Foliar Application of ZnSO4 and CuSO4 Affects the Growth, Productivity, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L.) Osbeck
Abstract
:1. Introduction
2. Materials and Methods
- 1—Tap water (control), 2—CuSO4 200 mg/L,
- 3—CuSO4 400 mg/L, 4—ZnSO4 300 mg/L,
- 5—ZnSO4 300 mg/L + CuSO4 200 mg/L, 6—ZnSO4 300 mg/L + CuSO4 400 mg/L,
- 7—ZnSO4 600 mg/L, 8—ZnSO4 600 mg/L + CuSO4 200 mg/L,
- 9—ZnSO4 600 mg/L + CuSO4 400 mg/L
2.1. Experiment Layout
2.2. Vegetative Growth Measurements
2.3. Biochemical Analysis
2.3.1. SPAD Chlorophyll
2.3.2. Estimation of Certain Minerals
2.4. Productivity Measurements
2.4.1. Fruit Set Percentage
2.4.2. Yield Attributes
2.4.3. Fruit Quality
Fruit Physical Properties
Fruit Chemical Characteristics
2.5. Statistical Analysis
3. Results
3.1. Vegetative Growth Measurements
3.1.1. Specific Effect
3.1.2. Interaction Effect
3.2. Total Chlorophyll and Macro and Micronutrient Contents in the Leaves
3.3. Interaction Effect
3.4. Some Fruiting Characterization in Response to ZnSO4 and CuSO4 Foliar Application
3.4.1. Specific Effect
3.4.2. Interaction Effect
3.5. Fruit Quality
3.5.1. Fruit Physical Properties
3.5.2. Specific Effect
3.5.3. Interaction Effect
3.6. Fruit Chemical Characteristics
3.6.1. Specific Effect
3.6.2. Interaction Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Embleton, T.W.; Jones, W.W.; Labanauskas, C.K.; Reuther, W. Leaf analysis as a diagnostic tool and guide to fertilization. In Citrus Industry of California Division of Agriculture Science; California Department of Food and Agriculture: Sacramento, CA, USA, 1973; pp. 83–210. [Google Scholar]
- Tariq, M.; Sharif, M.; Shah, Z.; Khan, R. Effect of Foliar Application of Micronutrients on the Yield and Quality of Sweet Orange (Citrus sinensis L.). Pak. J. Biol. Sci. 2007, 10, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Świetlik, D. Zinc nutrition of fruit trees by foliar sprays. Acta Hortic. 2002, 594, 123–129. [Google Scholar] [CrossRef]
- Wietlik, D.; Faust, M. Foliar Nutrition of Fruit Crops. Hortic. Rev. 1984, 6, 287–355. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Ullah, W.; Aman, U.M.; Ahmad, R.; Saleem, B.A.; Rajwana, I.A. Exogenous application of boron and zinc influence leaf nutrient status, tree growth and fruit quality of Feutrell’s Early (Citrus reticulate Blanco). Pak. J. Agric. Sci. 2012, 49, 113–119. [Google Scholar]
- Central Bank of Egypt. Annual Reports of Statistical Institute and Agricultural Economic Research in Egypt; Central Bank of Egypt: Cairo, Egypt, 2016. [Google Scholar]
- Abobatta, W. Improving Navel orange (Citrus sinensis L.) productivity in Delta Region, Egypt. Adv. Agric. Environ. Sci. Open Access 2018, 1, 36–38. [Google Scholar] [CrossRef] [Green Version]
- Świetlik, D. Zinc Nutrition in Horticultural Crops; Wiley: Hoboken, NJ, USA, 2010; pp. 109–178. [Google Scholar]
- Alloway, B.J. Zinc in Soils and Crop Nutrition; International Zinc Association: Brussel, Belgium, 2008. [Google Scholar]
- Bergmann, W. Nutritional Disorders of Plants: Development, Visual and Analytical Diagnosis; Gustav Fischer Verlag: Jena, Germany, 1992; pp. 204–223. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 2nd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 1994; pp. 104–113. [Google Scholar]
- Somasundaram, J.; Meena, H.R.; Singh, R.K.; Prasad, S.N.; Parandiyal, A.K. Diagnosis of Micronutrient Imbalance in Lime Crop in Semi-arid Region of Rajasthan, India. Commun. Soil Sci. Plant Anal. 2011, 42, 858–869. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Black, C.A.; Evans, D.O.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Methods of soil analysis, Part 2. In Chemical and Microbiological Properties, 2nd ed.; Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Pregl, E. Quantitative Organic Micro Analysis, 4th ed.; Chundril: London, UK, 1945. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Inderscience Publishers Ltd.: New York, NY, USA, 1958; pp. 213–217. [Google Scholar]
