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Abstract: This study investigates the influence of polyol compounds (sorbitol and erythritol) on
the osmotic dehydration process of pomegranate seeds. The efficacy of the osmotic dehydration
process was estimated based on the determination of water loss, weight reduction, solid gain, and
effective diffusivity and also through a comparison of the results obtained between sucrose and polyol
osmotic solutions. Response surface methodology was used to optimize the osmotic process. Quality
attributes of pomegranate seeds were determined through the assessment of physical (texture and
color) characteristics. This innovative research applies alternative solutions in the osmotic process,
which until now, have not been commonly used in the osmotic dehydration of pomegranate seeds
processing by researchers worldwide. Results revealed the excellent correlation of experimental
values with the model. Erythritol and sorbitol exhibit stronger efficiency than sucrose. However,
erythritol was not satisfactory due to the high solid gain. Therefore, the sorbitol osmotic agent
seems to be the most suitable for the osmotic dehydration of pomegranate seeds. The optimal
condition for maximum water loss (38.61%), weight reduction (37.77%), and effective diffusivity
(4.01 × 10−8 m2/s) and minimum solid gain (−0.37%) were 13.03 min, 27.77 ◦Brix, and 37.7 ◦C, using
a sorbitol solution. Results of texture and color revealed the major impact of erythritol and sorbitol
osmotic agents on seed characteristics during the osmotic dehydration process.

Keywords: osmotic dehydration; polyol; pomegranate seeds; solid gain; water loss; effective diffusivity;
response surface methodology; texture; color

1. Introduction

The enormous consumption of sugars, principally sucrose, results in the increased
incidence of various diseases (hyperactivity in children, type 2 diabetes, dyslipidemia and
cardiovascular diseases), which is why safe substitutes are sought [1]. However, sucrose is
the most common substance employed in the formulation of many foods to modulate their
taste values and in the elaboration of osmotic solutions [2]. The most notable property of
sugar in food is its sweet taste [3]. Therefore, a new world health organization guideline
consigns children and adults to decrease their daily intake of free sugars to less than 10%
of their total energy intake [4]. A further reduction to below 5% or roughly 25 g per day
would provide additional health benefits [4]. Research indicates that children with the
highest intakes of sugar-sweetened drinks are more likely to be overweight or obese than
children with a low intake of sugar-sweetened drinks [4].

Polyols could be used as an alternative to replacing sucrose by reason of its low
calories and relative sweetness of around 60–100% compared with sucrose [4]. Polyols
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constitute a group of sweeteners, also known as hydroxyl alcohols, sugars, or polyalcohols.
They occur naturally in vegetables, fruits, and mushrooms [5]. Polyols sweeteners have a
lower sweetening power compared to sucrose. Polyols are slowly absorbed in the digestive
system, which does not lead to a rapid increase in blood glucose level [2]. Therefore, these
products are recommended for people with diabetes [5,6].

Recently, polyol substances, such as steviol, maltitol, erythritol, and xylitol, have
been used as an alternative to sucrose for the osmotic treatment of foodstuffs [7–9]. In-
deed, several authors [10–16] have used sorbitol, erythritol, glycerol, maltitol, and xylitol,
respectively, as an alternative to sucrose solutions for the osmotic dehydration (OD) of
many fruits. OD is the process of partial water removal from the tissue by putting the
fruit in a hypertonic osmotic solution [16]. Osmotic dehydration could prolong the shelf-
life of pomegranate seeds by preserving their nutritional components [17]. According to
Bchir et al. [17], the international production of pomegranate seeds was over 1,000,000 t in
2018. Pomegranate seeds are generally consumed during the harvest season. Hence, for
extending the shelf-life of pomegranate seeds further processing, such as osmotic dehydra-
tion, is a necessity. However, until now, the use of polyols has not been common in the OD
of pomegranate seeds by researchers worldwide.

The aim of the present study is (a) to evaluate the influence of two polyols, erythritol
and sorbitol, on the OD kinetics of pomegranate seeds, searching for the optimal operat-
ing conditions (temperature, ◦Brix, and immersion time) that minimize solid gain, and
maximize water loss, weight reduction, and effective diffusivity, using response surface
methodology and (b) to study the effect of polyol osmotic agents on the texture and color
of the pomegranate seeds’ surface compared to the control (sucrose).

2. Materials and Methods
2.1. Materials

Pomegranate fruits (Punica granatum L.) from the ‘El-Gabsi’ variety were acquired
from the experimental field in Gabes (Tunisia) at full ripeness. The fruits were cleaned with
wet paper, wiped carefully, and then stored at 4 ◦C until analysis. Before experimentations,
seeds were collected in bottles and left at room temperature.

2.2. Osmotic Dehydration Treatment

Pomegranate seeds were dehydrated by OD in a shaking water bath with an oscil-
lation rate of 160 rpm (GFL Instrument D 3006, Schônwalde-Glien, Germany). Osmotic
solutions were conducted with substances from the polyol group, purchased from Brenntag
company (Kedzierzyn-Kozle, Poland) (erythritol and sorbitol) and distilled water to reach
a concentration of 20 and 40 ◦Brix. Sucrose was used as a control to compare the OD
process kinetics. OD was carried out for 60 min at different temperatures (30 ◦C, 40 ◦C,
and 50 ◦C) and using a 4:1 syrup-to-fruit ratio. Then, the samples were taken from the
osmotic solution and blotted with absorbent paper to remove excess osmotic liquid from
their surface. Then, samples were weighed and dry matter, as well as weight reduction
(WR), solid gain (SG), water loss (WL), and effective diffusivity (Deff), were determined
according to Bchir et al. [17].

