Selection and Identification of a Reference Gene for Normalizing Real-Time PCR in Mangos under Various Stimuli in Different Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment Sets
2.2. Total RNA Isolation and cDNA Synthesis
2.3. Primer Design and Real-Time PCR Reaction Conditions
2.4. Data Analysis and Stability Evaluation of the Reference Genes
2.5. Validation of Reference Gene Stability
3. Results
3.1. Primer Validation and the Expression Levels of Candidate Reference Genes
3.2. Analysis of the Stability of the Expression of Candidate Reference Genes
3.2.1. geNorm Analysis
3.2.2. NormFinder Analysis
3.2.3. BestKeeper Analysis
3.2.4. RefFinder Analysis
3.3. Reference Gene Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lebaka, V.R.; Wee, Y.-J.; Ye, W.; Korivi, M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef]
- Mirza, B.; Croley, C.R.; Ahmad, M.; Pumarol, J.; Das, N.; Sethi, G.; Bishayee, A. Mango (Mangifera indica L.): A magnificent plant with cancer preventive and anticancer therapeutic potential. Crit. Rev. Food Sci. Nutr. 2021, 61, 2125–2151. [Google Scholar] [CrossRef] [PubMed]
- Khushtar, M. Nutritional importance and pharmacological activity of Mangifera Indica. World J. Pharm. Pharm. Sci. 2017, 6, 258–273. [Google Scholar] [CrossRef]
- Wang, P.; Luo, Y.; Huang, J.; Gao, S.; Zhu, G.; Dang, Z.; Gai, J.; Yang, M.; Zhu, M.; Zhang, H. The genome evolution and domestication of tropical fruit mango. Genome Biol. 2020, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, X.-G.; Zhang, Q.-J.; Li, K.; Zhang, D.; Shi, C.; Gao, L.-Z. SMRT sequencing generates the chromosome-scale reference genome of tropical fruit mango, Mangifera Indica. BioRxiv 2020. [Google Scholar] [CrossRef]
- Bally, I.S.; Bombarely, A.; Chambers, A.H.; Cohen, Y.; Dillon, N.L.; Innes, D.J.; Islas-Osuna, M.A.; Kuhn, D.N.; Mueller, L.A.; Ophir, R. The ‘Tommy Atkins’ mango genome reveals candidate genes for fruit quality. BMC Plant Biol. 2021, 21, 108. [Google Scholar] [CrossRef]
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nature Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Bustin, S. Invited review Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Chervoneva, I.; Li, Y.; Schulz, S.; Croker, S.; Wilson, C.; Waldman, S.A.; Hyslop, T. Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinf. 2010, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Gachon, C.; Mingam, A.; Charrier, B. Real-time PCR: What relevance to plant studies? J. Exp. Bot. 2004, 55, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- De Kok, J.B.; Roelofs, R.W.; Giesendorf, B.A.; Pennings, J.L.; Waas, E.T.; Feuth, T.; Swinkels, D.W.; Span, P.N. Normalization of gene expression measurements in tumor tissues: Comparison of 13 endogenous control genes. Lab. Investing. 2005, 85, 154–159. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genetics 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Bustin, S.A. Why the need for qPCR publication guidelines?—The case for MIQE. Methods 2010, 50, 217–226. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, L.; Sandford, A.J. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol. Biol. 2005, 6, 4. