Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Sampling and Basic Fruit Analyses
2.3. Extraction and Determination of Sugars and Organic Acids
2.4. Extraction and Determination of Phenolic Compounds
2.5. Extraction and Determination of Assimilatory Pigments
2.6. Chemicals
2.7. Data Analysis
3. Results and Discussion
3.1. Basic Fruit Analyses
3.2. Sugars and Organic Acids
3.3. Individual Phenolic Compounds
3.4. Assimilatory Pigments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Bennewitz, E.; Cazanga-Solar, R.; Carrasco-Benavides, M.; Fredes, C.; Alba-Mejia, J.E.; Losak, T. Vegetative and productive responses of organic apple (Malus domestica L.) to fossilized red guano and a controlled-release fertilizer. Chil. J. Agric. Anim. Sci. 2017, 33, 213–220. [Google Scholar] [CrossRef]
- Xia, G.L.; Cheng, L.; Lakso, A.N.; Goffinet, M.C. Effects of nitrogen supply on source-sink balance and fruit size of Gala apple trees. J. Am. Soc. Hortic. Sci. 2009, 134, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.Z.; Xie, D.Y. Engineering of red cells in Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. Planta 2011, 233, 787–805. [Google Scholar] [CrossRef] [PubMed]
- Sklodowska, M.; Mikicinski, A.; Wielanek, M.; Kuzniak, E.; Sobiczewski, P. Phenolic profiles in apple leaves and the efficacy of selected phenols against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 2018, 151, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Solomakhin, A.A.; Blanke, M. Overcoming adverse effects of hailnets on fruit quality and microclimate in an apple orchard. J. Sci. Food Agric. 2007, 87, 2625–2637. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Gu, K.D.; Wang, C.K.; Hu, D.G.; Hao, Y.J. How do anthocyanins paint our horticultural products? Sci. Hortic. 2019, 249, 257–262. [Google Scholar] [CrossRef]
- Kühn, B.F.; Bertelsen, M.; Sørensen, L. Optimising quality parameters of apple cv. ‘Pigeon’ by adjustment of nitrogen. Sci. Hortic. 2011, 129, 369–375. [Google Scholar] [CrossRef]
- Lara, I. Preharvest foliar sprays and their effects on the postharvest quality of fruit. Stewart Postharvest Rev. 2013, 9, 1–12. [Google Scholar] [CrossRef]
- Solhjoo, S.; Gharaghani, A.; Fallahi, E. Calcium and Potassium Foliar Sprays Affect Fruit Skin Color, Quality Attributes, and Mineral Nutrient Concentrations of ‘Red Delicious’ Apples. Int. J. Fruit Sci. 2017, 17, 358–373. [Google Scholar] [CrossRef]
- Yu, X.M.; Wang, J.Z.; Nie, P.X.; Xue, X.M.; Wang, G.P.; An, M. Control efficacy of Ca-containing foliar fertilizers on bitter pit in bagged ‘Fuji’ apple and effects on the Ca and N contents of apple fruits and leaves. J. Sci. Food Agric. 2018, 98, 5435–5443. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, E.; Eichert, T. Principles and practices if foliar nutrients with an emphasis on nitrogen and calcium sprays in apple. J. Am. Soc. Hortic. Sci. 2013, 23, 542–547. [Google Scholar] [CrossRef]
