A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy
Abstract
:1. Introduction
2. Methods
3. Energy Requirement for the Industrial Production of Fertilizers
4. Consumption of Fertilizers in Traditional and in Organic Agriculture
5. Organic Fertilization
5.1. Composting Recycles Organic Waste and Produces a Natural Fertilizer
5.2. Biochar Can Be Produced by Different Kinds of Vegetal Biomass
5.3. Neem Cake Is Nutrient Rich and Can Replenish Soil Organic Matter
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skowroñska, M.; Filipek, T. Life cycle assessment of fertilizers: A review. Int. Agrophys. 2014, 28, 101–110. [Google Scholar] [CrossRef]
- Cheremisinoff, P.N. Chapter 7 Industry Profile–Fertilizers. In Waste Minimization and Cost Reduction for the Process Industries; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar] [CrossRef]
- Wallace, A. Soil acidification from use of too much fertilizer. Commun. Soil Sci. Plant Anal. 1994, 25, 87–92. [Google Scholar] [CrossRef]
- Kavamura, V.N.; Hayat, R.; Clark, I.M.; Rossmann, M.; Mendes, R.; Hirsch, P.R.; Mauchline, T.H. Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities. Front. Microbiol. 2018, 9, 1074. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.; Hou, R.; Li, J.; Lyu, Y.; Hang, S.; Gong, H.; Ouyang, Z. Effects of different fertilizers on rhizosphere bacterial communities of winter wheat in the North China Plain. Agronomy 2020, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhang, B.; Li, D.; Li, G.; Li, Y. Effect of different organic fertilizers application on growth and environmental risk of nitrate under a vegetable field. Sci. Rep. 2017, 7, 17020. [Google Scholar] [CrossRef] [Green Version]
- Mosa, W.F.-G.; Sas-Paszt, L.; Frąc, M.; Trzciński, P. Microbial Products and Biofertilizers in Improving Growth and Productivity of Apple–a Review. Pol. J. Microbiol. 2016, 65, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2016, 24, 3315–3335. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Olayemi, O.P.; Kallenbach, C.M.; Schneekloth, J.P.; Calderón, F.J.; Vigil, M.F.; Wallenstein, M.D. From Factory to Field: Effects of a Novel Soil Amendment Derived from Cheese Production on Wheat and Corn Production. Front. Sustain. Food Syst. 2020, 3, 127. [Google Scholar] [CrossRef]
- Bastida, F.; Selevsek, N.; Torres, I.F.; Hernández, T.; García, C. Soil restoration with organic amendments: Linking cellular functionality and ecosystem processes. Sci. Rep. 2015, 5, 15550. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Reynnells, R. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers. Microbiol. Spectr. 2016, 4, PFS-0010-2015. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- European Commission. EUROSTAT. Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 20 June 2021).
- The World Bank. Available online: https://www.worldbank.org/ (accessed on 20 June 2021).
- ISTAT. Italian National Institute of Statistics. Databases and Information System. Available online: https://www.istat.it/en/analysis-and-products/databases (accessed on 20 June 2021).
- EU Science Hub. Available online: https://ec.europa.eu/jrc/en/publications-list (accessed on 20 June 2021).
- NCBI PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 20 June 2021).
