Effects of Application Methods of Boron on Tomato Growth, Fruit Quality and Flavor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimentation
2.2. Plant Growth Parameters and Photosynthetic Indices
2.3. Tomato Fruit Quality Parameters
2.4. Analysis of Characteristic Aromatic Compounds
2.5. Statistical Analysis
3. Results
3.1. Effects of Boron on Plant Growth Parameters
3.2. Effects of Boron on Soluble Protein and Ascorbic Acid Content in Leaves
3.3. Effects of Boron on Chlorophyll and Carotenoid Contents and Photosynthetic Parameters
3.4. Effects of Boron on Quality Indices of Tomato Fruit
3.5. Effects of Boron on Lycopene, β-Carotene and Carotenoid Content in Fruit
3.6. Changes in Volatile Substances and Characteristic Aromatic Compounds in Fruit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Tahamolkonan, M.; Ghahsareh, A.M.; Ashtari, M.K.; Honarjoo, N. Tomato (Solanum lycopersicum) growth and fruit quality affected by organic fertilization and ozonated water. Protoplasma 2021, 1–9. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.; Bertin, N. Water shortage and quality of fleshy fruits-making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.N.; Hobson, G.E.; McGlasson, W.B. The constituents of tomato fruit-the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 1981, 15, 205–280. [Google Scholar] [CrossRef] [PubMed]
- Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef]
- Goldbach, H.E.; Wimmer, M.A. Boron in plants and animals: Is there a role beyond cell-wall structure? J. Plant Nutr. Soil Sci. 2007, 170, 39–48. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef]
- Gupta, U.; Solanki, H. Impact of boron deficiency on plant growth. Int. J. Bioassays. 2013, 2, 1048–1050. [Google Scholar]
- Shelp, B.J.; Marentes, E.; Kitheka, A.M.; Vivekanandan, P. Boron mobility in plants. Physiol. Plant. 1995, 94, 356–361. [Google Scholar] [CrossRef]
- Ahmad, W.; Zia, M.H.; Malhi, S.S.; Niaz, A.; Ullah, S. Boron Deficiency in soils and crops: A review. Crop Plant. 2012, 2012, 65–97. [Google Scholar] [CrossRef] [Green Version]
- Li, W.L.; Chen, X.; Jian, T.; Chen, T.T.; Li, J.; Wang, L.S. From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 2017, 1, 1–9. [Google Scholar] [CrossRef]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil. 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Rees, R.; Robinson, B.H.; Menon, M.; Lehmann, E.; Günthardt-Goerg, M.S.; Schulin, R. Boron accumulation and toxicity in hybrid poplar (Populus nigra×euramericana). Environ. Sci. Technol. 2011, 45, 10538–10543. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Unkovich, M.; Stevens, D. Crop nutrition considerations in reclaimed water irrigation systems. In Growing Crops with Reclaimed Wastewater; Stevens, D., Kelly, J., McLaughlin, M., Unkovich, M., Eds.; CSIRO Publishing: Collingwood, Australia, 2006; pp. 91–105. [Google Scholar]
- Ardic, M.; Sekmen, A.H.; Tokur, S.; Ozdemir, F.; Turkan, I. Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biol. 2009, 11, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Milagres, C.d.C.; Maia, J.T.L.S.; Ventrella, M.C.; Martinez, H.E.P. Anatomical changes in cherry tomato plants caused by boron deficiency. Braz. J. Bot. 2019, 42, 319–328. [Google Scholar] [CrossRef]