- Fernandez, V.; Sotiropoulus, T.; Brown, P.H. Foliar Fertilization: Scientific Principles and Field Practices, 1st ed.; International Fertilizer Industry Association: Paris, France, 2013; pp. 94–99. ISBN 9791092366006. [Google Scholar]
- Sharma, L.K. Effect of nutrients sprays on growth, yield and fruit quality of apple under cold desert condition of Himachal Pradesh. J. Appl. Nat. Sci. 2016, 8, 297–300. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, V.; Sanchez, E.; Tognetti, J. Timing of Nitrogen Fertilization Influences Color and Anthocyanin Content of Apple (Malus domestica Borkh. cv ‘Royal Gala’) Fruits. Int. J. Fruit Sci. 2011, 11, 364–375. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, L. Differential Effects of Nitrogen Supply on Skin Pigmentation and Flesh Starch Breakdown of ’Gala’ Apple. Hortscience 2011, 46, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- Reay, P.F.; Fletcher, R.H.; Thomas, V.J.G. Chlorophylls, carotenoids and anthocyanin concentrations in the skin of ’Gala’ apples during maturation and the influence of foliar applications of nitrogen and magnesium. J. Sci. Food Agric. 1998, 76, 63–71. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Davarynenad, G. Effects of foliar nano-nitrogen and urea fertilizers on the physical and chemical properties of pomegranate (Punica granatum cv. Ardestani) fruit. HortScience 2017, 52, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 2010, 90, 66–78. [Google Scholar] [CrossRef]
- Tomic, J.; Stampar, F.; Glisic, I.; Jakopic, J. Phytochemical assessment of plum (Prunus domestica L.) cultivars selected in Serbia. Food Chem. 2019, 299. [Google Scholar] [CrossRef]
- Sircelj, H.; Batic, F. Evaluation of selected nutritional factors in Aposeris foetida (L.) Less. during the harvesting period. J. Appl. Bot. Food Qual. Angew. Bot. 2007, 81, 121–125. [Google Scholar]
- Senica, M.; Veberic, R.; Grabnar, J.J.; Stampar, F.; Jakopic, J. Selected chemical compounds in firm and mellow persimmon fruit before and after the drying process. J. Sci. Food Agric. 2016, 96, 3140–3177. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.L.; Schupp, J.; Fargione, M.; Osborne, J. Growing large ‘Gala’ apples. Compact Fruit Tree 2005, 38, 2–5. [Google Scholar]
- Dar, J.A.; Wani, A.A.; Ahmed, M.; Nazir, R.; Zargar, S.M.; Javaid, K. Peel colour in apple (Malus × domestica Borkh.): An economic quality parameter in fruit market. Sci. Hortic. 2019, 244, 50–60. [Google Scholar] [CrossRef]
