Determination of the Elements Composition in Sempervivum tectorum L. from Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
- (i).
- the preparation of fresh juice after squeezing;
- (ii).
- the preparation of a fresh homogeneous sample mix after milling for the determination of bioavailable fraction;
- (iii).
- the preparation of dry mass after oven drying to a constant weight at 40 °C and homogenization by careful grinding.
2.1. Determination of Total Content of Elements
2.2. Determination of Bioavailable Fraction in Fresh Leaves
2.3. Determination of Elements in Juice Obtained by Squeezing of Fresh Leaves
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hájek, M.; Hájková, P.; Apostolova, I.; Horsák, M.; Plášek, V.; Shaw, B.; Lazarova, M. Disjunct Occurrences of Plant Species in the Refugial Mires of Bulgaria. Folia Geobot. 2009, 44, 365–386. [Google Scholar] [CrossRef]
- Parolo, G.; Abeli, T.; Rossi, G.; Dowgiallo, G.; Matthies, D. Biological flora of Central Europe: Leucojum aestivum L. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 319–330. [Google Scholar] [CrossRef]
- Evstatieva, L.; Hardalova, R.; Stoyanova, K. Medicinal plants in Bulgaria: Diversity, legislation, conservation and trade. Phytol. Balc. 2007, 13, 415–427. [Google Scholar]
- Blázovics, A.; Fehér, J.; Fehér, E.; Kery, A.; Petri, G. Liver protecting and lipid lowering effects of Sempervivum tectorum extract in the rat. Phytother. Res. 1993, 7, 98–100. [Google Scholar] [CrossRef]
- Šentjurc, M.; Nemec, M.; Connor, H.D.; Abram, V. Antioxidant activity of Sempervivum tectorum and its components. J. Agric. Food Chem. 2003, 51, 2766–2771. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, F.; De Marino, S.; Parisi, M.; Festa, C.; Castaldo, M.; Finamore, C.; Duraturo, F.; Zollo, C.; Ammendola, R.; Zollo, F.; et al. Wound healing activity and phytochemical screening of purified fractions of Sempervivum tectorum L. leaves on HCT 116. Phytochem. Anal. 2019, 30, 524–534. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Fehér, E.; Vinkler, P.; Kéry, Á.; Blázovics, A. Metabolic Alterations of Toxic and Nonessential Elements by the Treatment of Sempervivum tectorum Extract in a Hyperlipidemic Rat Model. Toxicol. Pathol. 2004, 32, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muselin, F.; Trif, A.; Stana, L.G.; Romeo, C.T.; Corina, G.; Ioan, M.; Dumitrescu, E. Protective Effects of Aqueous Extract of Sempervivum tectorum L. (Crassulaceae) on Aluminium-Induced Oxidative Stress in Rat Blood. Trop. J. Pharm. Res. 2014, 13, 179–184. [Google Scholar]