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, Y.; Wang, S. Selection of reference genes in peanut seed by real-time quantitative polymerase chain reaction. Int. J. Food Sci. Technol. 2011, 46, 2191–2196. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, X.; Sun, M.; Cong, H.; Qiao, F. Evaluation of reference genes for normalizing Real-Time PCR in leaves and suspension cells of Cephalotaxus hainanensis under various stimuli. Plant Methods 2019, 15, 31. [Google Scholar] [CrossRef]
- Gopalam, R.; Rupwate, S.D.; Tumaney, A.W. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica. PLoS ONE 2017, 12, e0186978. [Google Scholar] [CrossRef]
- Zhan, H.; Liu, H.; Wang, T.; Liu, L.; Ai, W.; Lu, X. Selection and validation of reference genes for quantitative real-time PCR of Quercus mongolica Fisch. ex Ledeb under abiotic stresses. PLoS ONE 2022, 17, e0267126. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, J.; Xu, S.; Wang, W.; Liu, T.; Han, C.; Chen, Y.; Kong, L. Selection of reference genes for gene expression normalization in Peucedanum praeruptorum Dunn under abiotic stresses, hormone treatments and different tissues. PLoS ONE 2016, 11, e0152356. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.P.; Li, F.; Ruan, Q.M.; Zhong, X.H. Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. Plant Physiol. Biochem. 2016, 108, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Li, X.; Lin, J.; Wang, Z.; Yang, Q.; Chang, Y. Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear. Acta Physiol. Plant. 2015, 37, 1–16. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Dao, T.; Linthorst, H.; Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 2011, 10, 397–412. [Google Scholar] [CrossRef]
- Mei, Z.; Zhang, H.; Liu, X.; Huang, J.; Pu, J. Cloning and expression analysis of chalcone synthase gene (CHS1) from mango. J. Fruit Sci. 2015, 32, 1077–1084. [Google Scholar]
- Paolacci, A.R.; Tanzarella, O.A.; Porceddu, E.; Ciaffi, M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 2009, 10, 11. [Google Scholar] [CrossRef]
- Caparino, O.; Sablani, S.S.; Tang, J.; Syamaladevi, R.M.; Nindo, C. Water sorption, glass transition, and microstructures of refractance window–and freeze-dried mango (Philippine “Carabao” Var.) powder. Drying Technol. 2013, 31, 1969–1978. [Google Scholar] [CrossRef]
- Ismail, A.; Takeda, S.; Nick, P. Life and death under salt stress: Same players, different timing? J. Exp. Bot. 2014, 65, 2963–2979. [Google Scholar] [CrossRef]
- Xiao, Z.; Sun, X.; Liu, X.; Li, C.; He, L.; Chen, S.; Su, J. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don. Front. Plant Sci. 2016, 7, 1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Xu, J.; Liu, Y.; Chen, J.; Lin, H.; Huang, Y.; Bian, X.; Zhao, Y. Selection and validation of appropriate reference genes for real-time quantitative PCR analysis in Momordica charantia. Phytochemistry 2019, 164, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Wang, J.; Zhang, X.; Yang, H.; Wang, H.; Qiu, Y.; Song, J.; Guo, Y.; Li, X. Identification of optimal reference genes for expression analysis in radish (Raphanus sativus L.) and its relatives based on expression stability. Front. Plant Sci. 2017, 8, 1605. [Google Scholar] [CrossRef] [PubMed]
