Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Observation Indicators
2.3.1. Meteorological Factors
2.3.2. Soil Moisture Content
2.3.3. Stem Diameter Microchanges
2.3.4. Stem Water Potential and Relative Water Content of Leaves
2.3.5. Signal Intensity Calculation of Stem Diameter Indicator
2.3.6. Flexible Evaluation of Signal Intensity
2.4. Data Analysis
3. Results
3.1. The Relative Variation of Stem Diameter under Different Stages
3.2. Evaluation of Applicability as a Moisture Diagnosis Indicator
3.2.1. The Correlation of MDS and DI with Meteorological Factors
3.2.2. The Correlation of MDS, DI with Stem Water Potential and RWC of Leaves
3.2.3. The Correlation of MDS and DI with Soil Moisture under Different Stages
3.2.4. Signal Intensity of Stem Diameter Indicator
3.2.5. The Correlation of SIMDS and SIDI with Meteorological Factors, Stem Water Potential and RWC
3.2.6. Adaptable Evaluation of Signal Intensity under Different Stages
4. Discussion
4.1. Relative Variation in Grapevine Stem Diameter
4.2. The Correlations of MDS and DI with Meteorological Factors
4.3. Signal Value and Signal-to-Noise Ratio of the Stem Diameter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodwin, I.; Boland, A.M. Scheduling deficit irrigation of fruit trees for optimizing water use efficiency. In Deficit Irrigation Practices, Water Reports; FAO: Quebec City, QC, Canada, 2002; Volume 22, p. 109. [Google Scholar]
- Naor, A.; Gal, Y.; Peres, M. The inherent variability of water stress indicators in apple, nectarine and pear orchards, and the validity of a leaf-selection procedure for water potential measurements. Irrig. Sci. 2005, 24, 129–135. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 407, 2427. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.E.; Cuevas, M.V. Irrigation scheduling from stem diameter variations: A review. Agric. For. Meteorol. 2010, 150, 135–151. [Google Scholar] [CrossRef]
- Argyrokastritis, I.G.; Papastylianou, P.T.; Alexandris, S. Leaf Water Potential and Crop Water Stress Index variation for full and deficit irrigated cotton in Mediterranean conditions. Agric. Agric. Sci. Procedia 2015, 4, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Meng, Z.; Chang, X.; Deng, Z.; Li, Y.; Lv, M. Determination of a suitable indicator of tomato water content based on stem diameter variation. Sci. Hortic. 2017, 215, 142–148. [Google Scholar] [CrossRef]
- Ojeda, H.; Deloire, A.; Carbonneau, A. Influence of water deficits on grape berry growth. Vitis 2001, 40, 141–145. [Google Scholar] [CrossRef]
- González-Fernández, A.B.; Rodríguez-Pérez, J.R.; Marcelo, V.; Valenciano, J.B. Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agric. Water Manag. 2015, 156, 43–50. [Google Scholar] [CrossRef]
- Gao, Y.; Qiu, J.W.; Miao, Y.L.; Qiu, R.C.; Li, H.; Zhang, M. Prediction of Leaf Water Content in Maize Seedlings Based on Hyperspectral Information. IFAC-Pap. 2019, 52, 263–269. [Google Scholar] [CrossRef]
- Li, B.; Zhao, X.T.; Zhang, Y.; Zhang, S.J.; Luo, B. Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy. Comput. Electron. Agric. 2020, 170, 105239. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Navarro, F.B.; Sánchez-Miranda, A.; Ripoll, M.A. Using stem diameter variations to detect and quantify growth and relationships with climatic variables on a gradient of thinned Aleppo pines. For. Ecol. Manag. 2019, 442, 53–62. [Google Scholar] [CrossRef]
- Ortuño, M.F.; García-Orellana, Y.; Conejero, W.; Ruiz-Sanchez, M.C.; Mounzer, O.; Alarcon, J.J.; Torrecillas, A. Relationships Between Climatic Variables and Sap Flow, Stem Water Potential and Maximum Daily Trunk Shrinkage in Lemon Trees. Plant Soil 2006, 279, 229–242. [Google Scholar] [CrossRef]