- Davis, J.M.; Sanders, D.C.; Nelson, P.V.; Lengnick, L.; Sperry, W.J. Boron improves growth, yield, quality, and nutrient content of tomato. J. Am. Soc. Hortic. Sci. 2003, 128, 441–446. [Google Scholar] [CrossRef]
- Sotiropoulos, T.E.; Therios, I.N.; Dimassi, K.N.; Bosabalidis, A.; Kofidis, G. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. J. Plant Nutr. 2002, 25, 1249–1261. [Google Scholar] [CrossRef]
- Xu, W.P.; Wang, L.; Yang, Q.; Wei, Y.H.; Zhang, C.X.; Wang, S.P. Effect of Calcium and Boron on the Quality of Kiwifruit. VIII Int. Symp. Kiwifruit 2014, 1096, 317–320. [Google Scholar] [CrossRef]
- Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Rosales, M.A.; Rubio-Wilhelmi, M.M.; Sánchez-Rodríguez, E.; Ruiz, J.M. Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol. 2009, 11, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.Y.; Park, H.I.; Ju, J.H.; Yoon, Y.H. Boron availability alters its distribution in plant parts of tomato. Hortic. Environ. Biotechnol. 2015, 56, 145–151. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.F. Plant Physiology Experiment Guidance; World Publishing Corporation: Xi’an, China, 2006. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- De Nardo, T.; Shiroma-Kian, C.; Halim, Y.; Francis, D.; Rodriguez-Saona, L.E. Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J. Agric. Food Chem. 2009, 57, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.I.; Ryabchykov, O.; Bocklitz, T.W.; Huebner, U.; Weber, K.; Cialla-May, D.; Popp, J. Toward food analytics: Fast estimation of lycopene and β-carotene content in tomatoes based on surface enhanced Raman spectroscopy (SERS). Analyst 2016, 141, 4447–4455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikunov, Y.; Lommen, A.; De Vos, C.R.; Verhoeven, H.A.; Bino, R.J.; Hall, R.D.; Bovy, A.G. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol. 2005, 139, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Baek, H.H.; Cadwallader, K.R. Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment. J. Agric. Food Chem. 1996, 44, 3262–3267. [Google Scholar] [CrossRef]
- Wang, L.; Baldwin, E.A.; Bai, J. Recent advance in aromatic volatile research in tomato fruit: The metabolisms and regulations. Food Bioprocess Technol. 2016, 9, 203–216. [Google Scholar] [CrossRef]
- Schuman, G.E.; Stanley, M.A.; Knudsen, D. Automated total nitrogen analysis of soil and plant samples. Soil Sci. Soc. Am. J. 1973, 37, 480–481. [Google Scholar] [CrossRef]
- Nejad, S.A.G.; Etesami, H. The Importance of Boron in Plant Nutrition. Met. Plants Adv. Future Prospect. 2020, 433–449. [Google Scholar] [CrossRef]
- Haleema, B.; Rab, A.; Hussain, S.A. Effect of Calcium, Boron and Zinc Foliar Application on Growth and Fruit Production of Tomato. Sarhad J. Agric. 2018, 34. [Google Scholar] [CrossRef]
- Gündeş, F.A.; Sönmez, İ. The effects of different doses of nitrogen on tomato plant mineral contents under boron toxicity. Acta Sci. Pol. Hortorum Cultus. 2020, 19, 97–104. [Google Scholar] [CrossRef]
- Loomis, W.D.; Durst, R.W. Chemistry and biology of boron. BioFactors. 1992, 3, 229–239. [Google Scholar]
- Chermsiri, C.; Watanabe, H.; Attajarusit, S.; Tuntiwarawit, J.; Kaewroj, S. Effect of boron sources on garlic (Allium sativum L.) productivity. Biol. Fertil. Soils. 1995, 20, 125–129. [Google Scholar] [CrossRef]