- Cavaleri, F.; Albanese, A.; Attard, G.; Campiotti, A.; Sirica, E.; Latini, A. Energy efficiency in the agro-industry. Rev. Stud. Sustain. 2019, 2, 99–114. [Google Scholar]
- Stanghellini, C.; Batista, F.; Eriksson, E.; Gilli, C.; Giuffrida, F.; Kemplers, F.; Muñoz, P.; Strepowska, A.; Montero, J.I. Sensible Use of Primary Energy in Organic Greenhouse Production; Wageningen UR Greenhouse Horticulture: Lansingerland, The Netherlands, 2016. [Google Scholar]
- Gellings, C.W.; Parmenter, K.E. Energy efficiency in fertilizer production and use. In Efficient Use and Conservation of Energy; Gellings, C.W., Blok, K., Eds.; Eolss Publishers: Oxford, UK, 2004. [Google Scholar]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Philos. Trans. R. Soc. Lond. B 2010, 365, 2991–3006. [Google Scholar] [CrossRef]
- Castellini, A.; Palmieri, A. Fertilizzanti: Il quadro mondiale di produzione e impiego. L’Inform. Agr. 2015, 30, 14–19. [Google Scholar]
- Jenssen, T.K.; Kongshaug, G. Energy consumption and greenhouse gas emission in fertilizer production. In Proceedings of the International Fertilizer Society, No. 509; International Fertilizer Industry Association: Paris, France, 2003; ISBN 978-0-85310-145-1. [Google Scholar]
- IFA, International Fertilizers Association. Fertilizers, Climate Change and Enhancing Agricultural Productivity Sustainably; IFA: Paris, France, 2009. [Google Scholar]
- Elsayed, M.A.; Evans, A.; Mortimer, N.D. Selective Life Cycle Assessment for Ammonium Nitrate Fertilizer Production Using Natural Gas as a Feedstock; Defra: London, UK, 2007.
- EPA, United States Environmental Protection Agency. Energy efficiency and cost solving opportunities for ammonia and nitrogenous fertilizer production. In An ENERGY STAR® Guide for Energy and Plant Managers; Office of Air and Radiation: Washington, DC, USA, 2017. [Google Scholar]
- Fluck, R.C. Energy in Farm Production. A Volume in Energy in World Agriculture; Fluck, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Nagy, C.N. Energy Coefficients for Agriculture Inputs in Western Canada; Centre for Studies in Agriculture, Law and the Environment, University of Saskatchewan: Saskatoon, SK, Canada, 1999. [Google Scholar]
- Shrestha, D.S. Energy Use Efficiency Indicator for Agriculture; 1998; Available online: http://www.usaskca/agriculture/caedac/PDF/mcrae.PDF,Retrieved (accessed on 20 June 2021).
- Laguë, C.; Khelifi, M. Energy use and time requirements for different weeding strategies in grain corn. Can. Biosyst. Eng. 2001, 43, 2.13–2.21. [Google Scholar]
- The World Bank. Word Development Indicators. Available online: https://databank.worldbank.org (accessed on 20 June 2021).
- Smith, L.; Williams, A.; Pearce, B. The energy efficiency of organic agriculture: A review. Ren. Agric. Food Syst. 2015, 30, 280–301. [Google Scholar] [CrossRef]
- Zhang, L.; Feike, T.; Holst, J.; Hoffmann, C.; Doluschitz, R. Comparison of energy consumption and economic performance of organic and conventional soybean production—A case study from Jilin Province, China. J. Int. Agric. 2015, 14, 1561–1572. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Seufert, V.; Smith, L.; Ramankutty, N.; Nesme, T. Global option space for organic agriculture is delimited by nitrogen availability. Nat. Food Syst. 2021, 2, 363–372. [Google Scholar] [CrossRef]
- European Commission. EUROSTAT. Database. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Organic_farming_statistics (accessed on 20 June 2021).
- Salvia, R.; Egidi, G.; Vinci, S.; Salvati, L. Desertification risk and rural development in Southern Europe: Permanent assessment and implications for sustainable land management and mitigation policies. Land 2019, 8, 191. [Google Scholar] [CrossRef] [Green Version]
- European Union Regulation 2019/1009 (EU) of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulation /EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. OJ L 170, 25.6. 2019, pp. 1–114. Available online: http://data.europa.eu/eli/reg/2019/1009/oj (accessed on 20 June 2021).
