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Abstract: The physiological and biochemical role of the γ-aminobutyric acid (GABA) shunt pathway
in green pea seedlings (Pisum sativum L.) was studied in response to soil water holding capacity
levels: 80%, 60%, 40%, 20%, and 10% grown under continuous light at 25 ◦C for 7 days and 14 days,
separately. Characterization of seeds germination pattern, seedlings growth (plant height, fresh and
dry weight, and chlorophyll contents), GABA shunt metabolite (GABA, glutamate, and alanine)
levels, total protein and carbohydrate levels, and oxidative damage (MDA level) were examined.
Data showed a significant effect of drought stress on seed germination, plant growth, GABA shunt
metabolites level, total protein and carbohydrate contents, and MDA level. A significant decline
in seed germination percentage was recorded at a 20% drought level, which indicated that 20%
of soil water holding capacity is the threshold value of water availability for normal germination
after 14 days. Seedling fresh weight, dry weight, and plant height were significantly reduced with
a positive correlation as water availability was decreased. There was a significant decrease with
a positive correlation in Chl a and Chl b contents in response to 7 days and 14 days of drought.
GABA shunt metabolites were significantly increased with a negative correlation as water availability
decreased. Pea seedlings showed a significant increase in protein content as drought stress was
increased. Total carbohydrate levels increased significantly when the amount of water availability
decreased. MDA content increased slightly but significantly after 7 days and sharply after 14 days
under all water stress levels. The maximum increase in MDA content was observed at 20% and 10%
water levels. Overall, the significant increases in GABA, protein and carbohydrate contents were to
cope with the physiological impact of drought stress on Pisum sativum L. seedlings by maintaining
cellular osmotic adjustment, protecting plants from oxidative stress, balancing carbon and nitrogen
(C:N) metabolism, and maintaining cell metabolic homeostasis and cell turgor. The results presented
in this study indicated that severe (less than 40% water content of the holding capacity) and long-term
drought stress should be avoided during the germination stage to ensure proper seedling growth
and metabolism in Pisum sativum L.

Keywords: drought stress; GABA: gamma aminobutyric acid; metabolism; pea; Pisum sativum L.;
seedling growth; water deficit

1. Introduction

Pea (Pisum sativum L.) was used by Mendel to lay the foundation of modern genet-
ics [1]. It is one of the major food legumes that can grow in different regions and rich
in proteins, vitamins, minerals, carbohydrates, and seed oil [2]. Pea is predominantly a
self-pollinated crop with limited variation in the number of flowers per node [3]. Most
garden pea germplasm/varieties lines have either one or two flowers per node [4]. The
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agro-ecological importance of pea is connected with its capability to form symbiotic nitro-
gen fixation with rhizobial bacteria that promotes and enhances seed germination, seedling
vigor and emergence, root and shoot growth, plant stand and biomass, and seed weight [5].

Drought is a major abiotic stress that affects plant growth and yield [6]. Plant species
and genotype adaptation and level of tolerance vary according to the type of drought stress
(meteorological, agricultural, hydrological, or socioeconomic drought) [7]. Drought limits
the productivity of many crops, especially during the seedling stage [8]. Water scarcity
negatively affects vegetative growth by direct influence on its metabolic sink strength and
fruit composition [9]. It causes reduced quality and quantity of the crop yield, growth rate,
leaf expansion, stem elongation [8,10], stomatal conductance [11], and grain filling) [12].
Increasing the level of CO2 in plants mitigates the impact of drought stress in many legume
species [13].

Physiological, biochemical, and morphological processes in plants can occur as a
result of drought stress causing changes in the expression of genes that lead to alteration
in protein production [8]. In addition, respiration, photosynthesis, enzyme activities, and
mineral nutrition, Redox (oxidation/reduction) homeostasis, and chloroplast metabolism
are influenced by drought [12,14]. Analysis of proteomics data in plant leaves showed
that many drought-responsive proteins that are involved in osmotic regulation, cell struc-
ture modulation, ROS scavenging, drought signal transduction, as well as carbohydrate
metabolism, were upregulated under drought stress [15].

Drought stress reduces the quality and yield of many crops. Extended periods of
water deficit results in a reduction in plant growth, photosynthesis efficiency and initiates
a series of actions to maintain plant survival. These actions include regulation of stomatal
conductance, osmotic adjustment, cell turgor maintenance, and protection of cellular
membranes, enzymes, and macromolecules from oxidative damage [16]. During drought
stress, plants close their stomata which leads to plasma membrane damage; consequently,
the internal CO2 concentration will be decreased, and excessive generation of reactive
oxygen species will be increased, leading to a reduction in the photosynthetic rate and
plant growth [17,18]. Water deficiency in maize caused a reduction in seedling survival
rate, acceleration of the post-pollination embryo abortion rate, and ultimately, yield loss by
postponing silking through the increase in the anthesis to the silking interval that leads
to a reduction in ear and kernel number per plant [19–22]. Furthermore, water scarcity
decreased photosynthetic efficiency, chlorophyll content, and CO2 exchange in maize
seedlings [21,23].

Drought stress decreased total barley (Hordeum vulgare L.) grain yield through a drop
in tillers, spikes, and grains number per individual plant [24]. In soybean, drought stress
decreased branch seed and total crop yields [25]. Cell elongation in higher plants can be
inhibited through water movement interruption to the surrounding elongating cells from
the xylem under severe water deficiency [26].

The development of candidate drought-tolerant associated genes is based on precise
screening for germplasm and breeding materials in limited water environments using
bioinformatics [27]. Various studies on some plant genes subjected to drought stress
described the biochemical pathways that are involved in drought acclimation. Proteins and
metabolites that were involved in protective mechanisms against drought conditions were
identified. These mechanisms include detoxification enzymes, redox status regulation,
signaling pathways, protein folding and degradation, photosynthesis stability, and primary
metabolism [18]. In addition, drought and low water content reduction lead to an increase
in sugar and amino acid concentrations in plants [28].