2.3. Experimental Design

A Box–Behnken design with three variables at three levels was applied to determine
the responses and then to characterize the optimal combination of variables for the OD
process (Table 1). Temperature, ◦Brix, and time were the independent variables. On the
other hand, weight reduction, solid gain, effective diffusivity, and water loss correspond
to the dependent variables. Fifteen experimental points were presented by the complete
design (Table 2).
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Table 1. The level of coded values used for the osmotic dehydration process.

Coded Factor Independent Variables
Coded Levels of Variables

−1 0 1

X1 Temperature (◦C) 30 40 50

X2 Time (min) 10 35 60

X3 ◦Brix (%) 0 20 40

Table 2. Box–Ben design matrix with experimental values of response variables for the OD of pomegranate seeds in different
osmotic solutions.

X1 X2 X3 Erythritol Sorbitol Sucrose

WL SG WR Deff WL SG WR Deff WL SG WR Deff

40 60 40 32.96 3.64 40.61 4.22 × 10−8 32.24 9.08 41.10 4.10 × 10−8 28.09 −1.31 38.41 4.03 × 10−8

50 35 40 38.58 −0.78 39.36 4.74 × 10−8 33.40 −1.35 32.05 3.70 × 10−8 35.02 0.66 30.37 4.70 × 10−8

40 10 0 40.83 −8.84 31.98 1.75 × 10−8 34.56 −7.70 26.85 1.75 × 10−8 20.86 −4.76 43.62 1.50 × 10−8

30 60 20 28.49 −1.36 27.12 2.11 × 10−8 32.04 1.00 33.04 1.80 × 10−8 26.34 −3.56 29.90 2.80 × 10−8

50 60 20 36.64 −3.29 33.35 4.74 × 10−8 34.59 −5.28 29.30 4.71 × 10−8 37.95 −4.55 38.50 3.80 × 10−8

40 35 20 36.85 −3.65 33.20 3.75 × 10−8 37.92 −0.33 37.58 3.20 × 10−8 35.98 −4.45 40.42 2.74 × 10−8

50 35 0 41.48 −10.16 31.21 1.75 × 10−8 36.67 −8.93 27.73 1.75 × 10−8 25.93 −5.20 38.81 2.80 × 10−8

30 35 0 36.91 −9.91 26.99 1.75 × 10−8 34.76 −9.03 25.72 1.75 × 10−8 20.13 −5.15 35.29 1.20 × 10−8

40 60 0 37.88 −10.63 27.25 1.75 × 10−8 25.80 −9.15 26.64 1.75 × 10−8 28.09 −5.31 38.41 1.80 × 10−8

40 35 20 36.85 −3.65 33.20 3.75 × 10−8 37.92 −0.33 37.56 3.20 × 10−8 35.98 −4.45 40.42 2.74 × 10−8

50 10 20 34.48 7.24 41.73 4.74 × 10−8 36.38 −0.25 36.13 4.71 × 10−8 37.56 −3.97 30.59 3.70 × 10−8

40 35 20 36.85 −3.65 33.20 3.75 × 10−8 37.92 −0.33 37.56 3.20 × 10−8 35.98 −4.45 40.42 2.74 × 10−8

30 35 40 37.68 1.53 39.21 1.74 × 10−8 31.80 −5.90 37.71 1.90 × 10−8 43.09 −0.71 33.81 2.74 × 10−8

30 10 20 40.30 −3.64 36.65 1.74 × 10−8 38.61 −2.29 36.31 1.73 × 10−8 27.33 −4.04 31.38 1.75 × 10−8

40 10 40 36.91 0.11 37.03 4.73 × 10−8 37.60 9.42 47.41 4.80 × 10−8 36.25 −2.95 36.21 4.50 × 10−8

WL, SG, WR: %—Deff: m2 s−1.

2.4. Optimization

Response surface methodology was applied to the experimental data using the soft-
ware Minitab. To depict the relationships between the independent variables (X1, X2,
and X3) and the response (Y), a linear regression method of the polynomial model with
10 coefficients were used (Equation (1)).

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β11X2
1 + β22X2

2 + β33X2
3 (1)

where Y is the response variable of removal efficiency (WL, SG, WR, and Deff); β0 is the
estimated coefficient of fitted response regression at the center point; β1, β2, and β3 are
linear coefficients; β12, β13, and β23 are cross-product coefficients; β11, β22, and β33 are
quadratic coefficients.

2.5. Statistical Analysis

A nonparametric Kruskal–Wallis test at a 95% level of confidence was used to deter-
mine the significant difference between parameters (WL, SG, WR, and Deff). The Kruskal–
Wallis nonparametric hypothesis test is a nonparametric analog of the one-way analysis of
variance (ANOVA). It is used when the measurement variable does not meet the normal-
ity assumptions of one-way ANOVA. It is also a popular nonparametric test to compare
outcomes among three or more independent groups.
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2.6. Physical Analysis
2.6.1. Dry Matter

Dry matter or total solids content of pomegranate seeds was calculated according to the
method of Bchir et al. [17]. Approximately, 5 g of seeds were oven dried at 103 ◦C ± 2 ◦C,
until constant weight.