- Refsgaard, K.; Halberg, N.; Kristensen, E.S. Energy utilization in crop and dairy production in organic and conventional live-stock production systems. Agric. Syst. 1998, 57, 599–630. [Google Scholar] [CrossRef] [Green Version]
- Green, M.B. Energy in pesticide manufacture, distribution and use. In Energy in Plant Nutrition and Pest Control; Helsel, Z.R., Ed.; Energy in World Agriculture; Elsevier: Amsterdam, The Netherland, 1987; Volume 2, pp. 165–177. [Google Scholar]
- González-Rodríguez, R.M.; Rial-Otero, R.; Cancho-Grande, B.; González-Barreiro, C.; Simal-Gádara, J. A review on the fate of pesticides during the processes within the food-production chain. Crit. Rev. Food Sci. Nutr. 2011, 51, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Gomes, A.R.; Justino, C.; Rocha-Santos, T.; Freitas, A.C.; Duarte, A.C.; Pereira, R. Review of the ecotoxicological effects of emerging contaminants to soil biota. J. Environ. Sci. Health A 2017, 52, 992–1007. [Google Scholar] [CrossRef]
- Kalia, A.; Gosal, S.K. Effect of pesticide application on soil microorganism. Arch. Agron. Soil Sci. 2011, 57, 569–596. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Wang, X.; Sun, X.; Ding, Y.; Cao, W.; Hu, Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods 2020, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Bacenetti, J.; Paleari, L.; Tartarini, S.; Vesely, F.M.; Foi, M.; Movedi, E.; Ravasi, R.A.; Bellopede, V.; Durello, S.; Ceravolo, C.; et al. May smart technologies reduce the environmental impact of nitrogen fertilization? A case study for paddy rice. Sci. Total Environ. 2020, 715, 136956. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization of the United Nations. World Fertilizer Trends and Outlook to 2022; FAO: Rome, Italy, 2019. [Google Scholar]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roβ-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Tot. Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Nicoletti, M.; Serafini, M.; Aliboni, A.; D’Andrea, A.; Mariani, S. Toxic effects of neem cake extracts on Aedes albopictus (Skuse) larvae. Parasitol. Res. 2010, 107, 89–94. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kanwar, R.K.; Sehgal, A.; Cahill, D.M.; Barrow, C.J.; Sehgal, R.; Kanwar, J.R. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front. Plant Sci. 2017, 8, 610. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the Council and the European Parliament on Future Steps in Bio-Waste Management in the European Union {SEC(2010) 577} /* COM/2010/0235 final */. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52010DC0235 (accessed on 20 June 2021).
- Meyer-Kohlstock, D.; Schmitz, T.; Ktaft, E. Organic waste for compost and biochar in the EU: Mobilizing the potential. Resources 2015, 457–474. [Google Scholar] [CrossRef] [Green Version]
- ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale. Rapporto Rifiuti Urbani. ISPRA, Report 313; ISPRA: Ispra, Italy, 2019; ISBN 978-88-448-0971-3.
- Sax, M.S.; Bassuk, N.; Van Es, H.; Rakow, D. Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urb. For. Urb. Green. 2017, 24, 149–156. [Google Scholar] [CrossRef]
- Rivero, C.; Chirenje, T.; Ma, L.Q.; Martinez, G. Influence of compost on soil organic matter quality under tropical conditions. Geoderma 2004, 123, 355–361. [Google Scholar] [CrossRef]