GABA is a four-carbon non-protein amino acid that increases in plant tissues under
stress [29]. The GABA shunt has a functional role in biotic and abiotic stress in plants
through the improvement in the antioxidant activity to restrict ROS species production,
plant cell signaling, and metabolism under stress [29,30]. The GABA shunt pathway is com-
posed of three enzymatic reactions. GABA is largely produced through glutamate decar-
boxylation that is catalyzed by glutamate decarboxylase enzyme, then GABA is catabolized
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inside the mitochondrial matrix to succinic semialdehyde (SSA) by GABA transaminase
enzyme. Then, succinate is produced from SSA oxidization by the mitochondrial succinic
semialdehyde dehydrogenase enzyme or reduced to gamma-hydroxybutyrate (GHB) [30].

GABA is made from glutamate by glutamate decarboxylase that is present in symbiotic
rhizobia bacteroids [31]. Furthermore, GABA was shown to be the second most plentiful
amino acid in detached pea (Pisum sativum L.) nodules through the nuclear magnetic reso-
nance analysis, which, in turn, reflects the vital role of GABA in amino acid cycling during
bacteroid metabolism [31]. Data showed that large amounts of GABA is accumulated in
root nodules, while GABA that is newly made appeared to be limited to pea nodules that
are metabolically active [32]. Bound forms of GABA accumulated in nodules of many
legume species, reaching 20% of the total nitrogen content [32].

Drought stress could increase the activation of GABA transporters (ProTs and AAP3)
that regulate the entry of GABA across the cell membrane. The entrance of GABA decreased
drought leaf wilting and improved membrane stability via the reduction in oxidative dam-
age in plants [33]. Endogenous GABA enhanced drought tolerance through the inhibition
of lipid peroxidation and photosynthesis [33]. In addition, GABA stabilized the intracel-
lular pH during drought stress and provided a source of nitrogen and carbon during the
Krebs cycle and carbon–nitrogen metabolism in the maturation of green peas [34]. Drought
stress directly influences metabolic sink strength during vegetative growth, which triggers
an imbalance in redox homeostasis that affects overall plant growth and development.

In this study, the effects of drought stress on the physiological and biochemical charac-
terization of the GABA shunt pathway in green pea (Pisum sativum L.) were investigated.
Characterization of seeds germination pattern, seedling growth (plant height, fresh weight,
dry weight, and chlorophyll content), oxidative damage (Malondialdehyde level), GABA
shunt metabolite levels (GABA, Glutamate and Alanine), total proteins, and total carbohy-
drate levels were determined.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The green pea seeds (Pisum sativum L.) that were used in this study were harvested in
2018 and obtained from local pea growers in Irbid/Jordan. All experiments were performed
in the laboratory using a plant growth medium. The growth medium was a mixture of peat
moss and perlite growth soil with a ratio of (2:1) wt/wt, later referred to as “soil” in a pot
(7 g). Seeds were surface disinfected with 6% (v/v) sodium hypochlorite for 10 min and then
washed five times with sterile distilled water. Surface sterilized seeds were planted in soil.
Tap water was used to irrigate the seeds at a full water holding capacity level (80–100%) for
two weeks until the appearance of seedlings) [35]. The two-week-old seedlings were then
subjected to drought treatments according to soil water holding capacity levels: 80%, 60%,
40%, 20%, and 10% separately for 7 days and another set for 14 days. Plants were grown at
25 ◦C under continuous cool white fluorescent lamp illumination (40 µmol m−2 s −1). For
assays and parameters determinations, three replicates of 6 pea (Pisum sativum L.) seeds for
each replicate were used.

2.2. Seed Sensitivity to Drought Stress Assay

Three replicates of 15 pea (Pisum sativum L.) surface-sterilized seeds were placed on
three filter papers as artificial growth surface in sealed Petri dishes and irrigated with tap
water in drought treatments according to full water holding capacity levels: 80%, 60%, 40%,
20%, and 10% separately for 14 days and allowed to grow at 25 ◦C. Radicle emergence from
the seeds was recorded daily for 14 days. Drought treatment effect on seed germination
was calculated.

2.3. Seedling Physiological Growth Parameters Assay

After each drought treatment for the 7 and 14 days separately, plant height (cm), fresh
weight (g), and dry weight (g) were determined. Shoot fresh weight (g) was determined
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by directly weighing the collected seedlings’ shoot tissues. Shoot dry weight (g) was
determined following weighing the seedlings’ shoot tissues after oven drying at 70 ◦C
for 48 h.

2.4. Chlorophyll Content Determination

After each drought treatment for the 7 and 14 days separately, fresh shoots tissues
were harvested. Chlorophyll pigments (Chl a and Chl b) extraction and determination were
performed according to Jeffrey et al. protocol [36] with the following adjustments: 300 mg
fresh leaves mixed with one ml of ice-cold 90% acetone were ground in an Eppendorf
tube using a micro centrifuge tube pestle to prepare the chlorophyll extract. The extracted
liquid was placed in a new Eppendorf tube and centrifuged at 11,000× g for 5 min. The
supernatant was used for the determination of both chlorophyll pigments. The resulted
supernatant absorbance was measured spectrophotometrically at 647 nm, 664 nm, and
750 nm wavelengths. Equation and extension coefficients [36] were used to calculate the
concentration of Chl a and Chl b (µg/mL). The average of three replicates for each treatment
was calculated.

2.5. Metabolites Extraction

After each drought treatment for the 7 and 14 days separately, fresh shoot tissues were
harvested. GABA shunt metabolites were extracted and determined according to Zhang
and Bown [37] with the following adjustments: 500 mg of fresh shoot tissues were ground
in an Eppendorf tube using a micro centrifuge tube pestle until a fine powder was obtained,
and then placed in 1.5 mL Eppendorf tubes and vortexed with 400 µL methanol for 10 min.
Methanol from samples was removed by overnight evaporation at room temperature.
To each tube, 500 µL of 70 mM lanthanum chloride was added and vortexed for 15 min.
Then tubes were centrifuged at 12,400× g for 5 min. One hundred and sixty microliters of
1 M KOH was added to the collected supernatants and vortexed for 10 min. Tubes were
centrifuged at 12,400× g for 5 min. The resulted supernatant (metabolites extract) was used
for the determination of GABA shunt metabolites (GABA, alanine, and glutamate). The
average of three replicates was used for each drought treatment.