2.6.2. Surface Color Measurement

Color analysis of pomegranate seeds surface was measured with the use of a col-
orimeter (Hunterlab, Reston, VA, USA). The samples were put inside a glass refract cup on
the light pore size of 44.40 mm. The results were presented using the directly measured
parameters: L* (lightness/darkness) ranges from 0 (black) to 100 (white), b* (yellow/blue)
ranges from −100 (blue) to +100 (yellow), and a* (red/green) ranges from −100 (green) to
+100 (red). The measurements were made in triplicate.

The total color difference (∆E) was calculated according to the following
Equation (2) [18].

∆E =

√
(L∗ − L0∗)

2 + (a∗ − a0∗)
2 + (b∗ − b0∗)

2 (2)

where L*, a*, and b* and L0*, a0*, and b0* are respectively the current and the initial color
coordinates of pomegranate seeds’ surface.

2.6.3. Texture Analysis

Texture profile analysis (hardness and toughness) was realized using a texturometer
equipped with a 75 mm compression probe (TA-XT2 Texture Analyzer, Stable Micro
Systems, Godalming, UK). The toughness (N mm) is the energy required to crush the
sample completely, while the hardness (N) of the seed was taken as the force in compression
that corresponded to the breakage of samples. The operating conditions of the instrument
were as follows: 10.0 mm/s post-test speed, 0.5 mm/s-test speed, 1.5 mm/s pre-test speed,
0.10 N trigger force, and 85% sample deformation [19]. The measurements were made
in triplicate.

2.7. Weight Reduction Water Loss, Solid Gain, and Effective Diffusivity

The water loss (WL), weight reduction (WR), and solid gain (SG) were measured
according to the method proposed by Bchir et al. [17] (Equations (3)–(5)).

WR (%) =
(Wi −W f )

Wi
× 100 (3)

SG (%) =

(
Ws f −Wsi

)
Wi

× 100 (4)

WL (%) = SG + WR (5)

where Wf is the final weight of the sample (g); Wi is the initial weight of the sample (g); Wsf
is the final total solids content (g), and Wsi is the initial total solids content (g).

Diffusion coefficients (Deff) were measured using Fick’s second law equation applied
to a sphere [20]. The solution for Fick’s equation law is given by Equation (6).

W =
MC(t)−MCeq

MC0 −MCeq
=

∞

∑
n=1

Bn exp
[
−µn

2F0

]
(6)

where Bn = 6/µn
2; µn = nΠ; F0 = Deff, t/R2; n = 1, 2, 3, . . . where Deff, is the effective

diffusivity of water loss (m2 s−1); n is the number of series terms; R is the equivalent radius
of the sphere (m); r is the distance in the radius direction (m), and t is the time (s). W is the
dimensionless amount of water loss; MC(t) is the amount of water at the instant t (g/g dry
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matter (DM)); MC0 is the initial amount of water (g/g DM), and MCeq is the equilibrium
amount of water loss (g/g DM) calculated using Equation (7).

MCeq = lim
t→∞

(MC0 ±
t

k1 + k2t
) = MC0 ±

1
k2

(7)

k1 and k2 are Peleg’s parameters, and t is the time (s) [21].
Peleg’s equation parameter was obtained using Equation (8) [22].

MC(t) = MC0 ±
t

k1 + k2t
(8)

The diffusion coefficient calculated from Equation (6) has been corrected by the factor
Ψ2 due to the ellipsoid shape of pomegranate seeds as reported by Bchir et al. [20].

3. Results and Discussion
3.1. Statistical Analysis

The results revealed a significant difference (p < 0.05) only for WL (p = 0.029). However,
SG (p = 0.358), WR (p = 0.135), and Deff (p = 0.931) for all osmotic solutions did not present
a significant difference (p > 0.05).

The position of all variables and their interactions in independent variables were
determined using the quadratic model. Analysis of variance and the lack of fit were
checked to evaluate, respectively, the sufficiency of the model and the variation of the data
around the fitted model designed.

The lack of fit of WL, SG, WR, and Deff for the OD of pomegranate seeds in all osmotic
solutions is not significant (p > 0.05) relative to the pure error, showing a good response to
the model. Lack of fit is the variation of the data around the fitted model [20].

Results of regression and ANOVA analysis showed that the models were significant
(0.001 < p < 0.050) for all dependent variables (Tables 3–5).

Furthermore, ANOVA for WR, SG, WL, and Deff showed that the second-order poly-
nomial model was adequate to represent the actual relationship between the response and
the variables with a high value of the coefficient of determination (R2). In fact, ANOVA
analysis for WR, SG, WL, and Deff revealed a high value of R2 (erythritol: WL: R2 = 0.95;
SG: R2 = 0.93; WR: R2 = 0.89; Deff: R2 = 0.90/sorbitol: WL: R2 = 0.90; SG: R2 = 0.96;
WR: R2 = 0.92; Deff: R2 = 0.83/sucrose: WL: R2 = 0.98; SG: R2 = 0.92; WR: R2 = 0.91;
Deff: R2 = 0.95). These results demonstrate that the model did not explain only a very low
percentage of the sample variation for WR, SG, WL, and Deff.