- Mekki, A.; Aloui, F.; Sayadi, S. Influence of biowaste compost amendment on soil organic carbon storage under arid climate. J. Air Waste Manag. Assoc. 2017, 69, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Maucieri, C.; Barco, A.; Borin, M. Compost as a substitute for mineral N fertilization? Effects on crops, soil and N leaching. Agronomy 2019, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Razza, F.; D’avino, L.; L’Abate, G.; Lazzeri, L. The role of compost in biowaste management and circular economy. In Designing Sustainable Technologies, Products and Policies; Benedetto, E., Gericke, K., Guiton, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Scotto, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Tong, J.; Sun, X.; Li, S.; Qu, B.; Wan, L. Reutilization of green waste as compost for soil improvement in the afforested land of Beijing Plain. Sustainability 2018, 10, 2376. [Google Scholar] [CrossRef] [Green Version]
- Favoino, E.; Hogg, D. The potential role of compost in reducing greenhouse gases. Waste Manag. Res. 2008, 26, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Vicente, A.; Ros, M.; Tittarelli, F.; Intrigliolo, F.; Pascual, J.A. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresour. Technol. 2008, 99, 8722–8728. [Google Scholar] [CrossRef]
- Herrera, F.; Castillo, J.E.; Chica, A.F.; López Bellido, L. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresour. Technol. 2008, 99, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Di Bonito, R.; Biagiotti, D.; Giagnacovo, G.; Viola, C.; Campiotti, C.A. Sustainable and energy saving urban horticulture on rooftop gardens in Mediterranean climatic conditions. Acta Hortic. 2018, 1215, 383–388. [Google Scholar] [CrossRef]
- Schmidt, H.P. 55 Uses of Biochar. Ithaka J. 2012, 1, 286–289. [Google Scholar]
- Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotech. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Sorrenti, G.; Buriani, G.; Gaggìa, F.; Baffoni, L.; Spinelli, F.; Di Gioia, D.; Toselli, M. Soil CO2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. of a sandy soil amended with biochar and compost. Appl. Soil Ecol. 2017, 112, 79–89. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Latini, A.; Bacci, G.; Teodoro, M.; Mirabile Gattia, D.; Bevivino, A.; Trakal, L. The impact of soil-applied biochar from different vegetal feedstocks on durum wheat plant performance and rhizosphere bacterial microbiota in low metal-contaminated soil. Front. Microbiol. 2019, 10, 2694. [Google Scholar] [CrossRef]
- Khorram, M.S.; Zhang, Q.; Lin, D.; Zheng, Y.; Fang, H.; Yu, Y. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. 2016, 44, 269–279. [Google Scholar] [CrossRef]
- Mayor, J. Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems; International Biochar Initiative (IBI): Watsonville, CA, USA, 2010. [Google Scholar]
- Galinato, S.; Yoder, J.; Grantstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy 2011, 39, 6344–6350. [Google Scholar] [CrossRef]
- Vochozka, M.; Marouskova, A.; Vachal, J.; Strakova, J. Biochar pricing hampers biochar farming. Clean Technol. Environ. Policy 2016, 18, 1225–1231. [Google Scholar] [CrossRef]
- Conte, P.; Schmidt, H.P.; Cimò, G. Research and application of biochar in Europe. In Agricultural and Environmental Applications of Biochar: Advances and Barriers, Soil Science Society of America (SSSA Special Publications); Guo, M., He, Z., Uchimiya, M., Eds.; American Society of Agronomy: Madison, WI, USA, 2015. [Google Scholar] [CrossRef]
- European Commission Implementing Regulation 2019/2164 of 17 December 2019 amending Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labeling of Organic Products with Regard to Organic Production, Labeling and Control. Available online: https://eur-lex.europa.eu/eli/reg_impl/2019/2164/oj (accessed on 20 June 2021).
- The European Biochar Certificate, EBC. Available online: http://www.european-biochar.org (accessed on 20 June 2021).
- Neempedia. The Neem Encyclopedia. Available online: https://neempedia.com/neem-organic-complexity (accessed on 20 June 2021).