- Stojković, D.; Barros, L.; Petrović, J.; Glamoclija, J.; Santos-Buelga, C.; Ferreira, I.; Soković, M. Ethnopharmacological uses of Sempervivum tectorum L. in southern Serbia: Scientific confirmation for the use against otitis linked bacteria. J. Ethnopharmacol. 2015, 176, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Alberti, Á.; Béni, S.; Lackó, E.; Riba, P.; Al-Khrasani, M.; Kery, A. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice. J. Pharm. Biomed. Anal. 2012, 70, 143–150. [Google Scholar] [CrossRef]
- Abram, V.; Donko, M. Tentative identification of polyphenols in Sempervivum tectorum and assessment of the antimicrobial activity of Sempervivum L. J. Agric. Food Chem. 1999, 47, 485–489. [Google Scholar] [CrossRef]
- Gentscheva, G.; Karadjova, I.; Buhalova, D.; Predoeva, A.; Nikolova, K.; Aleksieva, I. Determination of essential and toxic elements in berries from Bulgaria (Plovdiv region). C. R. Acad. Bulg. Sci. 2014, 67, 1241–1248. [Google Scholar]
- Graham, R.D.; Stangoulis, J.C.R. Trace Element Uptake and Distribution in Plants. J. Nutr. 2003, 133, 1502S–1505S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.B.; Connolly, E.L. Plant-Soil Interactions: Nutrient Uptake. Nat. Educ. Knowl. 2013, 4, 2. [Google Scholar]
- Gentscheva, G.; Stafilov, T.; Ivanova, E. Determination of some essential and toxic elements in herbs from Bulgaria and Macedonia using atomic spectrometry. Eurasian J. Anal. Chem. 2010, 5, 104–111. [Google Scholar]
- Mihaljev, Z.; Zivkov-Balos, M.; Cupić, Z.; Jaksić, S. Levels of some microelements and essential heavy metals in herbal teas in Serbia. Acta Pol. Pharm. 2014, 71, 385–391. [Google Scholar]
- Pavlova, D.; Karadjova, I. Toxic Element Profiles in Selected Medicinal Plants Growing on Serpentines in Bulgaria. Biol. Trace Elem. Res. 2013, 156, 288–297. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Assessing the Quality of Herbal Medicines with Reference to Contaminants and Residue; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Gasser, U.; Klier, B.; Kuhn, A.; Steinhoff, B. Current findings on the heavy metal content in herbal drugs. Pharmeuropa Sci. Notes 2009, 1, 37–49. [Google Scholar]
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; et al. Heavy Metal Contaminations in Herbal Medicines: Determination, Comprehensive Risk Assessments, and Solutions. Front. Pharmacol. 2020, 11, 595335. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Cai, Q.; Luo, Q.; Li, X.; Li, X.; Zhang, K.; Zhu, W. In-reactor engineering of bioactive aliphatic polyesters via magnesium-catalyzed polycondensation for guided tissue regeneration. Chem. Eng. J. 2021, 424, 130432. [Google Scholar] [CrossRef]
- Dudina, M.O.; Suslova, I.R.; Khalzova, M.S.; Dergunova, J.V.; Kogan, E.A.; Roshchin, D.A.; Samyshina, E.A.; Morozov, M.A.; Dydykin, S.S. Molecular and cellular mechanisms of acute cytotoxic liver damage as potential biological targets for magnesium-containing cell-protective drug. Res. Results Pharmacol. 2018, 4, 9–15. [Google Scholar] [CrossRef]