In addition, high adequacy of the model was observed. Indeed, the values of the ad-
justed determination coefficients were very close to 1 (erytriol: WL: adjusted R2 = 0.85; SG:
adjusted R2 = 0.82; WR: adjusted R2 = 0.71; Deff: adjusted R2 = 0.81/sorbitol: WL: adjusted
R2 = 0.72; SG: adjusted R2 = 0.89; WR: adjusted R2 = 0.76; Deff: adjusted R2 = 0.70/sucrose:
WL: adjusted R2 = 0.95; SG: adjusted R2 = 0.79; WR: adjusted R2 = 0.77; Deff: adjusted
R2 =0.86). Therefore, R2 values and adjusted R2 revealed that the models were suitable for
the design space.
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Table 3. Analysis of variance and regression analysis for OD in the erythritol osmotic solution: weight reduction, solid gain, water loss, and effective diffusivity.

Source df

Water Loss Solid Gain Weight Reduction Effective Diffusivity

Coefficient Sum of
Squares p-Value Coefficient Sum of

Squares p-Value Coefficient Sum of
Squares p-Value Coefficient Sum of

Squares p-Value

Model 9 43.70 136.60 0.011 * 4.2 364.74 0.017 * 46.4 263.79 0.050 * 6.35 × 10−8 23.75 0.020 *

A.
Temperature 1 0.07 15.03 0.027 * 0.44 260.36 0.001 * 0.37 151.12 0.004 * 0.0182 × 10−8 9.20 0.004 *

B. Time 1 −0.15 7.62 0.078 −0.59 7.92 0.264 −0.74 30.68 0.076 0.475 × 10−8 9.30 0.014 *

C. ◦Brix 1 0.44 34.18 0.005 * 0.22 5.33 0.349 0.23 66.52 0.022 * 0.0051 × 10−8 0.00 0.996

A2 1 4.97 × 10−3 14.57 0.028 * 5.56 × 10−3 18.23 0.114 −0.62 × 10−3 0.23 0.854 −0.19 × 10−10 1.90 0.069

B2 1 1.79 × 10−3 0.12 0.794 14.4 × 10−3 7.66 0.271 12.5 × 10−3 5.75 0.378 −0.53 × 10−10 1.06 0.146

C2 1 2.71 × 10−3 10.58 0.048 * 3.12 × 10−3 14.02 0.155 0.43 × 10−3 0.26 0.844 0.019 × 10−10 0.05 0.719

A * B 1 4.58 × 10−3 3.35 0.203 0.63 × 10−3 0.06 0.915 −5.09 × 10−3 4.14 0.450 0.37 × 10−10 2.25 0.054

A * C 1 0.50 × 10−3 0.25 0.706 2.66 × 10−3 7.06 0.288 2.16 × 10−3 4.65 0.425 −0.02 × 10−10 0.03 0.776

B * C 1 13.97 × 10−3 48.77 0.003 * 12.82 × 10−3 41.08 0.035 * 1.15 *× 10−3 0.33 0.826 −0.04 × 10−10 0.03 0.770

Residual 5 - 7.81 - - 25.03 - - 30.81 - - 1.78 -

Lack of fit 3 - 7.81 0.098 - 25.03 0.124 - 30.81 0.110 - 1.78 0.202

Pure error 2 - 0.00 - - 0.00 - - 0.00 - - 0.00 -

R-squared - 0.95 - - 0.93 - - 0.89 - - 0.90 - -

Adj
R-squared - 0.85 - - 0.82 - - 0.71 - - 0.81 - -

* Significant terms at the 5% level.
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Table 4. Analysis of variance and regression analysis for osmotic dehydration in the sorbitol osmotic solution: weight reduction, solid gain, water loss, and effective diffusivity.

Source df

Water Loss Solid Gain Weight Reduction Effective Diffusivity

Coefficient Sum of
Squares p-Value Coefficient Sum of

Squares p-Value Coefficient Sum of
Squares p-Value Coefficient Sum of

Squares p-Value

Model 9 39.60 69.20 0.044 * 3.10 499.74 0.006 * 44.70 478.98 0.032 * 5.80 × 10−8 19.17 0.014 *