2.6. GABA (γ-Aminobutyric Acid) Level Determination

The protocol of Zhang and Bown [37] was used for GABA determination with the
following adjustments: 50 µL of metabolites extract, 14 µL of 4 mM NADP+, 19 µL of
0.5 M potassium pyrophosphate, pH (8.6), 10 µL of (2 u/µL) GABASE enzyme (GABASE
enzyme (Sigma-Aldrich Corp., St. Louis, MO, USA) was suspended in 0.1 M potassium
pyrophosphate, pH (7.2), containing 12.5% Glycerol and 5 mM β-mercaptoethanol), and
10 µL of α-ketoglutarate were mixed in an Eppendorf tube to prepare the reaction mixture.
The change in absorbance at 340 nm after the addition of α-ketoglutarate was measured
after 90 min incubation at 25 ◦C using a microplate reader. The GABA level (nmol/mg
FW) was determined using the NADPH standard curve. For each drought treatment, the
average of three replicates was used.

2.7. Alanine Level Determination

The Bergmeyer protocol [38] was used for alanine determination with the following
adjustments: 180 µL of 0.05 M Na-carbonate buffer, pH (10), 7 µL of 30 mM β-NAD+, 10 µL
of sample extract, and 1 µL of 0.3 u/µL alanine dehydrogenase (Sigma-Aldrich, St. Louis,
MO, USA) enzyme suspension were mixed in an Eppendorf tube to prepare the reaction
mixture. The change in absorbance at 340 nm after the addition of alanine dehydrogenase
was measured after 60 min incubation at 25 ◦C using a microplate reader. The alanine
level (nmol/mg FW) was determined using the NADH standard curve. For each drought
treatment, the average of three replicates was used.
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2.8. Glutamate Level Determination

The Bergmeyer protocol [38] was used for glutamate determination with the following
adjustments: 180 µL of 0.1 M Tris-HCl pH (8.3), 8 µL of 7.5 mM β-NAD+, 10 µL of sample
extract, and 1 µL of 0.8 u/µL glutamate dehydrogenase enzyme suspension (Sigma-Aldrich,
St. Louis, MO, USA) were mixed in an Eppendorf tube to prepare the deamination reaction
mixture. The change in absorbance at 340 nm after the addition of glutamate dehydrogenase
was measured after 60 min incubation at 25 ◦C using a microplate reader. The glutamate
level (nmol/mg FW) was determined using the NADH standard curve. For each drought
treatment, the average of three replicates was used.

2.9. Total Protein Content Determination

After each drought treatment for the 7 and 14 days separately, fresh shoot tissues
were harvested. Total protein content was determined using a SMART BCA Protein Assay
Kit (Intron Biotechnology, Gangnam-gu, Seoul, Korea) according to the manufacturer’s
instructions. Five hundred milligrams of fresh shoots tissues mixed with 100 µL of distilled
water were ground in an Eppendorf tube using a micro centrifuge tube pestle. Fifty
microliters of the extracted liquid was obtained and mixed well with 1 mL of the kit working
solution. All tubes were incubated at 37 ◦C for 30 min and then kept at room temperature
for 5 min. The absorbance of the samples was measured at 562 nm using a microplate
reader. The BSA standard curve was used to determine the total protein concentration
(µg/mL). For each drought treatment, the average of three replicates was used.

2.10. Total Carbohydrates Content Determination

After each drought treatment for the 7 and 14 days separately, fresh shoot tissues
were harvested. Total carbohydrates content was determined using the Total Carbohydrate
Quantification Assay Kit (catalog number: ab155891, Abcam, Cambridge, MA, USA)
according to the manufacturer’s instructions. Fifty milligrams of fresh shoot tissues mixed
with 200 µL ice-cold kit assay buffer was ground in an Eppendorf tube using a micro
centrifuge tube pestle. Tubes were then centrifuged at 12,400× g for 5 min. The resulted
supernatant was collected. In a 96-well microplate, 30 µL of collected supernatant from
each sample and the kit standard solution wells were mixed with 150 µL of concentrated
H2SO4. The microplate was mixed well for 5 min on a shaker and then incubated at 90 ◦C
for 15 min. The microplate was cooled at room temperature for 15 min. Thirty microliters
of the kit developer solution was added to all treated samples and kit standard solution
wells, mixed on a shaker at room temperature for 15 min, and measured OD at 490 nm.
A glucose standard curve was used to determine the total carbohydrate concentration
(µg/mg FW). For each drought treatment, the average of three replicates was used.

2.11. Oxidative Damage Assay

After each drought treatment for the 7 and 14 days separately, fresh shoot tissues were
harvested. Lipid peroxidation as malondialdehyde (MDA) equivalent was determined by
estimating the TBA reactive substances (TBARS) as described by Heath and Packer [39]
with some adjustments: 20 mg of fresh shoots tissues was mixed with 0.25 mL of 0.5% (w/v)
thiobarbituric acid in 20% (w/v) trichloroacetic acid and 0.25 mL of 175 mM NaCl in 50 mM
Tris-HCl (pH 8) and ground in an Eppendorf tube using a micro centrifuge tube pestle.
Tubes were placed in a water bath at 90 ◦C for 25 min. Tubes were then centrifuged at
12,400× g for 20 min and the supernatant was collected. A microplate reader was used to
measure the absorbance of the supernatant at 532 nm. A standard curve of MDA was used
to calculate the MDA level (nmol/mg FW). For each drought treatment, the average of
three replicates was used.