- Leperen, W.V.; Volkov, V.S.; Meeteren, U.V. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress. J. Exp. Bot. 2003, 54, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Ortuño, M.F.; Conejero, W.; Moreno, F.; Moriana, A.; Intrigliolo, D.S.; Biel, C.; Mellisho, C.D.; Pérez-Pastor, A.; Domingo, R.; Ruiz-Sánchez, M.C.; et al. Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives. Agric. Water Manag. 2010, 97, 1–11. [Google Scholar] [CrossRef]
- Schepper, V.D.; Dusschoten, D.V.; Copini, P.; Jahnke, S.; Steppe, K. MRI links stem water content to stem diameter variations in transpiring trees. J. Exp. Bot. 2012, 63, 2645–2653. [Google Scholar] [CrossRef] [Green Version]
- Goldhamer, D.A.; Fereres, E. Irrigation scheduling of almond trees with trunk diameter sensors. Irrig. Sci. 2004, 23, 11–19. [Google Scholar] [CrossRef]
- Badal, E.; Buesa, I.; Guerra, D.; Bonet, L.; Ferrer, P.; Intrigliolo, D.S. Maximum diurnal trunk shrinkage is a sensitive indicator of plant water, stress in Diospyros kaki (Persimmon) trees. Agric. Water Manag. 2010, 98, 143–147. [Google Scholar] [CrossRef]
- Doltra, J.; Oncins, J.A.; Bonany, J.; Cohen, M. Evaluation of plant-based water status indicators in mature apple trees under field conditions. Irrig. Sci. 2007, 25, 351–359. [Google Scholar] [CrossRef]
- Velez, J.E.; Intrigliolo, D.S.; Castel, J.R. Scheduling deficit irrigation of citrus trees with maximum daily trunk shrinkage. Agric. Water Manag. 2007, 90, 197–204. [Google Scholar] [CrossRef]
- Moriana, A.; Fereres, E. Plant indicators for scheduling irrigation of young olive trees. Irrig. Sci. 2002, 21, 83–90. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D.A. Suitability of stem diameter vriations and water potential as indicators for irrigation scheduling of almond trees. J. Hortic. Sci. Biotechnol. 2003, 78, 139–144. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Continuous measurement of plant and soil water status for irrigation scheduling in plum. Irrig. Sci. 2004, 23, 93–102. [Google Scholar] [CrossRef]
- Ortuño, M.F.; García-Orellana, Y.; Conejero, W.; Pérez-Sarmiento, F.; Torrecillas, A. Assessment of maximum daily trunk shrinkage signal intensity threshold values for deficit irrigation in lemon trees. Agric. Water Manag. 2008, 96, 80–86. [Google Scholar] [CrossRef]
- Katerji, N.; Itier, B.; Ferreira, I. Etude de quelques criteres indicateurs de l’etat hydrique d’une culture de tomate en region semi-aride. Agronomie 1988, 8, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Rötzer, T.; Biber, P.; Moser, A.; Schäfer, C.; Pretzsch, H. Stem and root diameter growth of European beech and Norway spruce under extreme drought. For. Ecol. Manag. 2017, 406, 184–195. [Google Scholar] [CrossRef]
- Matimati, I.; Musil, C.F.; Raitt, L.; February, E.C. Diurnal stem diameter variations show CAM and C3 photosynthetic modes and CAM-C3 switches in arid South African succulent shrubs. Agric. For. Meteorol. 2012, 161, 72–79. [Google Scholar] [CrossRef]
- Tognetti, R.; Giovannelli, A.; Lavini, A.; Morelli, G.; Fragnito, F.; d’Andria, R. Assessing environmental controls over conductances through the soil-plant-atmosphere continuum in an experimental olive tree plantation of southern Italy. Agric. For. Meteorol. 2009, 149, 1229–1243. [Google Scholar] [CrossRef]
- Devine, W.D.; Harrington, C.A. Factors affecting diurnal stem contraction in young Douglas-fir. Agric. For. Meteorol. 2011, 151, 414–419. [Google Scholar] [CrossRef]
- Du, S.Q.; Tong, L.; Zhang, X.T.; Kang, S.Z.; Du, T.S.; Li, S.; Ding, R.S. Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation. Agric. Water Manag. 2017, 190, 21–30. [Google Scholar] [CrossRef]