A.
Temperature 1 0.29 5.67 0.111 0.75 418.71 0.000 * 1.05 326.92 0.002 * 0.007 × 10−8 8.26 0.024 *

B. Time 1 1.25 1.83 0.321 2.39 16.23 0.111 3.63 7.15 0.414 0.43 × 10−8 7.39 0.039 *

C. ◦Brix 1 0.09 19.49 0.016 * 0.17 1.55 0.575 0.07 32.06 0.118 −0.53 × 10−9 0.00 0.650

A2 1 5.15 × 10−3 15.63 0.024 * −1.12 × 10−3 0.74 0.695 −6.25 × 10−3 23.09 0.171 −0.11 × 10−10 0.75 0.377

B2 1 17.00 × 10−3 10.67 0.045 * −25.7 × 10−3 24.38 0.064 42.6 × 10−3 67.10 0.041 * −0.47 × 10−10 0.82 0.358

C2 1 1.30 × 10−3 2.43 0.261 1.91 × 10−3 5.29 0.319 0.63 × 10−3 0.56 0.812 0.81 × 10−11 0.96 0.324

A * B 1 0.39 × 10−3 0.02 0.904 −9.19 × 10−3 13.50 0.138 −9.58 × 10−3 14.67 0.258 0.22 × 10−10 0.81 0.362

A * C 1 3.30 × 10−3 10.89 0.044 * 0.56 × 10−3 0.31 0.800 −2.74 × 10−3 7.52 0.403 −0.03 × 10−11 0.01 0.970

B * C 1 4.78 × 10−3 5.72 0.110 −8.33 × 10−3 17.36 0.102 −3.55 × 10−3 3.14 0.580 −0.01 × 10−10 0.01 0.970

Residual 5 - 7.58 - - 21.65 - - 45.11 - - 4.02 -

Lack of fit 3 - 7.58 0.084 - 21.65 0.230 - 45.11 0.078 - 4.02 0.301

Pure error 2 - 0.00 - - 0.00 - - 0.00 - - 0.00 -

R-squared - 0.90 - - 0.96 - - 0.92 - - 0.83 - -

Adj
R-squared - 0.72 - - 0.89 - - 0.76 - - 0.70 - -

* Significant terms at the 5% level.
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Table 5. Analysis of variance and regression analysis for OD in the sucrose osmotic solution: weight reduction, solid gain, water loss, and effective diffusivity.

Source df

Water Loss Solid Gain Weight Reduction Effective Diffusivity

Coefficient Sum of
Squares p-Value Coefficient Sum of

Squares p-Value Coefficient Sum of
Squares p-Value Coefficient Sum of

Squares p-Value

Model 9 32.30 1267.60 0.001 * 0.65 41.41 0.023 * 40.50 219.23 0.029 * 4.23 × 10−8 17.35 0.008 *

A.
Temperature 1 0.49 1068.14 0.000 * 0.123 32.41 0.001 * −0.07 19.02 0.078 0.027 × 10−8 11.06 0.000 *

B. Time 1 2.24 149.39 0.002 * −0.55 0.021 0.866 4.78 14.83 0.108 0.10 × 10−8 5.36 0.002 *

C. ◦Brix 1 0.19 8.95 0.217 0.057 0.124 0.683 −0.23 0.25 0.811 0.017 × 10−8 0.35 0.210

A2 1 2.93 × 10−3 5.07 0.337 2.86 × 10−3 4.848 0.043 * 2.46 × 10−3 3.57 0.382 0.31 × 10−11 0.05 0.586

B2 1 −23.6 × 10−3 20.50 0.086 6.99 × 10−3 1.804 0.160 60.9 × 10−3 136.91 0.002 * 0.05 × 10−10 0.01 0.982

C2 1 2.12 × 10−3 6.49 0.283 −0.45 × 10−3 0.29 0.535 −2.79 × 10−3 11.24 0.150 0.43 × 10−11 0.26 0.268

A * B 1 1.41 × 10−3 0.32 0.800 1.78 × 10−3 0.50 0.422 −4.95 × 10−3 3.92 0.361 0.50 × 10−11 0.04 0.648

A * C 1 2.70 × 10−3 7.26 0.259 1.09 × 10−3 1.20 0.236 2.71 × 10−3 7.33 0.228 −0.35 * 1012 0.01 0.936

B * C 1 1.39 × 10−3 0.48 0.756 −1.06 × 10−3 0.28 0.545 9.39 × 10−3 22.02 0.063 −0.95 × 10−11 0.22 0.302

Residual 5 - 22.43 - - 3.31 - - 19.45 - - 0.85 -

Lack of fit 3 - 22.43 0.101 - 3.31 0.527 - 19.45 0.317 - 0.85 0.152

Pure error 2 - 0.00 - - 0.00 - - 0.00 - - 0.00 -

R-squared - 0.98 - - 0.92 - - 0.91 - - 0.95 - -

Adj
R-squared - 0.95 - - 0.79 - - 0.77 - - 0.86 - -

* Significant terms at the 5% level.
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3.2. Effect of Osmotic Agents on WL, SG, WR, and Deff

3.2.1. Water Loss

WL is a major parameter of mass transfer that shows the efficiency of the osmotic
dehydration process. Tables 3–5 show the analysis of variance and regression analysis
for weight reduction, water loss, solid gain, and effective diffusivity during the OD of
pomegranate seeds in erythritol, sorbitol, and sucrose osmotic solution. A sucrose osmotic
agent was used as a reference.

The linear term of ◦Brix had the most significant (p < 0.05) effect on water loss
when using erythritol and sorbitol osmotic solutions. Comparable results were found
by Khan et al. [23] showing the enhancement of the solution concentration resulting in
an increase of the osmotic pressure gradients and, hence, higher WL in solutions that
contained xylitol, sorbitol, and erythritol agents. On the other hand, the linear term of
time and temperature have the most significant (p < 0.05) effect on WL when using sucrose
as an osmotic agent. The impact of temperature (45 ◦C and 60 ◦C) on the OD process
was confirmed by Devic et al., [24]. In addition, Ferreari and Hubinger [25] revealed that
temperature and time have a significant impact on water transfer during the OD of apricots
and melon in sucrose osmotic solution. The quadratic terms for ◦Brix and temperature
and the interaction between ◦Brix and time have a significant (p < 0.05) effect on the WL
of pomegranate seeds subjected to OD in erythritol osmotic solution. The use of sorbitol
as an osmotic agent revealed another terms that has a significant (p < 0.05) impact on the
WL, such as the interaction between temperature–◦Brix and the quadratic term of time
and temperature.

The coefficient values (Tables 3–5) show the maximum positive contribution of ◦Brix
(β = 0.442) followed by temperature (β = 0.067) when using the erythritol agent. These
results show an enhancement in WL with an increase in sugar concentration and tempera-
ture. This could be due to the large osmotic driving force between the dilute sap of seeds
and the surrounding hypertonic medium. Cichowska et al. [11] showed that the increase
of temperature leads to irreversible damage and a loss of selectivity of the cell membrane
involving a higher osmotic pressure at the product/solution interface. Moreover, higher
temperature raised diffusion coefficients, inducing higher mass transfer rates [17].