2.12. Experimental Design and Data Analysis

A completely randomized design (CRD) was used for all experiments in this study.
All treatments and assays were replicated three times. For all assays parameters, mean
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and standard deviation (SD) values were determined. Results were expressed as mean.
Data analysis was performed by one-way analysis of variance (ANOVA) using the Least
Significant Difference (LSD) multiple comparison tests on the means using the SPSS version
16.0 software. For all data analyses, p-value ≤ 0.05–0.01 was considered significant, and
p-value < 0.01 was considered highly significant.

3. Results and Discussion
3.1. Seed Sensitivity to Drought Stress

Germination percentage of Pisum sativum L. was affected significantly (p < 0.05) by
drought treatments to all saturation levels (80%, 60%, 40%, 20%, and 10%) in pea seeds
for 14 days. In general, the germination percentage significantly decreased with a positive
correlation as water content decreased (Table 1). The highest seed germination percentage
was observed at the 80% saturation level (p < 0.05). A significant decline was recorded
at 40% water saturation level. After 14 days, the germination percentage was 100, 80,
and 30 at 60, 40, and 20% soil water saturation levels, respectively. No germination was
observed at 10% drought treatment point (Table 1). These results indicated that the 40%
water saturation level is the threshold value for normal pea seed germination after 14 days
(p = 0.0001, r = 0.929).

Table 1. Germination percentage of pea (Pisum sativum L.) in response to soil water holding capacity levels: 80%, 60%,
40%, 20%, and 10% grown under continuous light at 25 ◦C. Means followed by different letters are significantly different
(p ≤ 0.05) by LSD; r = correlation coefficient.

Treatment Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 8 Day 10 Day 12 Day 14

80% 0.0 40.0 a 59.0 a 75.0 a 75.0 a 95.0 a 100.0 a 100.0 a 100.0 a 100.0 a

60% 0.0 30.0 b 60.0 a 72.5 a 75.0 a 85.0 b 100.0 a 100.0 a 100.0 a 100.0 a

40% 0.0 12.5 c 45.0 b 60.0 b 65.0 b 70.0 c 75.0 b 75.0 b 80.0 b 80.0 b

20% 0.0 0.0 d 0.0 c 7.5 c 15.0 c 18.0 d 20.0 c 25.0 c 30.0 c 30.0 c

10% 0.0 0.0 d 0.0 c 0.0 cd 0.0 d 0.0 e 0.0 d 0.0 d 0.0 d 0.0 d

r * 0.987 0.924 0.929 0.913 0.953 0.942 0.942 0.929 0.929

* means α < 0.05.

Seed germination is a critical stage for plant survival. Drought stress greatly affects
seed germination, but the response intensity and harmful effects of stress depend on the
plant species [40]. A decrease in the germination of Eremosparton songoricum was observed
under drought stress [40]. The results of the current study indicated that as water saturation
decreased, a significant drop in the germination percentage in pea (Pisum sativum L.) was
observed. Similar to our finding, Liu et al.’s [41] study revealed that seed germination
of two maize cultivars (Liansheng15 cultivar and Zhengdan 958 cultivar) was reduced
under drought stress. Increased water deficit minimized absorption of water by seeds,
therefore preventing their germination [42]. However, it has been shown that failure of
the emergence of the root was due to a reduction in water level between the soil and the
seeds [43]. In addition, a reduced water gradient affected enzymatic reactions, which
caused a delay in seed germination [44].

Muscolo et al. [45] found significant differences between two lentil cultivars, Ustica
and Pantelleria, collected from Sicilian islands subjected to drought stress with a remarkable
decrease and delay in seed germination. Inhibition of seed germination was directly related
to energy production through respiration, enzyme and hormonal activity, reserve mobi-
lization, and dilution of the protoplasm to increase metabolism for successful embryonic
growth [45]. Water availability is a limiting factor for non-dormant seed germination. It also
affected the speed, uniformity, and percentage of seed emergence [46]. Dornbos et al. [47]
showed that the germination percentage was decreased during the seed filling stage in soy-
bean (Glycine max L.c.v Merr.) under severe drought stress. Inhibition of starch catabolism
under drought and salt stress decreased seed germination [48,49]. AL-Quraan et al. [50]
showed a significant decrease in seed germination of five wheat cultivars (Triticum aes-
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tivum L.) under salt and osmotic stress. Furthermore, AL-Quraan et al. [51] reported that
cold, heat, salt, and osmotic stresses significantly reduced seed germination in two lentil
(Lens culinaris Medik) cultivars. The results of this study showed that reduction in wa-
ter content had a severe impact on seed germination and early seedling growth in pea
(Pisum sativum L.) that might be caused by a reduction in water absorption by seeds during
metabolic processes and enzymatic activity in germinating pea seeds.

3.2. Seedling Physiological Growth in Response to Drought Stress

Seedling fresh weight, dry weight, and seedling height of Pisum sativum L. were
measured in response to drought treatments according to soil water holding capacity levels
of 80%, 60%, 40%, 20%, and 10% for 7 and 14 days, separately. Seedling fresh weight and
seedlings height were significantly reduced with a positive correlation as water availability
decreased (Table 2). The seedling fresh weight (p = 0.001, 0.05, r = 0.957, 0.979) and seedling
height (p = 0.001, 0.001, r = 0.867, 0.992) were reduced significantly after 7 and 14 days,
respectively. Dry weight reduction was not significant under all drought treatment after 7
(p = 0.096) and 14 days (p = 0.228), respectively.

Table 2. Seedling height (cm), fresh weight, and dry weight (gm), and water content (%) of pea (Pisum sativum L.) in response
to soil water holding capacity levels: 80%, 60%, 40%, 20%, and 10% grown under continuous light at 25 ◦C for 7 days and 14
days, separately. Means followed by different letters are significantly different (p ≤ 0.05) by LSD; r = correlation coefficient.