- Tuccio, L.; Piccolo, E.L.; Battelli, R.; Matteoli, S.; Remorini, D. Physiological indicators to assess water status in potted grapevine (Vitis vinifera L.). Sci. Hortic. 2019, 255, 8–13. [Google Scholar] [CrossRef]
- Conesa, M.R.; Torres, R.; Domingo, R.; Navarro, H.; Soto, F.; Pérez-Pastor, A. Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes. Agric. Water Manag. 2016, 172, 51–61. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; Valdez, L.C.; Fernandez, M.D. Use of stem diameter variations to detect plant water stress in tomato. Irrig. Sci. 2006, 24, 241–255. [Google Scholar] [CrossRef]
- Goldhamer, D.A.; Fereres, E. Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrig. Sci. 2001, 20, 115–125. [Google Scholar] [CrossRef]
- Miralles, J.; Franco, J.A.; Sánchez-Blanco, M.J.; Bañón, S. Effects of pot-in-pot production system on water consumption 0034, stem diameter variations and photochemical efficiency of spindle tree irrigated with saline water. Agric. Water Manag. 2016, 170, 167–175. [Google Scholar] [CrossRef]
- Allen, R.G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Abdelfatah, A.; Aranda, X.; Savé, R.; Herralde, F.D.; Biel, C. Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse. Agric. Water Manag. 2013, 118, 150–158. [Google Scholar] [CrossRef]
- Kramer, P.J. Water Relations of Plants; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Turner, N.C. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 1981, 58, 339–366. [Google Scholar] [CrossRef]
- Zhang, J.G.; He, Q.Y.; Shi, W.Y.; Otsuki, K.; Yamanaka, N.; Du, S. Radial variations in xylem sap flow and their effect on whole-tree water use estimates. Hydrol. Process. 2015, 29, 4993–5002. [Google Scholar] [CrossRef]
- Irvine, J.; Grace, J. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 1997, 202, 455–461. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.H.; Yu, P.T.; Liu, H.L.; Shi, Z.J.; Guan, W. Growth in stem diameter of Larix principis-rupprechtii and its response to meteorological factors in the south of Liupan Mountain, China. Acta Ecol. Sin. 2007, 27, 432–440. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Duan, A.W.; Meng, Z.J.; Liu, Z.G. Stem diameter variations of cotton under different water conditions. Trans. Chin. Soc. Agric. Eng. 2005, 21, 7–11. [Google Scholar]
- Intrigliolo, D.S.; Castel, J.R. Evaluation of grapevine water status from trunk diameter variations. Irrig. Sci. 2007, 26, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Girón, I.F.; Corell, M.; Martín-Palomo, M.J.; Galindo, A.; Torrecillas, A.; Moreno, F.; Moriana, A. Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees. Agric. Water Manag. 2015, 161, 114–126. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Torres, R.; Pérez-Pastor, A. Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees. Agric. Water Manag. 2013, 126, 133–141. [Google Scholar] [CrossRef]
- Kanai, S.; Adu-Gymfi, J.; Lei, K.; Lto, J.; Ohkura, K.; Moghaieb, R.E.A.; El-shemy, H.; Mohapatra, R.; Mohapatra, P.K.; Saneoka, H.; et al. N-deficiency damps out circadian rhythmic changes of stem diameter dynamics in tomato plant. Plant Sci. 2008, 174, 183–191. [Google Scholar] [CrossRef]
- Swaef, T.D.; Steppe, K.; Lemeur, R. Raoul Lemeur. Determining reference values for stem water potential and maximum daily trunk shrinkage in young apple trees based on plant responses to water deficit. Agric. Water Manag. 2009, 96, 541–550. [Google Scholar] [CrossRef]