- Ali, M.S.; Elhamahmy, M.A.; El-Shiekh, A.F. Mango trees productivity and quality as affected by boron and putrescine. Sci. Hortic. 2017, 216, 248–255. [Google Scholar] [CrossRef]
- Boardman, N.T. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 1977, 28, 355–377. [Google Scholar] [CrossRef]
- Han, S.; Chen, L.S.; Jiang, H.X.; Smith, B.R.; Yang, L.T.; Xie, C.Y. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 2008, 165, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, E.; Arzani, K.; Moallemi, N.; Barzegar, M. Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad. Sci. Eng. Technol. 2012, 6, 1154–1157. [Google Scholar]
- Kastori, R.; Plesničar, M.; Panković, D.; Sakač, Z. Photosynthesis, chlorophyll fluorescence and soluble carbohydrates in sunflower leaves as affected by boron deficiency. J. Plant Nutr. 1995, 18, 1751–1763. [Google Scholar] [CrossRef]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Génard, M. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Mavlyanova, R.F.; Lyan, E.E.; Karimov, B.A.; Dubinin, B.V. The vegetative grafting effect on increasing tomato fruit quality. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Redcliffe Way, Bristol, UK, 2020; p. 12077. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, Q.; Zhang, S.; Wang, Z. Effect of boron nutrition on quality and enzyme activity of Amorphophallus. China Veg. 2011, 20, 63–68. [Google Scholar]
- Islam, M.Z.; Mele, M.A.; Baek, J.P.; Kang, H.M. Cherry tomato qualities affected by foliar spraying with boron and calcium. Hortic. Environ. Biotechnol. 2016, 57, 46–52. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Gunes, A.; Alpaslan, M. Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. J. Plant Nutr. 2007, 30, 981–994. [Google Scholar] [CrossRef]
- Wójcik, P.; Lewandowski, M. Effect of calcium and boron sprays on yield and quality of ‘Elsanta’ strawberry. J. Plant Nutr. 2003, 26, 671–682. [Google Scholar] [CrossRef]
- Shi, J.; Maguer, M.L. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr. 2000, 40, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Lahoz, I.; Leiva-Brondo, M.; Martí, R.; Macua, J.I.; Campillo, C.; Roselló, S.; Cebolla-Cornejo, J. Influence of high lycopene varieties and organic farming on the production and quality of processing tomato. Sci. Hortic. 2016, 204, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Buttery, R.G.; Takeoka, G.R. Some unusual minor volatile components of tomato. J. Agric. Food Chem. 2004, 52, 6264–6266. [Google Scholar] [CrossRef] [PubMed]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amadò, R. Development of a model for quality assessment of tomatoes and apricots. LWT Food Sci. Technol. 2003, 36, 223–233. [Google Scholar] [CrossRef]
- Buttery, R.G. Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In Flavor Sci. Sensib. Princ. Tech; Acree, T., Teranishi, R., Eds.; ACS: Washington, DC, USA, 1993; pp. 259–286. [Google Scholar]
- Baldwin, E.A.; Scott, J.W.; Shewmaker, C.K.; Schuch, W. Flavor trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components. HortScience 2000, 35, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, R.; Sun, Y.; Liu, Z.; Jin, W.; Sun, Y. The beneficial effects of exogenous melatonin on tomato fruit properties. Sci. Hortic. 2016, 207, 14–20. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Wu, T.; Zhai, R.; Yang, C.; Wang, Z.; Xu, L. Effects of melatonin treatment of postharvest pear fruit on aromatic volatile biosynthesis. Molecules 2019, 24, 4233. [Google Scholar] [CrossRef] [Green Version]
