5 | a–e | 3.50 | a–c | 0.174 | d–g |
100 | 7.2 | 7.4 | ef | 2.6 | a–c | 55.3 | a | 3.54 | ab | 0.180 | d–g | |
150 | 10.8 | 7.3 | ef | 2.7 | ab | 53.2 | a–c | 3.43 | a–c | 0.209 | a–c | |
200 | 14.4 | 7.2 | ef | 2.8 | a | 55.0 | a | 3.72 | a | 0.223 | ab | |
250 | 18.0 | 4.9 | g | 2.7 | a | 53.9 | ab | 3.35 | a–d | 0.235 | a | |
Significance | ||||||||||||
Photoperiod (A) | *** | *** | *** | *** | *** | |||||||
Light intensity (B) | *** | *** | *** | *** | *** | |||||||
Interaction (A × B) | *** | * | *** | *** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Hwang, H.; Chun, C.; Jang, Y.; Lee, H.J.; Wi, S.H.; Yeo, K.-H.; Yu, I.-h.; Kwack, Y. Evaluation of Air Temperature, Photoperiod and Light Intensity Conditions to Produce Cucumber Scions and Rootstocks in a Plant Factory with Artificial Lighting. Horticulturae 2021, 7, 102. https://doi.org/10.3390/horticulturae7050102
An S, Hwang H, Chun C, Jang Y, Lee HJ, Wi SH, Yeo K-H, Yu I-h, Kwack Y. Evaluation of Air Temperature, Photoperiod and Light Intensity Conditions to Produce Cucumber Scions and Rootstocks in a Plant Factory with Artificial Lighting. Horticulturae. 2021; 7(5):102. https://doi.org/10.3390/horticulturae7050102
Chicago/Turabian StyleAn, Sewoong, Hyunseung Hwang, Changhoo Chun, Yoonah Jang, Hee Ju Lee, Seung Hwang Wi, Kyung-Hwan Yeo, In-ho Yu, and Yurina Kwack. 2021. "Evaluation of Air Temperature, Photoperiod and Light Intensity Conditions to Produce Cucumber Scions and Rootstocks in a Plant Factory with Artificial Lighting" Horticulturae 7, no. 5: 102. https://doi.org/10.3390/horticulturae7050102
APA StyleAn, S., Hwang, H., Chun, C., Jang, Y., Lee, H. J., Wi, S. H., Yeo, K. -H., Yu, I. -h., & Kwack, Y. (2021). Evaluation of Air Temperature, Photoperiod and Light Intensity Conditions to Produce Cucumber Scions and Rootstocks in a Plant Factory with Artificial Lighting. Horticulturae, 7(5), 102. https://doi.org/10.3390/horticulturae7050102