- Wargo, J.M.; Merwin, I.A.; Watkins, C.B. Nitrogen fertilization, midsummer trunk girdling, and AVG treatments affect maturity and quality of ’Jonagold’ apples. HortScience 2004, 39, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Hofman, P.; Holmes, R.; Bally, I.; Stubbings, B.; Mcconchie, R. Effect of nitrogen on the skin colour and other quality attributes of ripe ’Kensington Pride’ mango (Mangifera indica L.) fruit. J. Hortic. Sci. Biotechnol. 2004, 79, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Delgado, R.; Gonzalez, M.R.; Martin, P. Interaction effects of nitrogen and potassium fertilization on anthocyanin composition and chromatic features of Tempranillo grapes. J. Int. Sci. Vigne Vin 2006, 40, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Dolinski, M.A.; Dangelo, J.W.D.; Cuquel, F.L.; Motta, A.C.V.; De Mio, L.L.M. Quality peach produced in fertilizer doses of nitrogen and green pruning. Bragantia 2018, 77, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Jakopic, J.; Veberic, R.; Zupancic, K.; Stampar, F. Influence of nitrogen on the contents of carbohydrates and organic acids in apples (Malus domestica Borkh.) cv. “Golden Delicious”. Eur. J. Hortic. Sci. 2007, 72, 66–72. [Google Scholar]
- Bizjak, J.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Changes in Primary Metabolites and Polyphenols in the Peel of "Braeburn" Apples (Malus domestica Borkh.) during Advanced Maturation. J. Agric. Food Chem. 2013, 61, 10283–10292. [Google Scholar] [CrossRef]
- Bat, K.B.; Vodopivec, B.M.; Eler, K.; Ogrinc, N.; Mulic, I.; Masuero, D.; Vrhovsek, U. Primary and secondary metabolites as a tool for differentiation of apple juice according to cultivar and geographical origin. LWT-Food Sci. Technol. 2018, 90, 238–245. [Google Scholar] [CrossRef]
- Simmone, A.H.; Fuzere, J.M.; Simmone, E.; Hochmuth, R.C.; Marshall, M.R. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 2007, 30, 927–935. [Google Scholar] [CrossRef]
- Benard, C.; Gautier, H.; Bourgaud, F.; Grasselly, D.; Navez, B.; Caris-Veyrat, C.; Weiss, M.; Genard, M. Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. J. Agric. Food Chem. 2009, 57, 4112–4123. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.; Palacios-Rojas, N.; Feil, R.; Stitt, M. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: Nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 2006, 46, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Jakopic, J.; Slatnar, A.; Stampar, F.; Veberic, R.; Simoncic, A. Analysis of selected primary metabolites and phenolic profile of “Golden Delicious” apples from four production systems. Fruits 2012, 67, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Bizjak, J.; Weber, N.; Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Alam, Z.; Stich, K.; Halbwirth, H.; Veberic, R. Influence of Phostrade Ca on Color Development and Anthocyanin Content of ’Braeburn’ Apple (Malus domestica Borkh.). Hort. Sci. 2013, 48, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Baldwin, I.T. Nitrogen supply influences herbivore-induced direct and indirect defense and transcriptional response in Nicotiana attenuata. Plant Physiol. 2004, 135, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Slatnar, A.; Stampar, F.; Veberic, R. Influence of bicarbonate salts, used against apple scab, on selected primary and secondary metabolites in apple fruit and leaves. Sci. Hortic. 