- Krumbein, A.; Auerswald, H. Characterization of aroma volatiles in tomatoes by sensory analyses. Food Nahr. 1998, 42, 395–399. [Google Scholar] [CrossRef]
- Lecomte, L.; Gautier, A.; Luciani, A.; Duffé, P.; Hospital, F.; Buret, M.; Causse, M. Recent advances in molecular breeding: The example of tomato breeding for flavor traits. Acta Hortic. 2004, 637, 231–242. [Google Scholar] [CrossRef]
Treatment | Shoot FW (g) | Shoot DW (g) | Root FW (g) | Root DW(g) | R/S (FW) | R/S (DW) |
---|---|---|---|---|---|---|
CK | 231.63 ± 1.09 e | 34.43 ± 1.023 c | 48.81 ± 1.26 c | 5.45 ± 0.20 d | 0.210 ± 0.006 a | 0.160 ± 0.006 bc |
L1 | 276.70 ± 6.07 d | 41.55 ± 0.881 b | 47.55 ± 2.35 c | 6.79 ± 0.53 c | 0.173 ± 0.009 b | 0.160 ± 0.010 bc |
L2 | 281.86 ± 0.70 cd | 37.95 ± 0.731 c | 45.66 ± 0.80 c | 6.71 ± 0.55 c | 0.163 ± 0.003 b | 0.177 ± 0.012 b |
L3 | 292.30 ± 0.60 c | 34.64 ± 1.060 c | 37.68 ± 1.15 d | 4.77 ± 0.26 d | 0.130 ± 0.006 c | 0.140 ± 0.010 cd |
W1 | 324.17 ± 7.42 b | 43.58 ± 0.281 b | 35.50 ± 1.62 d | 5.50 ± 0.13 d | 0.110 ± 0.006 d | 0.127 ± 0.003 d |
W2 | 326.50 ± 5.03 b | 42.87 ± 0.925 b | 64.52 ± 1.49 b | 7.98 ± 0.36 b | 0.197 ± 0.007 a | 0.187 ± 0.003 b |
W3 | 352.14 ± 4.50 a | 48.88 ± 2.159 a | 70.44 ± 1.50 a | 10.63 ± 0.45 a | 0.197 ± 0.003 a | 0.220 ± 0.015 a |
Treatment | Chl a (mg∙g−1) | Chl b (mg∙g−1) | Total Chl (mg∙g−1) | Chl a/b | Carotenoid (mg∙g−1) |
---|---|---|---|---|---|
CK | 0.76 ± 0.07 c | 0.56 ± 0.05 c | 1.33 ± 0.12 c | 1.35 ± 0.01 d | 0.29 ± 0.03 c |
L1 | 1.75 ± 0.06 b | 1.14 ± 0.04 b | 2.89 ± 0.10 b | 1.54 ± 0.01 a | 0.59 ± 0.02 b |
L2 | 2.16 ± 0.03 a | 1.42 ± 0.03 a | 3.58 ± 0.07 a | 1.53 ± 0.02 ab | 0.74 ± 0.02 a |
L3 | 2.07 ± 0.13 a | 1.39 ± 0.10 a | 3.46 ± 0.23 a | 1.48 ± 0.01 c | 0.68 ± 0.05 ab |
W1 | 1.75 ± 0.06 b | 1.17 ± 0.03 b | 2.93 ± 0.09 b | 1.49 ± 0.02 bc | 0.58 ± 0.02 b |
W2 | 2.07 ± 0.09 a | 1.42 ± 0.07 a | 3.49 ± 0.16 a | 1.46 ± 0.01 c | 0.69 ± 0.03 a |
W3 | 2.13 ± 0.02 a | 1.42 ± 0.01 a | 3.56 ± 0.03 a | 1.50 ± 0.01 bc | 0.72 ± 0.01 a |
Treatment | Soluble Solids (%) | Titratable Acid (%) | Sugar/Acid Rate | Soluble Protein (mg∙g−1) | Vitamin C (mg∙kg−1) | Nitrate Nitrogen (µg∙g−1) | Single Fruit Weight (g) |
---|---|---|---|---|---|---|---|
CK | 4.63 ± 0.20 bc | 0.69 ± 0.02 c | 6.75 ± 0.26 ab | 3.01 ± 0.35 d | 69.82 ± 0.52 e | 177.58 ± 9.46 d | 110.96 ± 1.11 e |
L1 | 4.40 ± 0.15 c | 0.76 ± 0.01 a | 5.81 ± 0.17 d | 8.36 ± 0.30 a | 72.94 ± 1.50 de | 213.19 ± 5.04 c | 117.78 ± 1.72 e |
L2 | 5.03 ± 0.09 ab | 0.77 ± 0.01 a | 6.57 ± 0.11 abc | 6.92 ± 0.10 b | 82.67 ± 0.90 b | 231.98 ± 3.83 c | 130.16 ± 3.94 d |
L3 | 4.63 ± 0.19 bc | 0.77 ± 0.01 a | 6.05 ± 0.27 cd | 5.06 ± 0.45 c | 76.54 ± 0.44 cd | 172.48 ± 4.26 d | 130.78 ± 5.28 d |
W1 | 4.47 ± 0.12 c | 0.79 ± 0.01 a | 5.68 ± 0.10 d | 8.00 ± 0.60 ab | 79.64 ± 1.98 bc | 253.74 ± 7.10 b | 193.81 ± 4.59 a |
W2 | 4.53 ± 0.15 c | 0.70 ± 0.01 bc | 6.50 ± 0.15 bc | 8.82 ± 0.44 a | 75.58 ± 1.37 cde | 220.11 ± 10.02 c | 149.48 ± 2.17 c |
W3 | 5.13 ± 0.03 a | 0.72 ± 0.01 b | 7.10 ± 0.05 a | 8.51 ± 0.27 a | 92.37 ± 4.00 a | 403.02 ± 0.72 a | 168.57 ± 3.41 b |