Day 7 Day 14

Treatment
Seedlings

Height
(cm)

Fresh
Weight

(gm)

Dry
Weight

(gm)

Seedlings
Height

(cm)

Fresh
Weight

(gm)

Dry
Weight

(gm)

80% 21.0 a 0.51 a 0.051 a 25.5 a 0.57 a 0.052 a

60% 15.0 b 0.355 b 0.046 a 14.5 b 0.415 a 0.046 a

40% 10.4 bcd 0.25 c 0.035 a 13.5 bc 0.3 ab 0.04 a

20% 6.36 d 0.185 cd 0.031 ab 11.5 bd 0.205 ac 0.031 a

10% 5.4 de 0.2 ce 0.03 ac 11.5 bd 0.21 ad 0.03 a

r * 0.992 0.957 0.979 0.867 0.979 0.995

* means α ≤ 0.05.

In agreement with our study, Embiale et al. [52] reported that unavailability of water
resulted in a significant decline in pea’s basal diameter increment, area, width, and expan-
sion length of leaf, number of branches and leaves, and total seedlings length. Plant cells
save water by avoiding active growth. Stomatal closure, diminished leaf water potential,
turgor loss, reduction in cell enlargement and growth [53], and inhibition of shoot and root
growth [54] are common plant responses due to water stress. In general, reduction in plant
biomass is positively linked with prolonged water deficiency and inhibition of cell expan-
sion per cell growth due to low turgor pressure [55]. Reduction in plant dry weight under
water stress could be due to imbalanced stomatal conductance that leads to a reduction in
carbon assimilation per unit leaf area and low biomass production [56,57]. Drought stress
was associated with reduced cellular division and elongation during germination, causing
a reduction in root length [58].

Khorasaninejad et al. [59] reported a reduction in shoot fresh and dry weight, root
dry weight, internodes, and internodes length of peppermint (Mentha piperita L.) under
drought stress. A decrease in root and shoot fresh and dry weights and shoot length was
observed in sensitive bean genotypes under water stress [60]. Zhang et al. [61] reported
that the length and width of maize leaves on seedlings were shorter under water stress due
to a reduction in chlorophyll content. A reduction in water content decreased plant height,
stem diameter, stem and root biomass, and total biomass of Populus nigra (poli) [62]. In
agreement with our study, Riad et al. [63] reported that decreasing water content resulted
in a reduction in plant growth parameters (root length, root, and leaves fresh and dry
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weights, and plant length), biomass accumulation, and vegetative growth of green peas as
compared with 100% water availability.

3.3. The Effect of Drought on Chlorophyll Content

Table 3 shows that the chlorophyll content were significantly decreased after 7 and
14 days as water content decreased. Pisum sativum L. seedlings possessed the highest total
Chl a and Chl b contents at 80% water saturation level (p = 0.020, 0.003) with positive
correlation (r = 0.938, 0.986) after 7 and 14 days, respectively. There was a significant
decrease with a positive correlation in Chl a and Chl b contents in response to 7 days and
14 days of drought treatments.

Table 3. Chlorophyll content (Chl a, Chl b, total chlorophyll) (µg/mL) of pea (Pisum sativum L.)
seedlings in response to soil water holding capacity levels: 80%, 60%, 40%, 20%, and 10% grown
under continuous light at 25 ◦C for 7 days and 14 days, separately. Means followed by different
letters are significantly different (p ≤ 0.05) by LSD; r = correlation coefficient.

Day 7 Day 14

Treatment Chl a Chl b Total Chl a Chl b Total

80% 7.670 a 5.350 a 13.020 a 10.470 a 9.950 a 20.420 a

60% 3.552 b 3.870 b 7.422 b 8.200 b 8.220 a 16.420 b

40% 2.500 c 1.420 c 3.920 c 6.460 c 7.040 ab 13.500 c

20% 2.300 cd 1.220 cd 3.520 cd 5.740 cd 5.380 bc 11.120 d

10% 1.140 e 0.699 e 1.839 e 3.210 e 4.870 bd 8.080 e

r * 0.913 0.963 0.938 0.975 0.998 0.986
* means α < 0.05.

Chlorophyll is a major chloroplast component and has a positive relationship with
photosynthetic rate. Our results agreed with Nyachiro et al.’s [64] study, which found a
significant reduction in Chl a and Chl b caused by drought stress in six wheat (Triticum aes-
tivum L.) cultivars. Shinde and Thakur [65] reported that drought stress significantly
reduced Chl a and Chl b contents in three varieties of chickpeas during vegetative growth
or anthesis. Our data indicated that decreased water availability caused a significant
decrease in Chl a and Chl b contents in Pisum sativum L. after 7 and 14 days. This reduc-
tion in total chlorophyll content leads to a reduction in photosynthesis and plant growth
which was correlated with a significant reduction in seedling growth under all water stress
levels. Depending on the duration and severity of drought stress, plant genotypes, and
environmental conditions, a reduction in Chl a and b contents has been reported in other
plant species [66,67]. Previous studies on Triticum aestivum and Zea mays [68], Gossypium
hirsutum [69], and Tectona grandis [70] found that the content of photosynthetic pigments
reduced as water availability decreased. It has been reported that metabolic imbalance
occurred as a result of a decrease in chlorophyll synthesis and an increase in chlorophyll
degradation under drought stress [71–73].