- Rizvi, R.; Singh, G.; Safiuddin; Ansari, R.A.; Tiyagi, S.S.; Mahmood, I. Sustainable management of root-knot disease of tomato by neem cake and Glomus fasciculatum. Cogent Food Agric. 2015, 1, 1. [Google Scholar] [CrossRef]
- Laquale, S.; Candido, V.; D’Addabbo, T. Side effects of biostimulants against root-knot nematodes on tomato. Acta Hortic. 2018, 1207, 223–228. [Google Scholar] [CrossRef]
- Akhtar, A. Nematicidal potential of the neem tree Azadirachta indica (A. Juss). Int. Pest Manag. Rev. 2000, 5, 57–66. [Google Scholar] [CrossRef]
- Mariani, S.; Nicoletti, M. Larvicidal activities of a neem cake fractions on aedes albopictus. Pharmacologyonline 2013, 3, 137–140. [Google Scholar]
- Marcolini, G.; Toselli, M.; Quartieri, M.; Gioacchini, P.; Baldi, E.; Sorrenti, G.; Mariani, S. Nitrogen and carbon mineralisation of different meliaceae derivatives. Plant Soil Environ. 2016, 62, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, M.; Mariani, S.; Maccioni, O.; Coccioletti, T.; Murugan, K. Neem cake: Chemical composition and larvicidal activity on Asian tiger mosquito. Parasitol. Res. 2012, 111, 205–213. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Nitrification inhibitors, with emphasis on natural products, and the persistence of fertilizer nitrogen in soil. In Nitrogen Economy in Tropical Soils. Developments in Plant and Soil Sciences; Ahmad, N., Ed.; Springer: Dordrecht, The Netherlands, 1996; Volume 69. [Google Scholar]
- Jadon, P.; Selladurai, R.; Yadav, S.S.; Coumar, M.V.; Dotaniya, M.L.; Singh, A.K.; Bhadouriya, J.; Kundu, S. Volatilization and leaching losses of nitrogen from different coated urea fertilizers. J. Soil Sci. Plant Nutr. 2018, 18, 1036–1047. [Google Scholar] [CrossRef] [Green Version]
- Channarayappa, C.; Biradar, D.P. Soil Basics, Management and Rhizosphere Engineering for Sustainable Agriculture, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781138486928. [Google Scholar]
- Rombolà, A.; Roberti, R.; Di Marco, S.; Toselli, M.; Veronesi, A.; Osti, F.; Sorrenti, G. Effect of Soil Treatments in the Control of Kiwi Fruit Wood Decay [Actinidia deliciosa (A.Chev.) C.F. Liang et A.R.Ferguson]; ATTI Giornate Fitopatologiche: Riccione, Italy, 2006; pp. 143–144. [Google Scholar]
- Abbasi, P.A.; Riga, E.; Conn, K.L.; Lazarovitis, G. Effect of neem cake soil amendment on reduction of damping-off severity and population densities of plant-parasitic nematodes and soilborne plant pathogens. Can. J. Plant Pathol. 2004, 27, 38–45. [Google Scholar] [CrossRef]
- Latini, A.; Foxi, C.; Nicoletti, M.; Serafini, M.; Toselli, M.; Campiotti, A.; Mariani, S. Neemagrimed: Una “Best Practice” in agricoltura biologica. La Rivista di Scienza dell’Alimentazione. FOSAN Fondazione per lo Studio degli Alimenti e della Nutrizione 2018, 1, 21–27. [Google Scholar]
- Prescient & Strategic Intelligens. Available online: https://www.psmarketresearch.com/ (accessed on 20 June 2021).
- Research Reports World. Available online: https://www.researchreportsworld.com (accessed on 20 June 2021).
- Roy, A. Europe Organic Fertilizer Market by Source (Plant, Animal, and Mineral), by Crop Type (Cereal & Grain, Oilseed & Pulse, Fruit and Vegetable, and Others), by form (Dry and Liquid) and by Country (Germany, France, Italy, Spain, UK, and Rest f Europe). Opportunities and Forecasts, 2017–2023. Allied Analytics LLP. 2018. Available online: https://www.alliedmarketresearch.com/europe-organic-fertilizer-market (accessed on 20 June 2021).