2012, 143, 197–204. [Google Scholar] [CrossRef]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, S.M.; Christian, R.; Castro-Velasquez, N.; Hyden, B.; Lynch-Holm, V.; Dhingra, A. Comparative ultrastructure of fruit plastids in three genetically diverse genotypes of apple (Malus × domestica Borkh.) during development. Plant Cell Rep. 2017, 36, 1627–1640. [Google Scholar] [CrossRef] [Green Version]
- Prsa, I.; Stampar, F.; Vodnik, D.; Veberic, R. Influence of nitrogen on leaf chlorophyll content and photosynthesis of ’Golden Delicious’ apple. Acta Agric. Scand. B Soil Plant Sci. 2007, 57, 283–289. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
N0 | N1 | N4 | Significance | |
---|---|---|---|---|
17 July | ||||
L* | 56.9 ± 1.9 | 56.6 ± 0.6 | 58.8 ± 0.5 | NS |
a* | −3.5 ± 0.7 | −1.5 ± 1.1 | −2.7 ± 0.9 | NS |
b* | 40.3 ± 0.5 | 38.9 ± 0.8 | 40.7 ± 0.6 | NS |
C | 40.5 ± 0.5 | 38.9 ± 0.8 | 41.0 ± 0.7 | NS |
h° | 94.3 ± 1.2 | 91.4 ± 1.6 | 93.0 ± 0.8 | NS |
8 August | ||||
L* | 62.8 ± 0.4 | 63.2 ± 0.5 | 62.3 ± 0.5 | NS |
a* | −9.6 ± 0.2 | −9.8 ± 0.1 | −9.8 ± 0.1 | NS |
b* | 42.9 ± 0.4 | 43.3 ± 0.5 | 43.3 ± 0.4 | NS |
C | 43.9 ± 0.4 | 44.4 ± 0.5 | 44.5 ± 0.5 | NS |
h° | 102.5 ± 0.3 | 102.8 ± 0.2 | 102.8 ± 0.2 | NS |
24 September | ||||
L* | 42.0 ± 0.9 a | 43.8 ± 0.9 a | 46.8 ± 0.9 b | * |
a* | 33.5 ± 0.6 c | 29.8 ± 0.7 b | 27.7 ± 0.9 a | * |
b* | 20.0 ± 0.5 a | 21.0 ± 0.7 a | 23.2 ± 0.6 b | * |
C | 39.0 ± 0.6 b | 36.7 ± 0.5 a | 36.1 ± 0.6 a | * |
h° | 30.5 ± 0.9 a | 34.8 ± 1.2 b | 39.2 ± 1.3 c | * |
Fruit Firmness | 7.5 ± 0.2 | 6.9 ± 0.3 | 7.4 ± 0.2 | NS |
Dry Matter | 13.2 ± 0.5 | 12.8 ± 0.2 | 12.9 ± 0.3 | NS |
Starch content | 3.7 ± 0.2 | 3.8 ± 0.3 | 0.8 ± 0.3 | NS |
Fruit Weight | 147.0 ± 6.1 a | 170.7 ± 7.3 b | 149.0 ± 3.1 a | * |
Compound | N0 | N1 | N4 | Significance |
---|---|---|---|---|
Sucrose | 40.0 ± 1.2 | 36.6 ± 0.7 | 36.8 ± 1.4 | NS |
Glucose | 13.4 ± 0.5 b | 13.2 ± 0.6 b | 10.8 ± 0.9 a | * |
Fructose | 39.0 ± 0.4 b | 39.3 ± 0.4 b | 35.8 ± 0.3 a | * |
Sorbitol | 2.0 ± 0.2 b | 1.6 ± 0.0 a | 1.3 ± 0.1 a | * |
Total sugars | 94.4 ± 2.2 b | 90.6 ± 0.9 b | 84.6 ± 2.7 a | * |
Citric acid | 119.5 ±10.8 | 110.7 ±3.7 | 108.7 ±10.7 | NS |
Malic acid | 9642.9 ± 420.4 | 8398.1 ± 237.3 | 8367.2 ± 450.4 | NS |
Shikimic acid | 3.8 ± 0.4 | 3.6 ± 0.2 | 3.5 ± 0.4 | NS |
Fumaric acid | 0.4 ± 0.0 b | 0.3 ± 0.0 a | 0.3 ± 0.2 a | * |
Total organic acids | 9766.5 ± 430.4 | 8512.7 ± 237.6 | 8479.7 ± 460.3 | NS |
Compound | N0 | N1 | N4 | Significance |
---|---|---|---|---|
p-coumaroyl glucoside | 9.9 ± 1.8 | 6.2 ± 0.7 | 6.7 ± 0.5 | NS |
Chlorogenic acid | 60.9 ± 2.5 b | 48.2 ± 4.9 a | 47.7 ± 1.4 a | * |
Total phenolic acids | 70.7 ± 4.3 b | 54.7 ± 5.6 a | 54.4 ± 1.9 a | * |
Catechin | 187.6 ± 8.7 b | 128.5 ± 6.3 a | 131.2 ± 7.7 a | * |
Epicatechin | 207.5 ± 14.7 a | 174.8 ± 15.2 a | 173.3 ± 8.7 a | * |