Nitrogen is a component of the chlorophyll structure in plant tissues. Under stress
conditions, a decline in chlorophyll content was associated with changes in nitrogen
metabolism as a result of proline synthesis to maintain osmotic adjustment [74]. Low nitro-
gen levels reduced photosynthetic rates due to a reduction in chlorophyll synthesis [75].
Severe water stress decreased stomatal conductance, transpiration, and photosynthetic
rate [56,76]. As a drought response mechanism, chloroplasts reduced light absorption by
decreasing the chlorophyll content [77]. Studies revealed that the inhibition of photosyn-
thesis efficiency as a result of an imbalance between light capture and usage under water
shortage enhances oxidative stress. Furthermore, under water stress, stomatal closure and
variation in photosynthetic metabolism lead to a reduction in CO2 availability and directly
impacted the photosynthetic rate [78]. Under severe drought conditions, chlorophyll con-
tent in wheat seedlings was reduced as a result of the increased activity of chlorophillase
and peroxidase enzymes [79]. In response to drought stress, chlorophyll content was
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reduced in the vegetative and flowering stages of the Avena species [80]. Alberte et al. [81]
reported a reduction in Chl a/b contents occurred in lamellar content in response to water
deficit. Patro et al. [82] and Ghotbi-Ravandi et al. [83] reported that stomatal closure due to
water deficit is a major factor inhibiting photosynthesis in Arabidopsis thaliana and barley
(Hordeum vulgare L.) seedlings, respectively. Moreover, drought stress significantly de-
creased the chlorophyll content in Pisum sativum L. seedlings [84] and three wheat varieties
(Triticum aestivum L.) [85]. The results of our study indicated that a water imbalance due to
drought stress caused a reduction in chlorophyll content that might be attributed to the
photosynthetic apparatus activity disturbance.

3.4. GABA Shunt Activation in Response to Drought Stress

The GABA shunt metabolites increased significantly as a result of drought stress
caused by different water saturation levels (Table 4). There were significant differences in
GABA, alanine, and glutamate content at 80%, 60%, 40%, 20%, and 10% soil water content
between the 7- and 14-day treatments. In general, there was a significant increase in GABA,
alanine, and glutamate (p = 0.001, 0.0001, 0.002, respectively) with a negative correlation
(r = −0.987, −0.968, −0.978, respectively) with water availability after the 7-day treatment.
A significant increase was also found in GABA, alanine, and glutamate (p = 0.0001, 0.003,
0.870, respectively) with a negative correlation (r = −0.906, −0.989, −0.939, respectively)
after the 14-day treatment. The increase in GABA content was about 4 and 5 times higher at
the 20% and 10% water levels, respectively, after the 14-day treatment when compared with
GABA content at the same water levels after the 7 day treatment. The increase in GABA
levels was accompanied by a slight but significant (p ≤ 0.01–0.05) increase in the levels of
alanine and glutamate after 7- and 14-day treatments under all water saturation levels.

Table 4. Levels of GABA shunt metabolites (GABA, alanine, and glutamate) of pea (Pisum sativum
L.) seedlings in response to soil water holding capacity levels: 80%, 60%, 40%, 20%, and 10% grown
under continuous light at 25 ◦C for 7 days and 14 days, separately. Metabolite levels were calculated
as nmol/mgFW. GABA (γ-Aminobutyric acid), Ala (alanine), Glu (glutamate). Means followed by
different letters are significantly different (p ≤ 0.05) by LSD; r = correlation coefficient.

Day 7 Day 14

Treatment GABA Ala Glu GABA Ala Glu

80% 3.966 a 0.185 a 0.166 a 22.291 a 0.535 a 0.429 a

60% 6.999 b 0.237 b 0.198 b 25.211 a 0.603 a 0.446 a

40% 8.170 bc 0.268 c 0.221 bc 25.648 ab 0.666 a 0.584 a

20% 10.106 cd 0.275 cd 0.228 bd 40.973 c 0.797 ab 0.590 a

10% 12.111 de 0.302 e 0.252 be 49.969 d 0.838 bc 0.722 a

r * −0.987 −0.968 −0.978 −0.906 −0.989 −0.939
* means α < 0.05.

The GABA shunt has been associated with physiological responses, such as cytosolic
pH regulation [86], nitrogen metabolism, and carbon fluxes into the Krebs cycle [87],
protection against ROS production [88], and osmoregulation and signaling [89]. The
GABA shunt is also involved in carbon and nitrogen metabolism, maintenance of cell
membrane integrity [90], and minimizing the negative effects of abiotic stresses on plant
metabolism [91].

Many studies reported that various stresses caused an increase in endogenous GABA
accumulation in plants [92]. The current study showed a significant increase in GABA
content as a result of a reduction in water availability to ease the metabolic damage in
pea seedlings during vegetative growth. Studies showed that GABA effectively decreased
leaf wilting and improved membrane stability induced by drought stress in perennial
ryegrass (Lolium perenne) [93], black pepper [94], and white clover (Trifolium repens) [33],
which confirmed the beneficial effect of GABA in protecting plants from oxidative stress.
Insufficient availability of oxygen resulted in significant suppression of melon seedling
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growth. However, seedling growth was significantly improved when exogenous GABA
was applied [95]. Several amino acid syntheses are regulated by the TCA cycle [96].
Glutamate, as a precursor amino acid of GABA production, is produced from the α-
ketoglutaric acid (an intermediate of the TCA cycle) transamination [90]. Glutamate
metabolic pathway activation via the TCA cycle was confirmed by GABA production
and defense of creeping bentgrass against drought stress [97]. An increase in endogenous
GABA levels due to an increase in glutamate content occurred in white clover in response
to drought stress [33]. Increased content of glutamic acid and GABA were found in six
winter wheat genotypes due to drought stress [98]. In addition, alanine was increased at
the beginning of drought stress due to an increase in glutamate levels [99]. In this study, the
increase in GABA content as water availability decreased mitigated the damaging effects of
drought stress on pea (Pisum sativum L.) seedlings by supplying enough carbon/nitrogen
source to the TCA cycle and amino acid synthesis.