- Labuschagné, F.J.W.J.; Wiid, A.; Venter, H.P.; Gevers, B.R.; Leuteritz, A. Green synthesis of hydrotalcite from untreated magnesium oxide and aluminum hydroxide. Green Chem. Lett. Rev. 2018, 11, 18–28. [Google Scholar] [CrossRef] [Green Version]
Element, mg/kg | Determined (Mean ± sd) | Certified (Mean ± sd) | Recovery, % (Mean) | LOQ/LOD, mg/kg |
---|---|---|---|---|
Al (ICP-MS) | 594 ± 4 | 598.4 ± 7.1 | 99.3 | 0.10/0.35 |
As (ICP-MS) | 0.1088 ± 0.056 | 0.1126 ± 0.0024 | 96.6 | 0.02/0.06 |
Cd (ICP-MS) | 1.456 ± 0.016 | 1.517 ± 0.027 | 96 | 0.02/0.05 |
Ca (FAAS) | 49,441 ± 342 | 50,450 ± 550 | 98 | 2/6 |
Cr (ICP-MS) | 1.92 ± 0.04 | 1.988 ± 0.034 | 96.6 | 0.05/0.15 |
Co (ICP-MS) | 0.5588 ± 0.021 | 0.5773 ± 0.0071 | 96.8 | 0.02/0.06 |
Cu (ICP-MS) | 4.56 ± 0.11 | 4.70 ± 0.14 | 97 | 0.1/0.3 |
Fe (FAAS) | 363.8 ± 2.1 | 367.5 ± 4.3 | 99 | 3/10 |
Mn (FAAS) | 243.8 ± 9.3 | 246.3 ± 7.1 | 99 | 3/10 |
Hg (ICP-MS) | 0.0329 ± 0.0043 | 0.0341 ± 0.0015 | 96.5 | 0.02/0.06 |
Ni (ICP-MS) | 1.536 ± 0.031 | 1.582 ± 0.041 | 97.1 | 0.02/0.05 |
K (FAAS) | 26,490 ± 312 | 26,760 ± 480 | 99 | 5/15 |
Na (FAAS) | 134.3 ± 2.5 | 136.1 ± 3.7 | 98,7 | 5/15 |
V (ICP-MS) | 0.809 ± 0.042 | 0.835 ± 0.034 | 96.9 | 0.02/0.06 |
Zn (FAAS) | 30.02 ± 0.56 | 30.94 ± 0.55 | 97 | 1/3 |
K g kg−1 | Ca g kg−1 | Mg g kg−1 | Na mg kg−1 | Fe mg kg−1 | Mn mg kg−1 | Zn mg kg−1 | |
---|---|---|---|---|---|---|---|
city soils (A), number of plant samples-4 | |||||||
mean | 18.0 | 107 | 10.6 | 93.6 | 325 | 35.4 | 49.2 |
min | 9.36 | 102 | 4.39 | 16.4 | 188 | 13.9 | 45.1 |
max | 29.9 | 115 | 12.3 | 234.9 | 398 | 65.4 | 51.7 |
village soils (B), number of plant samples-5 | |||||||
mean | 11.1 | 116 | 11.6 | 206 | 384 | 30.7 | 79.0 |
min | 7.59 | 84.7 | 7.71 | 176 | 328 | 17.4 | 42.2 |
max | 12.9 | 132 | 18.2 | 230 | 491 | 50.9 | 135 |
fertilized soils (C), number of plant samples-4 | |||||||
mean | 26.3 | 66.2 | 5.97 | 74.4 | 358 | 273 | 30.5 |
min | 10.7 | 60.7 | 3.4 | 67.2 | 243 | 102 | 26.7 |
max | 31.4 | 103 | 7.81 | 112 | 427 | 283 | 44.8 |
mountain soils (D), number of plant samples-4 | |||||||
mean | 15.7 | 61.0 | 5.68 | 125 | 247 | 12.1 | 29.2 |
min | 7.21 | 57.3 | 3.84 | 102 | 197 | 10.5 | 25.5 |
max | 21.3 | 85.1 | 10.5 | 131 | 343 | 18.4 | 37.8 |
Al mg kg−1 | Co mg kg−1 | Cu mg kg−1 | Ba mg kg−1 | Mo mg kg−1 | V mg kg−1 | Cr mg kg−1 | |
---|---|---|---|---|---|---|---|
A | |||||||
mean | 23.3 | 0.46 | 7.91 | 51.0 | 0.86 | <0.02 | 0.42 |
min | 17.0 | 0.32 | 5.63 | 48.5 | <0.02 * | <0.02 | 0.37 |
max | 32.6 | 0.56 | 11.0 | 53.9 | 2.53 | <0.02 | 0.45 |
B | |||||||
mean | 61.1 | 0.39 | 8.12 | 65.4 | 1.96 | 0.10 | 0.63 |
min | 38.5 | 0.35 | 5.33 | 50.6 | <0.02 | <0.02 | 0.49 |
max | 99.6 | 0.47 | 10.7 | 74.0 | 5.62 | 0.23 | 0.90 |
C | |||||||
mean | 257.6 | 2.13 | 9.14 | 145.8 | <0.02 | 0.05 | 0.76 |
min | 94.5 | 1.12 | 7.43 | 85.3 | <0.02 | <0.02 | 0.37 |