Procyanidin B1 | 108.6 ± 17.1 b | 95.5 ± 19.2 ab | 57.0 ± 3.1 a | * |
Procyanidin B2 | 570.1 ± 20.5 | 459.6 ± 29.0 | 577.2 ± 48.3 | NS |
Procyanidin trimer | 553.8 ± 60.4 | 484.7 ± 45.2 | 418.4 ± 30.0 | NS |
Procyanidin tetramer | 133.6 ± 23.3 b | 82.5 ± 15.7 a | 62.4 ± 4.0 a | * |
Total flavan-3-ols | 1761.2 ± 144.7 | 1425.6 ± 130.6 | 1419.6 ± 101.9 | NS |
Quercetin-3-O-rutinoside | 30.7 ± 5.97 b | 25.6 ± 1.1 ab | 18.3 ± 2.0 a | * |
Quercetin-3-O-galactoside | 259.4 ± 35.4 b | 165.2 ± 7.9 a | 164.9 ± 26.3 a | * |
Quercetin-3-O-glucoside | 20.8 ± 2.6 b | 15.1 ± 1.3 ab | 12.9 ± 1.3 a | * |
Quercetin-3-O-xyloside | 79.2 ± 11.5 b | 51.2 ± 4.4 a | 45.7 ± 3.0 a | * |
Quercetin-3-O-arabinopyranoside | 41.2 ± 4.7 | 32.8 ± 4.3 | 29.7 ± 2.6 | NS |
Quercetin-3-arabinofuranoside | 197.1 ± 12.9 b | 176.4 ± 11.7 ab | 149.3 ± 15.4 a | * |
Quercetin-3-O-rhamnoside | 735.4 ± 99.9 b | 526.6 ± 59.4 ab | 495.3 ± 47.6 a | * |
Total flavonols | 1363.8 ± 172.8 b | 992.9 ± 89.9 ab | 916.2 ± 98.3 a | * |
Phloretin-2’-O-(2-O-xylosyl) glucoside | 273.6 ± 19.8 | 252.7 ± 21.8 | 215.2 ± 10.7 | NS |
Phlorizin | 907.1 ± 37.8 | 876.7 ± 75.8 | 828.8 ± 53.1 | NS |
3-hydroxyphloretin | 7783.3 ± 828.7 b | 5788.1 ± 533.8 a | 5185.5 ± 358.6 a | * |
Total chalcones | 8963.7 ± 886.3 b | 6917.4 ± 631.4 a | 6229 ± 422.4 a | * |
Cyanidin-3-galactoside | 68.6 ± 5.1 b | 56.2 ± 8.4 ab | 45.1 ± 1.7 a | * |
Cyanidin-3-arabinoside | 6.9 ± 0.7 b | 5.4 ± 0.9 b | 2.7 ± 0.6 a | * |
Cyanidin-7-arabinoside | 5.1 ± 0.5 b | 3.9 ± 0.7 ab | 2.6 ± 0.1 a | * |
Total anthocyanins | 80.6 ± 6.3 b | 65.5 ± 1.0 ab | 50.4 ± 2.4 a | * |
Compound | N0 | N1 | N4 | Significance |
---|---|---|---|---|
Lutein | 0.30 ± 0.03 | 0.39 ± 0.02 | 0.31 ± 0.01 | NS |
Chlorophyll b | 2.09 ± 0.29 | 2.77 ± 0.29 | 2.66 ± 0.15 | NS |
Chlorophyll a | 2.50 ± 0.27 a | 4.22 ± 0.35 b | 3.0 ± 0.44 a | * |
α-carotene | 0.03 ± 0.001 a | 0.03 ± 0.004 a | 0.05 ± 0.002 b | * |
β-carotene | 1.05 ± 0.18 | 1.23 ± 0.30 | 1.69 ± 0.18 | NS |
Total assimilatory pigments | 5.97 ± 0.77 a | 8.64 ± 0.96 b | 7.71 ± 0.78 ab | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakopic, J.; Schmitzer, V.; Veberic, R.; Smrke, T.; Stampar, F. Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage. Horticulturae 2021, 7, 266. https://doi.org/10.3390/horticulturae7090266
Jakopic J, Schmitzer V, Veberic R, Smrke T, Stampar F. Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage. Horticulturae. 2021; 7(9):266. https://doi.org/10.3390/horticulturae7090266
Chicago/Turabian StyleJakopic, Jerneja, Valentina Schmitzer, Robert Veberic, Tina Smrke, and Franci Stampar. 2021. "Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage" Horticulturae 7, no. 9: 266. https://doi.org/10.3390/horticulturae7090266
APA StyleJakopic, J., Schmitzer, V., Veberic, R., Smrke, T., & Stampar, F. (2021). Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage. Horticulturae, 7(9), 266. https://doi.org/10.3390/horticulturae7090266