- Brown, J.D.; Lilliand, O. Rapid determination of potassium and sodium in plant material and soil extract by flame photometer. Proc. Am. Soc. Hort. Sci. 1946, 48, 341–346. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants, and Waters; University of California: Riverside, CA, USA, 1961. [Google Scholar]
- The Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2020. [Google Scholar]
- Smith, F.; Cilles, A.M.; Hamilton, K.J.; Gedes, A.P. Colorimetric methods for determination of sugar and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1980; 593p. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Babu, K.D.; Yadav, D.S. Foliar spray of micronutrients for yield and quality improvement in Khasi mandarin (Citrus reticulata Blanco.). Indian J. Hort. 2005, 62, 280–281. [Google Scholar]
- Obreza, T.A.; Zekri, M.; Hanlon, E.A. Nutrition of Florida Citrus Trees: Chapter 4. Soil and Leaf Tissue Testing, 3rd ed.; University of Florida, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2020. [Google Scholar]
- Anees, M.; Tahir, F.M.; Shahzad, J.; Mahmood, N. Effect of foliar application of micronutrient on the quality of mango (Mangifera indica L.) cv. Dusheri fruit. Mycopathologia 2011, 9, 25–28. [Google Scholar]
- Lolkema, P.C. Copper Resistance in Higher Plants; Free University Press: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Bennett, W.F. Nutrient Deficiencies and Toxicities in Crop Plants; American Phytopathological Society: St. Paul, MN, USA, 1993; pp. 168–171. [Google Scholar]
- Simon, G. Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention. Int. J. Hortic. Sci. 2006, 12, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Bouazizi, H.; Jouili, H.; Geitmann, A.; El Ferjani, E. Cell Wall Accumulation of Cu Ions and Modulation of Lignifying Enzymes in Primary Leaves of Bean Seedlings Exposed to Excess Copper. Biol. Trace Element Res. 2010, 139, 97–107. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S. Zinc Nutrition in ‘Nagpur’ Mandarin on Haplustert. J. Plant Nutr. 2009, 32, 1065–1081. [Google Scholar] [CrossRef]
- Abd El Motty, Z.E.; Shahin, M.F.M.; Hagagg, L.F. Response of Valencia oranges trees budded on Troyer citrange and Sour orange to foliar application of some macro and micronutrients. J. Appl. Sci. Res. 2006, 2, 952–965. [Google Scholar]
- Ramos, U.M.; Quaggio, J.A.; Furlani, P.R. Nitrogênio e cobre na produção de mudas de citros em diferentes porta-enxertos. Bragantia 2010, 69, 135–147. [Google Scholar] [CrossRef]
- Hippler, F.W.; Cipriano, D.O.; Boaretto, R.M.; Quaggio, J.A.; Gaziola, S.A.; Azevedo, R.A.; Mattos, D., Jr. Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environ. Exp. Bot. 2016, 130, 42–52. [Google Scholar] [CrossRef]
- Hippler, F.W.R.; Boaretto, R.M.; Quaggio, J.A.; De Mattos, D. Copper in Citrus Production: Required but avoided. Citrus Res. Technol. 2017, 38, 99–106. [Google Scholar] [CrossRef]
- Mann, M.S.; Josan, J.S.; Chohan, G.S.; Vij, V.K. Effect of foliar application of micronutrient on leaf composition, fruit yield and quality of sweet orange (Citrus sinensis L.) cv. Blood red. Indian. J. Hortic. 1985, 42, 45–49. [Google Scholar]
- Beede, R.H.; Brown, P.H.; Kallsen, C.; Weinbaum, S.A. Diagnosing and correcting nutrient deficiencies. In Pistachio Production Manual, 4th ed.; University of California: Oakland, CA, USA, 2005; pp. 147–157. [Google Scholar]
- Ashraf, M.Y.; Yaqub, M.; Akhtar, J.; Athar Khan, M.; Ali Khan, M.; Ebert, G. Control of Excessive Fruit Drop and Improvement in Yield and Juice Quality of Citrus nobilis through Nutrient Management. Pak. J. Bot. 2012, 44, 259–265. [Google Scholar]
- Yadav, M.K.; Solanki, V.K. Use of micronutrients in tropical and sub-tropical fruit crops: A review. Afr. J. Agric. Res. 2015, 10, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Vaghar, M.S.; Sayfzadeh, S.; Zakerin, H.R.; Kobraee, S.; Valadabadi, S.A. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 2020, 43, 2740–2756. [Google Scholar] [CrossRef]