- Conejero, W.; Mellisho, C.D.; Ortuo, M.F.; Moriana, A.; Moreno, F.; Torrecillas, A. Using trunk diameter sensors for regulated deficit irrigation scheduling in early maturing peach trees-ScienceDirect. Environ. Exp. Bot. 2011, 71, 409–415. [Google Scholar] [CrossRef]
- Moriana, A.; Moreno, F.; Girón, I.F.; Conejero, W.; Ortuño, M.F.; Morales, D.; Corell, M.; Torrecillas, A. Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load. Agric. Water Manag. 2011, 99, 121–127. [Google Scholar] [CrossRef]
- King, G.; Fonti, P.; Nievergelt, D.; Büntgen, U.; Frank, D. Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agric. For. Meteorol. 2013, 168, 36–46. [Google Scholar] [CrossRef]
- Janbek, B.M.; Stockie, J.M. Asymptotic and numerical analysis of a porous medium model for transpiration-driven sap flow in trees. Siam J. Appl. Math. 2017, 78, 2028–2056. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Pérez-Pastor, A. A new approach to ascertain the sensitivity to water stress of different plant water indicators in extra-early nectarine trees. Sci. Hortic. 2014, 169, 147–153. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Domingo, R.; Gómez-Montiel, J.; Pérez-Pastor, A. Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees. Agric. Water Manag. 2015, 152, 207–216. [Google Scholar] [CrossRef]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Gurusinghe, S.; Hasey, J.; Kester, D.; Krueger, B.; Lampinen, B.; et al. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology 1997, 7, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Naor, A. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Hortic. 2000, 537, 447–454. [Google Scholar] [CrossRef]
- Choné, X.; Cornelis, V.L.; Denis, D.; Gaudillère, J.P. Stem Water Potential is a Sensitive Indicator of Grapevine Water Status. Ann. Bot. 2001, 4, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, M.V.; Torres-Ruiz, J.M.; Álvarez, R.; Jiménez, M.D.; Cuerva, J.; Fernández, J.E. Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees. Agric. Water Manag. 2010, 97, 1293–1302. [Google Scholar] [CrossRef]
Cultivation Stage | Ta | Ra | RH | VPD |
---|---|---|---|---|
vegetative stage | 18.8 | 301.0 | 53.8 | 0.33 |
flowering stage | 19.7 | 327.9 | 50.4 | 0.35 |
fruit expansion stage | 22.3 | 421.1 | 51.2 | 0.34 |
coloring mature stage | 25.1 | 362.3 | 55.7 | 0.32 |
Depth (cm) | Textural Analysis | FC (g·g−1) | PWP (g·g−1) | Bulk Density (g·cm−3) | |||
---|---|---|---|---|---|---|---|
Sand (%) | Clay (%) | Silt (%) | Texture Class | ||||
0–40 | 87.54 | 5.27 | 7.19 | Aeolian soil | 13.18 | 2.31 | 1.64 |
40–80 | 70.23 | 19.53 | 10.24 | Sandy loam | 17.45 | 6.38 | 1.46 |
Cultivation Stage | Irrigation Date | Irrigation Amount (m3∙ha−1) | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
vegetative stage | 3/11 | 293.61 | 234.80 | 176.02 |
3/19 | 293.61 | 234.65 | 175.55 | |
3/27 | 293.60 | 234.60 | 175.34 | |
4/06 | 293.62 | 234.65 | 175.62 | |
Flowering stage | 4/15 | 341.40 | 273.05 | 204.60 |
4/25 | 341.39 | 273.04 | 204.15 | |
Fruit expansion stage | 5/05 | 341.39 | 273.00 | 204.20 |
5/13 | 341.37 | 272.58 | 204.14 | |
5/20 | 341.42 | 272.69 | 204.47 | |
5/27 | 341.41 | 273.10 | 204.34 | |
Coloring mature stage | 6/05 | 293.60 | 234.50 | 175.59 |
6/15 | 293.61 | 234.55 | 176.30 | |
Total irrigation amount | 3810 | 3045 | 2280 |
Treatment | Air Temperature | Solar Radiation | Relative Humidity | Vapor Pressure Difference | ||||
---|---|---|---|---|---|---|---|---|
MDS | DI | MDS | DI | MDS | DI | MDS | DI | |
W1 | 0.601 ** | 0.723 ** | 0.534 ** | 0.671 ** | 0.498 ** | 0.672 ** | 0.547 ** | 0.705 ** |
W2 | 0.674 ** | 0.710 ** | 0.594 ** | 0.606 ** | 0.585 ** | 0.663 ** | 0.673 ** | 0.721 ** |
W3 | 0.692 ** | 0.683 ** | 0.642 ** | 0.664 ** | 0.635 ** | 0.623 ** | 0.686 ** | 0.631 ** |