Pomegranate seeds subjected to treatment with sucrose show the maximum positive
contribution of time (β = 2.240) followed by temperature (β = 0.498). Other researchers
revealed similar results during the OD of different types of products [8–10,12,17] using a
sucrose solution.

Since the interaction of time–◦Brix and temperature–◦Brix, for both erythritol and
sorbitol osmotic solution, had a significant effect (p < 0.05) on WL, the contour plot as
showed in Figure 1 was considered. Results showed that the enhancement of ◦Brix and
temperature increased WL when using the sorbitol solution (time was held constant:
60 min). On the other hand, the increase of ◦Brix during a short time improved WL when
using erythritol osmotic agent (temperature was held constant: 50 ◦C). Moreira et al. [26],
Khan et al. [23], and Cichowska et al. [11] showed that the optimal time for the osmotic
dehydration of apple slices using erythritol solution correspond to the beginning of the
process (3 h).

The coefficients estimated for WL were more accentuated in samples treated with
solutions that contained erythritol (43.7), followed by sorbitol (39.6) and sucrose (32.3).
Similar results were showed in research by Mendonça et al. [4] during the OD of strawberry
slices using sucrose and sorbitol osmotic solutions (60 ◦Brix; 6 h; 30 ◦C). They found
that higher values of WL were found when the erythritol osmotic agent was used. In
addition, Cichowska et al. [11] revealed that mass transfer during the osmotic dehydration
in a 40% solution concentration of xylitol and erythritol was more effective compared
to a sucrose solution. In addition, Kowalska et al. [1] showed that the highest WL was
observed in apples osmotically dehydrated using erythritol solution during 1440 min. This
fact could be due to the different molecular weights of osmotic agents. In fact, erythritol
has a lower molecular weight (122.10 g/mol), followed by sorbitol (182.17 g/mol) and
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sucrose (342.3 g/mol). Therefore, an osmotic agent with a small molecular weight favors
the highest WL.
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osmotic agents.

The models as fitted (Tables 3–5) correspond to Equations (9)–(11):

WL (%)(Erythritol) = 43.7 + 0.067 Temperature + 0.442 ◦Brix +0.00497 Temperature *
Temperature + 0.00271 ◦Brix * ◦Brix + 0.01397 Time * ◦Brix

(9)

WL (%)(Sorbitol) = 39.6 + 0.097 ◦Brix + 0.00515 Temperature *
Temperature + 0.017 Time * Time + 0.0033 Temperature * ◦Brix

(10)

WL (%)(Sucrose) = 32.3 + 0.498 Temperature + 2.240 Time (11)

3.2.2. Solid Gain (SG)

Results in Tables 3–5 revealed that only the linear term of temperature was highly
significant at p < 0.05 for all osmotic agents. In fact, the enhancement of temperature
decreases the viscosity of the osmotic solution and the resistance to the mass transfer
between the osmotic solution and the surface, thus facilitating the outflow of water from
the sample and the diffusion rate of solute into the sample [25].

The coefficients estimated for SG was higher in samples treated with erythritol (4.2)
than the sorbitol (3.1) and sucrose (0.65) osmotic agents. This difference could be due to
the different molecular weights. Indeed, solutes with high molecular weight are more
likely to be retained on the surface of the tissue. Otherwise, smaller molecules diffuse
more easily through the product matrix [27,28]. Therefore, erythritol diffuses more easily
through the cells favoring the increase of SG, due to its lower molecular weight. Similar
results were reported previously with the OD of yacon in solutions of erythritol, sorbitol,
maltitol, xylitol, and sucrose [4]. The same relationship was shown with another food
matrix. Indeed, Sritongtae et al. [29] and Mendonça et al. [4] observed a similar situation
showing the highest SG in yacon roots with an erythritol solution. The preservation of the
original characteristics of the food was better when the solid gain was lower [30]. Therefore,
as erythritol favored a great SG, it features a disadvantage compared to the other tested
osmotic agents.



Horticulturae 2021, 7, 268 11 of 15

The model developed in the uncoded form of the process variable is given in
Equations (12)–(14):

SG (%)(Erythritol) = 4.2 + 0.440 Temperature + 0.01282 ◦Brix * Time (12)

SG (%)(Sorbitol) = 3.1 + 0.755 Temperature (13)

SG (%)(Sucrose) = 0.65 + 0.1233 Temperature + 0.00286 Temperature * Temperature (14)

3.2.3. Weight Reduction (WR)

Table 3 shows that the linear terms of temperature and ◦Brix have a significant
(p < 0.05) impact on the WR when the erythritol osmotic agent was used. On the other hand,
the quadratic term of time and the linear term of temperature have a significant impact
(p < 0.05) on WR when using the sorbitol solution. Maldonado et al. [31] revealed similar
results showing that the temperature, the time, and their interaction were important factors
affecting WR during the OD of yacon slices. Table 5 shows that only the quadratic term
of time has an influence on WR when using the sucrose agent. Similar behavior has been
reported in other studies of OD, such as Taiwo et al. [32], who worked with strawberries in
a sucrose osmotic solution.