- Davarpanaha, S.; Tehranifara, A.; Davarynejada, G.; Abadía, J.; Khorasanic, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Abbasifar, A.; Shahrabadi, F.; ValizadehkKaji, B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 2020, 43, 1104–1118. [Google Scholar] [CrossRef]
- Macedo, L.O.; Júnior, D.M.; Jacobassi, R.; Hippler, F.W.R.; Quaggio, J.A.; Boaretto, R.M. Efficiency of foliar application of sparingly soluble sources of boron and zinc in citrus. Sci. Agric. 2021, 78. [Google Scholar] [CrossRef]
- Ma, J.-Z.; Zhang, M.; Liu, Z.-G.; Wang, M.; Sun, Y.; Zheng, W.-K.; Lu, H. Copper-based-zinc-boron foliar fertilizer improved yield, quality, physiological characteristics, and microelement concentration of celery (Apium graveolens L.). Environ. Pollut. Bioavailab. 2019, 31, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Hemant, S.; Vijay, S.; Poonam, S. Differential responses of Fe, Zn, B, Cu and Mg on growth and quality attributes of fruit crops. J. Pharmacogn. Phytochem. 2019, 8, 1–5. [Google Scholar]
- Jenny, Z.; Elizabeth, S.; Debashis, M. Foliar application of zinc, manganese, copper and boron influenced the fruit growth, development and quality of Khasi Mandarin (Citrus reticulata Blanco). J. Pharmacogn. Phytochem. 2019, 8, 3324–3327. [Google Scholar]
Physical Analysis | Value | Chemical Analysis | |||
---|---|---|---|---|---|
Cations meq/L | Anions meq/L | ||||
Coarse sand | 11% | Ca2+ | 8.8 | CO32− | Zero |
Fine sand | 19.4% | Mg2+ | 3.25 | HCO3− | 4.5 |
Silt | 19.0% | Na+ | 4.30 | Cl− | 6.45 |
Clay | 49.4% | K+ | 1.08 | SO42− | 8.00 |
Texture class | Clay loam | Available N 24.5 mg/kg | |||
Soil pH | 7.3 | Available P 11.94 mg/kg | |||
E.C, ds/m | 1.65 | Available K 170.5 mg/kg | |||
Organic matter | 3.6% |
Month | Min Temp. | Max Temp. | Humidity | Wind | Sun | Rad | Eff. Rain | ETo |
---|---|---|---|---|---|---|---|---|
°C | °C | % | km/Day | Hours | MJ/m2/Day | mm | mm/Day | |
January | 7.2 | 20.8 | 51 | 206 | 7.8 | 13.5 | 1.1 | 2.83 |
February | 7.6 | 23.9 | 42 | 245 | 8.6 | 17.0 | 1.2 | 3.80 |
March | 10.6 | 24.8 | 38 | 276 | 8.9 | 20.0 | 1 | 5.12 |
April | 14.8 | 30.7 | 30 | 277 | 9.2 | 22.6 | 1 | 6.90 |
May | 18.5 | 35.3 | 31 | 262 | 10.2 | 25.1 | 0 | 8.02 |
June | 21.2 | 36.9 | 33 | 271 | 11.4 | 26.7 | 0 | 8.81 |
July | 22.2 | 39.1 | 39 | 223 | 11.3 | 26.2 | 0 | 8.00 |
August | 22.4 | 37.4 | 32 | 205 | 10.4 | 25.1 | 0 | 7.42 |
September | 19.4 | 33.2 | 44 | 214 | 9.5 | 22.2 | 0 | 6.21 |
October | 17.2 | 31.3 | 47 | 213 | 9.2 | 18.1 | 0 | 5.12 |
November | 10.6 | 24.5 | 53 | 180 | 8.3 | 14.5 | 0 | 3.53 |
December | 7.6 | 20.7 | 57 | 193 | 7.8 | 13.1 | 0.58 | 2.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gioushy, S.F.; Sami, R.; Al-Mushhin, A.A.M.; Abou El-Ghit, H.M.; Gawish, M.S.; Ismail, K.A.; Zewail, R.M.Y. Foliar Application of ZnSO4 and CuSO4 Affects the Growth, Productivity, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L.) Osbeck. Horticulturae 2021, 7, 233. https://doi.org/10.3390/horticulturae7080233
El-Gioushy SF, Sami R, Al-Mushhin AAM, Abou El-Ghit HM, Gawish MS, Ismail KA, Zewail RMY. Foliar Application of ZnSO4 and CuSO4 Affects the Growth, Productivity, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L.) Osbeck. Horticulturae. 2021; 7(8):233. https://doi.org/10.3390/horticulturae7080233
Chicago/Turabian StyleEl-Gioushy, Sherif Fathy, Rokayya Sami, Amina A. M. Al-Mushhin, Hanan M. Abou El-Ghit, Mohamed S. Gawish, Khadiga Ahmed Ismail, and Reda M. Y. Zewail. 2021. "Foliar Application of ZnSO4 and CuSO4 Affects the Growth, Productivity, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L.) Osbeck" Horticulturae 7, no. 8: 233. https://doi.org/10.3390/horticulturae7080233
APA StyleEl-Gioushy, S. F., Sami, R., Al-Mushhin, A. A. M., Abou El-Ghit, H. M., Gawish, M. S., Ismail, K. A., & Zewail, R. M. Y. (2021). Foliar Application of ZnSO4 and CuSO4 Affects the Growth, Productivity, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L.) Osbeck. Horticulturae, 7(8), 233. https://doi.org/10.3390/horticulturae7080233