Type of Fertilizer | Primary Energy Consumption (MJ) | Reference | ||
---|---|---|---|---|
Grouping by Main Chemical | Name of Fertilizer | Common Abbreviation | ||
N-based fertilizers (per kg of N) | 32 | [26] | ||
Ammonia, NH4 | A | 36.6 | [27] | |
26.5–31.2 (BAT) z | [27] | |||
40 | [1] | |||
Ammonium nitrate, NH4NO3 | AN | 29.8 | [1] | |
40.74 ± 5.43 | [28] | |||
Urea, CO(NH2)2 | Urea | 51.6 | [1] | |
44.1 (BAT) | [1] | |||
22 | [26] | |||
5.5 *–2.7 (BAT) * y | [29] | |||
Calcium ammonium nitrate | CAN | 42.6 | [1] | |
31.4(BAT) | [1] | |||
Ammonium sulphate, (NH4)2SO4 | AS | 42 | [1] | |
~6 | [26] | |||
P-based fertilizers (per kg of P) | Triple superphosphate, Ca(H2PO4)2 | TSP | 30.5 | [1] |
2.5–3 | [26] | |||
15.15 | [30] | |||
Single superphosphate | SSP | 13 | [1] | |
~3 | [26] | |||
Phosphorus pentoxide, P2O5 | P2O5 | 12.44 | [31] | |
K-based fertilizers (per kg of K) | Muriate of potash, KCl | MOP | 10.6 | [1] |
~3 | [26] | |||
Potassium oxide, K2O | PO | 11.15 | [31] | |
Limestone (per kg of Ca), CaCO3 | L | 2.3 | [1] | |
Herbicides (per kg) | 238 | [32] | ||
298.9 (metolachlor, alacholor) | [33] | |||
205.4 (atrazin) | [33] | |||
Fungicides (per kg) | 216 | [32] | ||
Insecticides (per kg) | 101.2 | [32] |
EU Member Country | Consumption of Fertilizers (kg/ha) | EU Member Country | Consumption of Fertilizers (kg/ha) | ||||
---|---|---|---|---|---|---|---|
1998 | 2008 | 2018 | 1998 | 2008 | 2018 | ||
Austria | 175.9 | 110.0 | 135.1 | Italy | 210.0 | 143.5 | 130.6 |
Belgium | 354.0 | 224.5 | 293.4 | Latvia | 46.5 | 66.9 | 101.2 |
Bulgaria | 47.8 | 111.2 | 126.9 | Lithuania | 48.4 | 80.7 | 133.5 |
Croatia | 162.0 | 495.2 | 221.0 | Luxembourg | 267.5 y | 250.5 | 234.7 |
Cyprus | 202.7 | 112.0 | 157.7 | Malta | 187.4 | 74 | 167.8 |
Czechia | 92.0 | 87.3 | 174.4 | Netherlands | 535.3 | 267.7 | 265.9 |
Denmark | 174.1 | 147.7 | 108.1 | Poland | 110.8 | 157.7 | 177.6 |
Estonia | 36.5 | 100.4 | 87.7 | Portugal | 140.1 | 155.5 | 198.5 |
Finland | 142.6 | 122.9 | 91.6 | Romania | 38.6 | 45.6 | 59.2 |
France | 264.1 | 152.4 | 172.7 | Slovakia | 77.8 | 75.1 | 129.3 |
Germany | 247.4 | 159.6 | 166.5 | Slovenia | 445.3 | 279.8 | 261.8 |
Greece | 169.5 | 119.1 | 133.3 | Spain | 173.0 | 106.5 | 157.7 |
Hungary | 76.9 | 96.7 | 150.7 | Sweden | 105.7 | 99.0 | 100.4 |
Ireland | 656.2 | 857.2 | 1544.9 |
2009 | 2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Use in Conventional Agriculture | Use in Organic Agriculture | Total | Use in Conventional Agriculture | Use in Organic Agriculture | Total | ||||
Fertilizers | Mineral fertilizers | Simple | Nitrogen | 1,055,523 | 0 | 1,055,523 | 1,001,488 | 0 | 1,001,488 |
Phosphate | 122,608 | 564 | 123,172 | 77,458 | 4184 | 81,642 | |||
Potassic | 53,693 | 10,792 | 64,485 | 51,701 | 13,344 | 65,035 | |||
Compound | Binary | 386,801 | 2861 | 389,662 | 270,474 | 2936 | 273,410 | ||