The coefficient values indicate that the temperature has the maximum positive con-
tribution for the erythritol and sorbitol osmotic agents (βerythritol = 0.370; βsorbitol = 1.049),
followed by ◦Brix (βerythritol = 0.234) and time2 (βsorbitol = 0.0426). The coefficient estimated
for WR (46.4) when using the erythritol osmotic agent was higher than that using the
sorbitol (44.7) or sucrose (40.5) agent. Results indicate the significant influence of low
molecular weight in enhancing the WR of seeds during the OD process.

The experimental results for the WR were fitted well to Equations (15)–(17) after the
elimination of nonsignificant terms:

WR (%)(Erythritol) = 46.4 + 0.370 Temperature + 0.234 ◦Brix (15)

WR (%)(Sorbitol) = 44.7 + 1.049 Temperature + 0.0426 Time * Time (16)

WR (%)(Sucrose) = 40.5 + 0.0609 Time * Time (17)

3.2.4. Effective Diffusivity (Deff)

The impact of diffusivity values for water and the experimental data of Peleg’s equa-
tion parameters (K1 and K2) revealed a good fit to the experimental data, as the average
correlation coefficients (R2) were very close to 1 (0.9999). The experimental values for
Deff were an order of magnitude between 1.75 × 10−8 < Deff < 4.74 × 10−8 for erythri-
tol; 1.73 × 10−8 < Deff < 4.80 × 10−8 for sorbitol and 1.20 × 10−8 < Deff < 4.70 × 10−8

for the sucrose agent. The Deff shows the same order of magnitude for all models and
were analogous to those published by different food matrices, like strawberry, mango,
pineapple, and jumbo squid [33–35]. Results showed that Deff did not varied significantly
using any osmotic agents. Tables 3–5 demonstrate that only the linear term of time and
temperature were highly significant (p < 0.05) for all osmotic solutions. In addition, Deff
indicates the maximum positive contribution of time (erythritol: β = 0.475 × 10−8; sor-
bitol: β = 0.432 × 10−8; sucrose: β = 0.101 × 10−8) followed by temperature (erythritol:
β = 0.0182 × 10−8; sorbitol: β = 0.007 × 10−8; sucrose: β = 0.0275 × 10−8).

The estimated coefficients for the Deff of water when using polyol solutions (erythritol:
6.35× 10−8; sorbitol: 5.80× 10−8) have the highest value compared to the sucrose treatment
(4.23 × 10−8). Therefore, the use of polyol increases water diffusivity from seeds to the
osmotic solution compared to the sucrose agent. Indeed, Kowalska et al. [1] reported
that the smaller the molecular weight, the greater the diffusivity of the substance in
the dehydrated apples. In addition, Corrêa et al. [30] indicated similar results showing
that the erythritol and sorbitol osmotic agent promoted a higher chemical potential of
the osmotic solution and, consequently, more intense flows of water and solids through
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the yacon matrix. Mendonça et al. [4] showed that the Deff for water and solids was
higher for samples treated in solutions of lower molecular weight solutes. The Deff results
corroborated our previous results for WL using polyol agents.

The models as fitted are given in Equations (18)–(20):

Deff (%)(Erythritol) = 6.35 × 10−8 + 0.0182 × 10−8 Temperature + 0.475 × 10−8 Time (18)

Deff (%)(Sorbitol) = 5.80 × 10−8 + 0.007 × 10−8 Temperature + 0.432 × 10−8 Time (19)

Deff (%)(Sucrose) = 4.23 × 10−8 + 0.0275 × 10−8 Temperature + 0.101 × 10−8 Time (20)

3.2.5. Optimization and Validation of the Models

According to the software optimization step, the response SG was defined as “mini-
mum” and the responses WR, WL, and Deff were defined as “maximum”. The optimum con-
ditions for erythritol, sorbitol, and sucrose agents were found to be ◦Brix: 40/27.77/31.81;
temperature: 30/37.67/42.52; time: 10/13.03/43.33, respectively, with an overall desirabil-
ity value of 0.7423/0.8015/0.8720. At this optimum condition, WL, WR, SG, and Deff were
found to be 41.34%, 40.01%, 1.98%, and 4.15 × 10−8 m2/s, respectively, for the erythritol
agent. The optimum condition for sorbitol agents corresponds to: WL: 38.61%; SG: −0.37%;
WR: 37.77%; Deff: 4.01 × 10−8 m2/s. The use of sucrose as an osmotic agent decreased
WL compared to the other osmotic agents. In fact, the optimum condition corresponds
to: WL: 36.17%; SG: −4.18; WR: 32.81; Deff: 3.90 × 10−8 m2/s. This fact is due to the low
molecular weight of erythritol and sorbitol compared to sucrose, which involves an in-
crease of osmotic pressure. Cichowska et al. [11] revealed that erythritol (6396.87 kPa) and
xylitol (5134.16 kPa) have the higher osmotic pressure because of a lower molecular weight
compared to maltitol (2270.28 kPa) and sucrose (2080.46 kPa). Results for the optimum SG
showed that erythritol favored a high SG; it features a disadvantage compared to the other
tested osmotic agents, despite the high WL%. Similar findings were indicated by Barbosa
Sritongtae et al. [29], Viana et al. [27], and Mendonça et al. [4].