3.5. The Effect of Drought on Seedling Proteins Level

In general, the total protein level in Pisum sativum L. seedlings increased with in-
creasing water deficit. A significant difference was found in the total protein level of pea
seedlings between the 7-day (p = 0.0001, r = −0.984) and 14-day (p = 0.0001, r = −0.982)
treatments (Figure 1). The total protein level was 2 to 3 times higher after 7-day treatments
when compared with the 14-day treatments under all water saturation levels. The sig-
nificant increase in protein content after 7 days indicated that Pisum sativum L. seedlings
could accumulate protein to lower the osmotic potential to maintain cellular structures and
metabolic stability under drought stress. However, the steady-state level of protein content
after 14 days indicated the ability of pea seedlings to tolerate prolonged water deficit by
keeping stable protein metabolism to adjust cellular osmolarity and provide protection
from further dehydration damage.
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Figure 1. Total proteins level of pea (Pisum sativum L.) seedlings in response to soil water holding capacity levels: 80%, 60%,
40%, 20%, and 10% grown under continuous light at 25 ◦C for 7 days and 14 days, separately. Protein levels were calculated
as µg/mL. Means (columns) with different letter scripts are significantly different (p ≤ 0.05) by LSD.
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Under environmental stress factors, plants stimulated specific changes in protein
synthesis [100]. In agreement with our study, Guttieri et al. [101] reported increased protein
concentration under water deficit due to higher rates of nitrogen accumulation in hard
wheat (Triticum aestivum L.) grains. Ozturk and Aydin [102] also reported an increase in
protein and gluten content in winter wheat cultivars grain in response to drought stress
when compared with the fully irrigated treatment. During a combination of heat and
drought stress, glutamine, ornithine, tyrosine, valine, and tryptophan were accumulated in
Arabidopsis thaliana and purslane plants to maintain cellular osmotic adjustment and keep
leaf turgor in response to such stress combination [103,104]. Drought stress induced the ac-
cumulation of protein by enhancing the protein biosynthesis in wheat and barley [105,106].
However, a reserve of available substrates for protein synthesis could be associated with
amino acid accumulation to facilitate quick retrieval of osmotic adjustment and plant
metabolism in response to water deficiency [107]. In a study that used three Australian
bread wheat (Triticum aestivum L.) cultivars, Ford et al. [108] suggested that the cultivar
RAC875 had the highest capacity to withstand drought stress by increasing the cellular pro-
tein synthesis. Although there was an increase in total protein levels which were involved
in ROS scavenging, they observed a decrease in proteins involved in the Calvin cycle and
photosynthesis. In contrast to our results, Gołębiowska et al. [109] observed a decrease in
the number of differential proteins in leaves of winter barley subjected to drought stress
for three weeks. Mohammadkhani and Heidar [110] reported an initial increase followed
by a decrease in protein concentration in maize varieties (Zea mays L.) subjected to drought
stress. The initial increase in total soluble proteins might be due to the expression of new
proteins involved in stress adaptation. However, the decrease in protein concentration
might be due to a severe reduction in photosynthesis. Under water stress, proline amino
acid accumulated in plant cells prevents cellular oxidation through scavenge ROS [111]
and regulates plant osmotic pressure for efficient water absorption [112]. Free proline level
was reported to be increased under water deficit in wheat [113,114]. The amount of proline
was increased significantly in ginger (Zingiber officinale) in response to a reduction in water
availability and prolonged duration of drought stress [112].

3.6. The Effect of Drought on Seedling Carbohydrates Content

In the current study, data showed that the total carbohydrate level in Pisum sativum L.
seedlings increased as water availability decreased (Figure 2)., the total carbohydrate level
increased significantly (p = 0.0001) with a negative correlation (r = −0.970) in response to
drought stress for 7 days. Similar results were obtained under drought stress for 14 days
(p = 0.0001, r = −0.0980).
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Figure 2. Total carbohydrates level of pea (Pisum sativum L.) seedlings in response to soil water holding capacity levels: 80%,
60%, 40%, 20%, and 10% grown under continuous light at 25 ◦C for 7 days and 14 days, separately. Total carbohydrate level
was calculated as µg/mg FW. Means (columns) with different letter scripts are significantly different (p ≤ 0.05) by LSD.

Water stress induces carbohydrate accumulation and osmolytes synthesis to maintain
the water potential of plants [115,116]. Soluble sugar levels in plants also increased in
response to drought stress. Plants respond to water shortage by balancing their potential
osmotic proportion with the external environment by increasing their soluble sugars at the
cellular level, reducing activities in roots, reducing the metabolism of carbohydrates as a
result of severe pressure, and reducing the transfer of sugars in rinsing vessels [117]. In
agreement with our study, an increase in total soluble sugars in durum (Triticum durum L.)
wheat [118] and oligosaccharides in two sesame cultivars [119] were reported. In contrast,
Akinci and Losel [120] reported a decrease in total sugar in cucumber cultivars under
water stress. However, a major reserve of carbohydrates was detected in the leaves of
cucumber seedlings. Under drought stress, sugar accumulation might be due to the fact that
sucrose content increased because the enzyme activities involved in sucrose breakdown
were diminished [121]. Furthermore, sugars protect the cells during drought by two
physiological mechanisms. The first mechanism involves the hydroxyl group of sugars,
which substitute the water to maintain hydrophilic interactions and hydrogen bonding in
membranes and proteins during dehydration to prevent protein denaturation [122]. The
second mechanism involves sugar vitrification in dehydrated cells through the formation
of a biological glass in the cytoplasm to reduce water permeability [123]. Mohammadkhani
and Heidari [110] reported an increase in soluble sugar concentrations as a result of starch
degradation in two maize (Zea mays L.) cultivars. Soluble sugars accumulated only in
roots of eucalyptus trees under drought stress [124]. Regier et al. [62] reported an increase
in soluble sugar concentrations in the roots of two divergent clones of Populus nigra to
maintain osmotic adjustment under water deficit. Soluble sugars were also reported to be
increased and participated in plant metabolic regulation and stress signaling in response to
osmotic stress [125]. Additionally, increased soluble sugars may act as osmoprotectants
to stabilize the membranes and sustain cell turgor in response to water deficit [126]. Li
and Li [127] showed an increase in the glucose, fructose, and sucrose content in micro-
propagated apple plants (Malus domestica Borkh) in response to water stress. It is concluded
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from these previous studies that fluctuations of sugar concentrations in different plants
under drought stress might be due to variations in CO2 assimilation, partitioning of carbon
source-sink, activity of enzymes involved in sucrose–starch partitioning, and inhibition of
Calvin cycle enzymes.