Index | Stem Water Potential | Relative Water Content of Leaves | ||||
---|---|---|---|---|---|---|
Model | R2 | p | Model | R2 | p | |
MDS | SWPW1 = −0.162MDS + 0.027 | 0.338 * | 0.023 | RWCW1 = −0.004MDS + 0.438 | 0.315 * | 0.030 |
SWPW2 = −0.302MDS − 0.024 | 0.498 ** | 0.003 | RWCW2 = −0.014MDS + 1.204 | 0.385 * | 0.014 | |
SWPW3 = −0.064MDS + 0.017 | 0.144 | 0.163 | RWCW3 = −0.010MDS + 0.837 | 0.167 | 0.130 | |
DI | SWPW1 = 0.215DI + 0.105 | 0.391 * | 0.013 | RWCW1 = 0.005DI − 0.382 | 0.296 * | 0.036 |
SWPW2 = 0.126DI + 0.081 | 0.356 * | 0.019 | RWCW2 = 0.006DI − 0.484 | 0.338 * | 0.023 | |
SWPW3 = 0.023DI + 0.046 | 0.299 * | 0.035 | RWCW3 = 0.005DI − 0.308 | 0.410 * | 0.010 |
Index | Stem Water Potential | Relative Water Content of Leaves | ||||
---|---|---|---|---|---|---|
Model | R2 | p | Model | R2 | p | |
SIMDS | SWPW1 = −0.221SIMDS − 0.025 | 0.723 *** | <0.001 | RWCW1 = −0.100SIDI + 0.951 | 0.710 *** | <0.001 |
SWPW2 = −0.362SIMDS + 0.017 | 0.762 *** | <0.001 | RWCW2 = −0.045SIDI + 0.861 | 0.695 *** | <0.001 | |
SWPW3 = −0.484SIMDS − 0.711 | 0.719 *** | <0.001 | RWCW3 = −0.028SIDI + 0.757 | 0.599 ** | 0.001 | |
SIDI | SWPW1 = 0.205SIMDS − 0.386 | 0.717 *** | <0.001 | RWCW1 = 0.073SIDI + 0.803 | 0.705 *** | <0.001 |
SWPW2 = 0.101SIMDS − 0.519 | 0.691 *** | <0.001 | RWCW2 = 0.024SIDI + 0.776 | 0.685 *** | <0.001 | |
SWPW3 = 0.172SIMDS − 1.633 | 0.640 *** | <0.001 | RWCW3 = 0.015SIDI + 0.700 | 0.660 *** | <0.001 |
Stage | Treatment | SIMDS | R2 | p | SIDI | R2 | p |
---|---|---|---|---|---|---|---|
Vegetative stage | W1 | SIMDS = −39.485θ + 6.304 | 0.688 *** | <0.001 | SIDI = 39.961θ − 4.286 | 0.739 *** | <0.001 |
W2 | SIMDS = −36.246θ + 5.848 | 0.566 *** | <0.001 | SIDI = 187.96θ − 22.077 | 0.448 * | 0.023 | |
W3 | SIMDS = −53.413θ + 7.639 | 0.358 | 0.067 | SIDI = 162.48θ − 19.697 | 0.451 * | 0.019 | |
Flowering stage | W1 | SIMDS = −45.420θ + 7.095 | 0.514 *** | <0.001 | SIDI = 83.604θ − 9.626 | 0.631 *** | <0.001 |
W2 | SIMDS = −37.140θ + 5.382 | 0.652 *** | <0.001 | SIDI = 72.731θ − 7.0531 | 0.762 *** | <0.001 | |
W3 | SIMDS= −18.224θ + 3.042 | 0.565 *** | <0.001 | SIDI = 137.85θ − 14.041 | 0.676 *** | <0.001 | |
Fruit expansion stage | W1 | SIMDS = −37.788θ + 5.795 | 0.589 *** | <0.001 | SIDI = 37.116θ − 3.687 | 0.389 * | 0.038 |
W2 | SIMDS = −34.848θ + 4.983 | 0.560 *** | <0.001 | SIDI = 27.010θ − 3.140 | 0.313 | 0.087 | |
W3 | SIMDS = −53.532θ − 8.870 | 0.575 *** | <0.001 | SIDI = 74.046θ − 8.738 | 0.495 * | 0.016 | |
Mature stage | W1 | SIMDS = −13.717θ + 2.259 | 0.409 * | 0.027 | SIDI = 80.714θ − 7.368 | 0.022 | 0.433 |
W2 | SIMDS = −94.494θ + 12.967 | 0.621 *** | <0.001 | SIDI = 143.48θ − 15.637 | 0.148 | 0.121 | |
W3 | SIMDS = −18.736θ+ 2.387 | 0.646 *** | <0.001 | SIDI = 146.91θ − 16.031 | 0.232 | 0.885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ru, C.; Hu, X.; Wang, W.; Ran, H.; Song, T.; Guo, Y. Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine. Horticulturae 2021, 7, 154. https://doi.org/10.3390/horticulturae7060154
Ru C, Hu X, Wang W, Ran H, Song T, Guo Y. Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine. Horticulturae. 2021; 7(6):154. https://doi.org/10.3390/horticulturae7060154
Chicago/Turabian StyleRu, Chen, Xiaotao Hu, Wene Wang, Hui Ran, Tianyuan Song, and Yinyin Guo. 2021. "Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine" Horticulturae 7, no. 6: 154. https://doi.org/10.3390/horticulturae7060154
APA StyleRu, C., Hu, X., Wang, W., Ran, H., Song, T., & Guo, Y. (2021). Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine. Horticulturae, 7(6), 154. https://doi.org/10.3390/horticulturae7060154