3.2.6. Predictive Capacity of the Response Surface Models

Three experiments were performed under the recommended optimum conditions
to confirm the predictive capacity of the response surface models. The observed experi-
mental values were found to be for WL: 36.56% (sorbitol), 39.14% (erythritol), and 33.09%
(sucrose); WR: 34.26% (sorbitol), 36.63% (erythritol), and 30.85% (sucrose); SG: −1.03%
(sorbitol), 1.52% (erythritol), and −6.40% (sucrose); Deff: 4.28 × 10−8 m2/s (sorbitol),
4.55 × 10−8 m2/s (erythritol), and 4.16 × 10−8 m2/s (sucrose), respectively. The difference
between the experimental and the predicted values were very minor, exhibiting the ad-
equacy of the models fitted by response surface methodology and thus, confirming the
predictability of WL, Deff, SG, and WR in the experimental conditions used.

The preservation of the original characteristics of the food was positively influenced
by a low amount of SG [30]. Therefore, osmotically dehydrated seeds with a small value of
SG connected with a high rate of WL are desirable. Based on our result, the use of sorbitol
as an osmotic agent satisfies all these conditions compared to erythritol and sucrose agents.

3.3. The Effect of Polyol on Color Changes of Pomegranate Seeds during OD Process

As reported by Mothibe et al. [36], color is the principal parameter that customers use
in order to decide the quality of products. Using the recommended optimum condition
and during the OD of pomegranate seeds in erythritol and sorbitol solutions, an increase of
brightness (L* : from 29.82 to ~45.2) and parameter b* (from 9.81 to ~15.35) and a decrease
of parameter a* (from 18.98 to ~7.20) were shown. The brightness was higher, probably due
to sugar-coating after an OD process. This substance has a high crystallization capacity [32].
In addition, this variation could be also explained by the nonenzymatic browning and
the migration of pigment (anthocyanin) from the pulp to the solution [20]. The OD of
seeds in a sucrose solution presents a small difference (L*: 35.08 ± 0.01; a*: 11.12 ± 0.05; b*:
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10.01 ± 0.01), characterized by the lowest L* and b* values and the highest a* parameter.
This variation between reference (sucrose) and polyol agent (erythritol, sorbitol) could
be due to the different optimal conditions. The color difference (∆E) showed the greater
impact of the polyol osmotic agent during the OD of pomegranate seeds, taking fresh seeds
as a reference. Indeed, the seeds treated with erythritol have higher ∆E (25.59), followed
by sorbitol (∆E: 22.57) and sucrose (∆E: 10.05). These variations could be due to the higher
mass transfer (water, pigment, sugar etc.) induced by polyol agents (erythritol and sorbitol).
In fact, Zaouay and Mars [37] indicated a significant loss of anthocyanin pigment from
pomegranate seeds during the OD process.

3.4. The Effect of Polyol on Texture Changes

Using the recommended optimum condition for sucrose and sorbitol, results showed
a significant difference (p < 0.05) between the texture of different seeds compared to fresh
seeds (Figure 2). Indeed, hardness values of OD seeds in sorbitol (86.0 ± 1 N) and sucrose
(78.0 ± 1 N) osmotic solutions were higher than that of fresh seeds (56.5 ± 0.50 N). This
fact was due to the high amount of WL and SG during the osmotic dehydration of seeds in
sorbitol solution. In fact, WL involves the plasmolysis of cells, and SG gives consistency to
the tissues and thus strengthens the cell structure. Nunes et al. [38] and Chauhan et al., [28]
showed that small molecules such as sorbitol diffuse more easily through the product
matrix during the OD process and interact with the cell wall and middle lamella, which
might result in the formation of a jam-like structure that gives consistency to the tissues.
Nevertheless, fresh seeds had the highest toughness values (fresh: 190± 1.4 N mm; sorbitol:
171.25 ± 2.5 N; sucrose: 178.50 ± 1.5). Therefore, the energy required to crush the sample
completely decreased with the increase of WL in seeds. This could be explained by cell
membrane deterioration during the OD process involving the loss of binding capacity
among cell walls. Similar results were reported previously with the OD of pomegranate
seeds using sucrose osmotic solutions [39].
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4. Conclusions

The polyols, erythritol, and sorbitol, are suitable for use as osmotic agents in the
dehydration of pomegranate seeds. Using these solutions delivers an alternative to the
use of sucrose, which is usually used in the food industry. The optimal conditions for
maximum WL (38.61%), WR (37.77%) and Deff (4.01 × 10−8 m2/s) and minimum solid
gain (−0.37%) were 13.03 min, 27.77 ◦Brix, and 37.7 ◦C for the OD of seeds using the
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sorbitol osmotic solution. In fact, the use of erythritol and sucrose gives the maximum
SG and the minimum WL, respectively. Considering that a lower SG is highly desirable,
the erythritol presents a distinct disadvantage. Therefore, the optimal condition for the
sorbitol osmotic agent seems to be the most suitable for the OD of pomegranate seeds
since it respects the general condition of minimum SG and maximum WL. The use of Peleg
and Fick mathematical models revealed that effective diffusivities of water obtained for
all osmotic agents were mainly influenced by time and temperature. The texture and the
color difference (∆E) showed the important effect of polyol osmotic agents during the OD
of pomegranate seeds. In fact, polyol with a low molecular weight strengthened the cell
structure, involving an increase in the seeds’ hardness. Furthermore, seed colors became
brighter and more attractive.

These results suggest that polyols could be promising compounds for the OD of
pomegranate seeds, giving a higher mass transfer than a sucrose agent.
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