Treatment | CK | L1 | L2 | L3 | W1 | W2 | W3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qty. | Pct. (%) | Qty. | Pct. (%) | Qty. | Pct. (%) | Qty. | Pct. (%) | Qty. | Pct. (%) | Qty. | Pct. (%) | Qty. | Pct. (%) | |
Aldehydes | 23 | 14.50 | 28 | 11.10 | 27 | 8.28 | 26 | 8.66 | 26 | 11.69 | 29 | 11.88 | 29 | 11.19 |
Hydrocarbons | 5 | 49.00 | 7 | 54.05 | 6 | 59.39 | 6 | 59.52 | 7 | 46.38 | 4 | 64.37 | 8 | 60.38 |
Alcohols | 13 | 24.58 | 13 | 24.61 | 13 | 20.15 | 14 | 17.34 | 14 | 30.21 | 12 | 13.32 | 13 | 17.93 |
Ketones | 9 | 2.00 | 8 | 1.98 | 8 | 3.33 | 8 | 1.03 | 8 | 1.33 | 8 | 0.43 | 8 | 1.62 |
Esters | 2 | 6.49 | 1 | 2.59 | 3 | 3.87 | 3 | 6.21 | 3 | 3.49 | 2 | 4.94 | 2 | 3.16 |
Others | 6 | 3.43 | 8 | 5.67 | 7 | 4.98 | 7 | 7.24 | 8 | 6.90 | 8 | 5.06 | 8 | 5.71 |
Total | 58 | 100 | 65 | 100 | 64 | 100 | 64 | 100 | 66 | 100 | 63 | 100 | 68 | 100 |
Volatile Components | Flavor Description | Treatment (%) | ||||||
---|---|---|---|---|---|---|---|---|
CK | L1 | L2 | L3 | W1 | W2 | W3 | ||
3-methyl-butanal | Fruit aroma | - | 0.021% | - | - | - | 0.037% | 0.025% |
3-methyl-1-butanol | Fruit aroma | 0.136% | 0.147% | 0.108% | 0.262% | 0.135% | 0.050% | 0.197% |
3-hexenal | Fruit aroma | 0.063% | 0.039% | 0.036% | 0.060% | 0.028% | 0.045% | 0.012% |
6-methyl-5-hepten-2-one | Fruit aroma | 7.647% | 5.862% | 4.548% | 5.148% | 5.813% | 7.004% | 6.223% |
(E)-2-hexenal | Fruit aroma | 0.447% | - | 0.472% | 0.855% | 0.440% | 0.816% | 0.548% |
(Z)-3-hexen-1-ol | Fresh scent | 4.590% | 5.935% | 5.681% | 5.142% | 4.782% | 3.056% | 3.725% |
(E)-2-heptenal | Fresh scent | 5.197% | 5.120% | 4.090% | 3.339% | 3.319% | 3.288% | 3.823% |
Hexanal | Fresh scent | 13.830% | 23.093% | 28.540% | 26.790% | 18.012% | 30.590% | 26.426% |
2-isobutylthiazole | Fresh scent | - | 3.324% | 3.036% | 5.886% | 4.424% | 3.266% | 3.185% |
Methylsalicylate | Fresh scent | 6.428% | 2.593% | 3.653% | 5.887% | 3.392% | 4.922% | 3.110% |
Benzeneacetaldehyde | Floral fragrance | - | 0.166% | 0.062% | 0.225% | - | 0.146% | 0.182% |
Phenylethyl Alcohol | Floral fragrance | 0.347% | 0.186% | - | 0.449% | 0.231% | 0.220% | 0.255% |
Trans-á-ionone | Floral fragrance | 0.355% | 0.253% | 0.193% | 0.125% | 0.202% | 0.147% | 0.155% |
1-penten-3-one | Pungent smell | 0.735% | 0.646% | 1.009% | 0.808% | 0.600% | 0.590% | 0.838% |
Total | 39.775% | 47.385% | 51.428% | 54.975% | 41.376% | 54.176% | 48.704% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Wang, P.; Yuan, L.; Chen, X.; Hu, X. Effects of Application Methods of Boron on Tomato Growth, Fruit Quality and Flavor. Horticulturae 2021, 7, 223. https://doi.org/10.3390/horticulturae7080223
Xu W, Wang P, Yuan L, Chen X, Hu X. Effects of Application Methods of Boron on Tomato Growth, Fruit Quality and Flavor. Horticulturae. 2021; 7(8):223. https://doi.org/10.3390/horticulturae7080223
Chicago/Turabian StyleXu, Weinan, Pengju Wang, Luqiao Yuan, Xin Chen, and Xiaohui Hu. 2021. "Effects of Application Methods of Boron on Tomato Growth, Fruit Quality and Flavor" Horticulturae 7, no. 8: 223. https://doi.org/10.3390/horticulturae7080223
APA StyleXu, W., Wang, P., Yuan, L., Chen, X., & Hu, X. (2021). Effects of Application Methods of Boron on Tomato Growth, Fruit Quality and Flavor. Horticulturae, 7(8), 223. https://doi.org/10.3390/horticulturae7080223