3.7. Oxidative Damage in Response to Drought Stress

The accumulation of MDA, which is a byproduct of membrane lipids’ oxidative dam-
age, can be used as a marker for oxidative stress [128]. In this study, the MDA levels in the
pea seedlings were determined to evaluate the lipid peroxidation in response to drought
stress. Figure 3 shows that the malondialdehyde (MDA) level of pea (Pisum sativum L.)
seedlings was slightly but significantly increased after 7 days (p = 0.0001, r = −0.967). How-
ever, the MDA level was increased sharply and significantly under all water stress levels
reaching the highest level (140 nmol/mgFW at 10% water saturation level) (p = 0.0001,
r = −0.975) after 14 days. Our results showed that the pea seedlings suffered minor damage
under mild (60% water saturation level) drought stress, but severe lipid peroxidation and
oxidative damage of the cell membrane occurred with increased (40%, 20%, and 10% water
saturation levels) water deficit (Figure 3).
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Figure 3. Malondialdehyde (MDA) level of pea (Pisum sativum L.) seedlings in response to soil water holding capacity levels:
80%, 60%, 40%, 20%, and 10% grown under continuous light at 25 ◦C for 7 days and 14 days, separately. The MDA level
was calculated as nmol/mg FW. Means (columns) with different letter scripts are significantly different (p ≤ 0.05) by LSD.

Many abiotic stresses lead to the accumulation of MDA in plant tissues due to lipid
peroxidation of cellular membranes and overproduction of ROS [39]. Severe water stress
caused agitation and instability in the metabolic processes in the mitochondria and chloro-
plasts, leading to high ROS production [129]. ROS resulting from oxidative stress are toxic
and highly reactive molecules that can damage cellular macromolecules and subcellular
structures [130,131]. The levels of MDA and H2O2 are indicators of the free radical reac-
tions occurring in plant-stressed tissues [132]. Similar to our findings, Pandey et al. [133]
reported that the MDA level was increased in Avena species leaves under drought stress,
increasing membrane leakage. In addition, Zlatev et al. [134] reported an increase in
membrane damage and ROS production in three bean (Phaseolus vulgaris L.) cultivars as
a result of water deficit. Similarly, Tatar and Gevrek [135] reported an increase in the
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level of MDA in wheat as the duration of drought stress increased. Leaves of growing
carrots (Daucus carota L.) accumulated high levels of MDA content under water deficit
stress [91]. Morabito and Guerrier [136] reported that oxidative stress occurred 12 h after
the application of drought stress. However, after a longer period of drought stress, an
antioxidants defense system was initiated. Abid et al. [137] showed that a higher MDA
concentration in wheat (Triticum aestivum L.) was associated with higher H2O2 content
and greater rate of O2

•− generation. Hernandez et al. [138] reported that salinity stress in
plant tissues could lead to cell membrane rupture due to the accumulation of ROS and
lipid peroxidation.

3.8. Correlation between GABA Level and All Physiological and Metabolic Parameters

Under all water treatment levels used in this study, the GABA level was negatively
correlated with seed germination, seedlings height, fresh and dry weight, and chlorophyll
content (Table 5). On the other hand, GABA level was positively correlated with protein
and carbohydrate contents and MDA level under all water treatments. The elevated level of
GABA metabolites (GABA, alanine, and glutamate), total proteins, and total carbohydrates
content might be involved in cellular osmotic adjustment, protecting plants from oxidative
stress, balancing of carbon and nitrogen (C:N) metabolism, and maintaining cell metabolic
homeostasis and cell turgor under water stress [9,22].

Table 5. Correlation analysis between the GABA level and all physiological and metabolic parameters
that were measured in this study under drought stress treatments after 7 and14 days, separately of
pea (Pisum sativum L.) seedlings. G% = germination percentage; r = correlation coefficient.

Drought Treatments Duration
r 7 Days 14 Days

GABA vs. G% −0.897 −0.989
GABA vs. Seedling height −0.886 −0.861

GABA vs. Fresh weight −0.937 −0.812
GABA vs. Dry weight −0.941 −0.911

GABA vs. Chl a −0.936 −0.894
GABA vs. Chl b −0.935 −0.901

GABA vs. Protein 0.988 0.956
GABA vs. Carbohydrates 0.955 0.923

GABA vs. MDA 0.967 0.877

4. Conclusions

Our study showed that water deficit had a suppressive effect on Pisum sativum L.
growth and metabolism. Drought stress significantly inhibited seed germination, decreased
fresh and dry weight and plant height due to a reduction in water absorption by seeds
during metabolic processes and enzymatic activities in germinating pea seeds and early
seedling growth. In addition, water deficit caused a significant decrease in chlorophyll
pigments that might be attributed to disturbances in the activity of the photosynthetic
apparatus. Pea seedlings suffered minor cellular damage under mild drought stress.
However, the oxidative damage and ROS production were more severe with increased
duration and levels of water deficit. The increase in GABA content as water availability
decreased mitigated the damaging effects of drought stress on pea (Pisum sativum L.)
seedlings by supplying enough carbon/nitrogen sources to the TCA cycle and amino acid
synthesis. The significant increase in protein content might lower the osmotic potential to
maintain cellular structures and metabolic stability under drought stress. Pea seedlings
tolerate prolonged water deficit by keeping stable protein metabolism to adjust cellular
osmolarity and to provide protection from further dehydration damage. Water deficit
induced carbohydrate accumulation to maintain water potential and osmotic adjustment
via the activation of osmolytes synthesis. Overall, the significant increases in GABA, protein
and carbohydrate contents were to cope with the physiological impact of drought stress on
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Pisum sativum L. seedlings by maintaining cellular osmotic adjustment, protecting plants
from oxidative stress, balancing carbon and nitrogen (C:N) metabolism and maintaining
cell metabolic homeostasis and cell turgor. According to data presented in the current
study, a sufficient water supply is vital for normal growth and metabolism in pea seedlings.
Severe (less than 40% water content of the holding capacity) and long-term drought stress
should be avoided during the germination stage to ensure proper seedling growth.
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