max | 301.2 | 2.54 | 12.32 | 153.2 | <0.02 | 0.17 | 0.94 |
D | |||||||
mean | 18.5 | 0.24 | 7.32 | 38.7 | <0.02 | <0.02 | 0.38 |
min | 13.4 | 0.05 | 4.91 | 29.5 | <0.02 | <0.02 | 0.23 |
max | 21.3 | 0.32 | 8.94 | 50.4 | <0.02 | <0.02 | 0.42 |
Cd mg kg−1 | Pb mg kg−1 | As mg kg−1 | Hg mg kg−1 | Ni mg kg−1 | |
---|---|---|---|---|---|
A | |||||
mean | 0.27 | 2.66 | 0.14 | 0.05 | 2.03 |
min | 0.17 | 1.56 | <0.02 | <0.02 | 1.32 |
max | 0.46 | 3.99 | 0.36 | 0.10 | 2.38 |
B | |||||
mean | 0.23 | 1.05 | 0.05 | 0.03 | 2.40 |
min | <0.02 | 0.63 | 0.03 | <0.02 | 2.19 |
max | 0.26 | 1.42 | 0.09 | 0.05 | 2.73 |
C | |||||
mean | 0.10 | 3.18 | 0.07 | 0.03 | 4.51 |
min | <0.02 | 1.43 | <0.02 | <0.02 | 1.29 |
max | 0.27 | 4.02 | 0.12 | 0.05 | 4.78 |
D | |||||
mean | <0.02 | 1.29 | 0.08 | 0.02 | 0.89 |
min | <0.02 | 0.54 | <0.02 | <0.02 | 0.32 |
max | <0.02 | 1.78 | 0.11 | 0.05 | 1.15 |
Ca g kg−1 | Mg g kg−1 | Zn mg kg−1 | Mn mg kg−1 | Fe mg kg−1 | |
---|---|---|---|---|---|
B | 5.07 | 0.40 | 3.55 | 1.97 | 16.5 |
C | 2.95 | 0.44 | 3.58 | 9.02 | 20.0 |
D | 3.16 | 0.37 | 2.37 | 1.71 | 12.3 |
Elements | A | Elements | A |
---|---|---|---|
K, mg L−1 | 133 | Na, mg L−1 | 0.7 |
Ca, mg L−1 | 561 | Zn, mg L−1 | 1.95 |
Mg, mg L−1 | 2845 | Al, mg L−1 | 3.45 |
Fe, mg L−1 | 0.07 | Cu, mg L−1 | 0.28 |
Mn, mg L−1 | 2.40 | Cr, mg L−1 | 0.29 |
Ca Bioavaible Fraction, % | Mg Bioavaible Fraction, % | Zn Bioavaible Fraction, % | Mn Bioavaible Fraction, % | Fe Bioavaible Fraction, % | |
---|---|---|---|---|---|
B | 4.37 | 3.45 | 4.49 | 6.42 | 4.30 |
C | 4.46 | 5.63 | 11.7 | 3.30 | 5.59 |
D | 5.18 | 6.51 | 8.12 | 14.1 | 4.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentscheva, G.; Karadjova, I.; Radusheva, P.; Minkova, S.; Nikolova, K.; Sotirova, Y.; Yotkovska, I.; Andonova, V. Determination of the Elements Composition in Sempervivum tectorum L. from Bulgaria. Horticulturae 2021, 7, 306. https://doi.org/10.3390/horticulturae7090306
Gentscheva G, Karadjova I, Radusheva P, Minkova S, Nikolova K, Sotirova Y, Yotkovska I, Andonova V. Determination of the Elements Composition in Sempervivum tectorum L. from Bulgaria. Horticulturae. 2021; 7(9):306. https://doi.org/10.3390/horticulturae7090306
Chicago/Turabian StyleGentscheva, Galia, Irina Karadjova, Poli Radusheva, Stefka Minkova, Krastena Nikolova, Yoana Sotirova, Ina Yotkovska, and Velichka Andonova. 2021. "Determination of the Elements Composition in Sempervivum tectorum L. from Bulgaria" Horticulturae 7, no. 9: 306. https://doi.org/10.3390/horticulturae7090306
APA StyleGentscheva, G., Karadjova, I., Radusheva, P., Minkova, S., Nikolova, K., Sotirova, Y., Yotkovska, I., & Andonova, V. (2021). Determination of the Elements Composition in Sempervivum tectorum L. from Bulgaria. Horticulturae, 7(9), 306. https://doi.org/10.3390/horticulturae7090306