Ternary | 452,369 | 0 | 452,369 | 266,974 | 9265 | 276,239 | |||
Containing meso-elements | 2082 | 3612 | 5693 | 592 | 4345 | 4937 | |||
Micronutrient fertilizers | 2800 | 10,625 | 13,425 | 3581 | 9399 | 12,980 | |||
Organic fertilizers | 14,172 | 269,992 | 284,164 | 23,823 | 345,758 | 369,581 | |||
Organo-mineral fertilizers | 215,660 | 36,060 | 251,756 | 220,221 | 110,957 | 331,178 | |||
TOTAL FERTILIZERS | 2,305,769 | 334,506 | 2,640,250 | 1,916,312 | 500,188 | 2,416,490 | |||
Other products | Amendments | 835,378 | 763,052 | 1,598,430 | 503,289 | 817,281 | 1,320,570 | ||
Correctives | 122,723 | 65,683 | 188,405 | 352,509 | 58,254 | 410,763 | |||
Growing substrates | 9607 | 0 | 9607 | 128,352 | 4663 | 133,015 | |||
Specific action products | 1348 | 0 | 1675 | 54,947 | 9618 | 64,565 | |||
TOTAL OTHER PRODUCTS | 969,056 | 828,735 | 1,798,117 | 1,039,097 | 889,816 | 1,928,913 | |||
TOTAL FERTILIZERS & OTHER PRODUCTS | 3,274,800 | 1,163,240 | 4,438,040 | 2,955,409 | 1,389,994 | 4,345,403 |
Unit of Measure | 2010 | 2013 | 2016 | 2017 | |
---|---|---|---|---|---|
Fertilizers in conventional agriculture | Million tons of the main nutrient/s (Mt) | 3.20 | 2.90 | 3.40 | 3.60 |
Fertilizers in organic agriculture | 1.21 | 1.25 | 1.15 | 1.16 | |
Total fertilizers | 4.40 | 4.11 | 4.58 | 4.71 | |
UAA in conventional agriculture | Hectares (ha) | 12,856,048 | 12,425,996 | 12,598,161 | 12,777,044 |
UAA in organic agriculture | N.A. | 961,594 | 1,555,522 | N.A. | |
Total (conventional + organic) UAA | N.A. | 13,387,590 | 14,153,683 | N.A. | |
Number of farms in conventional agriculture | - | N.A. | 1,471,185 | 1,145,705 | N.A. |
Number of farms in organic agriculture | N.A. | 47,075 | 132,299 | N.A. |
Nutrient Element | Content | |
---|---|---|
N | Nitrogen | 2–5% |
P | Phosphorus | 0.5–1% |
K | Potassium | 1–2% |
Ca | Calcium | 0.5–3% |
Zn | Zinc | 15–60% |
Cu | Copper | 4–20% |
S | Sulphur | 0.2–3% |
Mg | Magnesium | 0.3–1% |
Fe | Iron | 500–1200 ppm |
Mn | Manganese | 20–60 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latini, A.; Giagnacovo, G.; Campiotti, C.A.; Bibbiani, C.; Mariani, S. A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. Horticulturae 2021, 7, 158. https://doi.org/10.3390/horticulturae7060158
Latini A, Giagnacovo G, Campiotti CA, Bibbiani C, Mariani S. A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. Horticulturae. 2021; 7(6):158. https://doi.org/10.3390/horticulturae7060158
Chicago/Turabian StyleLatini, Arianna, Germina Giagnacovo, Carlo Alberto Campiotti, Carlo Bibbiani, and Susanna Mariani. 2021. "A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy" Horticulturae 7, no. 6: 158. https://doi.org/10.3390/horticulturae7060158
APA StyleLatini, A., Giagnacovo, G., Campiotti, C. A., Bibbiani, C., & Mariani, S. (2021). A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. Horticulturae, 7(6), 158. https://doi.org/10.3390/horticulturae7060158