- Udvardi, M.K.; Czechowski, T.; Scheible, W.-R. Eleven golden rules of quantitative RT-PCR. Plant Cell 2008, 20, 1736–1737. [Google Scholar] [CrossRef] [Green Version]
Gene Symbol | Gene Name | Gene ID | Primer Sequences (5′-3′) (Forward/Reverse) | Amplicon Product | E (%) Amplification Efficiency | R2 Correlation Coefficients | |
---|---|---|---|---|---|---|---|
Tm(°C) (F/R) | Length (bp) | ||||||
ACT | Actin | OP047690 | CAAGGCTAATCGTGAGAAGATGA/CTCCAGAATCCAACACAATACCA | 54.7/54.7 | 134 | 107.6 | 0.9976 |
polyUb | Polyubiquitin | OP047691 | TTCACCTGGTCCTTCGTCTC/AAGTGTGCGTCCATCCTCAA | 54.7/55.2 | 197 | 110.7 | 0.9976 |
F-box | F-box family protein | OP047692 | AGATGGATGCTTGTCTGTGATTC/CCTGCTTATGAGATGCTAAGAAGA | 55.1/54.7 | 188 | 103.1 | 0.9964 |
TUBA | alpha-tubulin | OP047693 | TCGTCTATGATGGCTAAGTGTGA/AGTTGGTGGCTGGTAGTTGATA | 55.4/55.1 | 189 | 104.5 | 0.9971 |
TUBB | beta-tubulin | OP047694 | GTCGCTACCTCACTGCTTCA/CACAGACACTGGACTTGACATTA | 55.4/54.7 | 141 | 106.6 | 0.9980 |
UBC | ubiquitin-conjugation enzyme E2 | OP047695 | GTTGATGGATTCTCTGCTGGTT/CACACTTGGAGGGCTCACA | 54.7/54.9 | 153 | 112.5 | 0.9917 |
18S | 18S ribosomal RNA | OP159972 | GATACCGTCCTAGTCTCAACCA/TTCAGCCTTGCGACCATACT | 54.8/55.0 | 131 | 113.9 | 0.9953 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | OP047696 | AGGTCATCAAGGTTGTCACTAATC/CCTGCCTGAATGTGCTTACC | 55.0/54.6 | 130 | 101.8 | 0.9965 |
PTB3 | polypyrimidine tract-binding protein 3 | OP047697 | AGGATGTCACTGAAGAGGAGATT/TCGGATTATAGAGCCACCAAGT | 54.9/54.7 | 178 | 111.1 | 0.9925 |
SAND | SAND family protein | OP047698 | CACTGCCTCGTTCTTCCATATC/AAGGACCACCAATACCAATAACTG | 55.1/55.2 | 102 | 106.9 | 0.9953 |
miCHS-1 | Chalcone synthase 1 | KF956022.1 | CTGAGAACAACAAAGGTG/CAGAACCAACAATGAGAG | 57.3/56.7 | 147 | 106.7 | 0.9956 |
miCHS-2 | Chalcone synthase 2 | KF956023.1 | CCGAAGACATTTTGAAGG/CAGAAGATAAGGTGGGTA | 57.4/56.2 | 172 | 101.8 | 0.9942 |
Rank | Total | Abiotic Stresses | Tissues | Cold | Heat | ABA | Mannitol | MeJA | NaCl | SA |
---|---|---|---|---|---|---|---|---|---|---|
1 | TUBB (0.325) | ACT (0.215) | TUBB (0.091) | UBC (0.133) | F-box (0.092) | UBC (0.056) | polyUb (0.112) | F-box (0.065) | polyUb (0.057) | F-box (0.182) |
2 | F-box (0.326) | F-box (0.295) | UBC (0.091) | polyUb (0.239) | PTB3 (0.16) | F-box (0.11) | SAND (0.259) | SAND (0.326) | TUBB (0.158) | SAND (0.311) |
3 | UBC (0.426) | TUBB (0.384) | SAND (0.22) | F-box (0.272) | SAND (0.191) | PTB3 (0.188) | UBC (0.306) | PTB3 (0.365) | F-box (0.191) | ACT (0.354) |
4 | SAND (0.469) | UBC (0.416) | polyUb (0.289) | TUBB (0.368) | TUBA (0.216) | polyUb (0.423) | ACT (0.375) | TUBB (0.395) | UBC (0.297) | TUBB (0.36) |
5 | polyUb (0.588) | PTB3 (0.501) | 18S (0.524) | TUBA (0.377) | UBC (0.224) | TUBB (0.424) | PTB3 (0.433) | ACT (0.413) | ACT (0.407) | 18S (0.447) |
6 | PTB3 (0.637) | SAND (0.516) | F-box (0.602) | ACT (0.388) | TUBB (0.49) | ACT (0.448) | TUBB (0.623) | polyUb (0.447) | TUBA (0.431) | PTB3 (0.477) |
7 | ACT (0.64) | polyUb (0.617) | TUBA (1.173) | SAND (0.414) | ACT (0.514) | SAND (0.485) | 18S (0.676) | UBC (0.516) | PTB3 (0.548) | polyUb (0.509) |
8 | TUBA (0.726) | TUBA (0.639) | PTB3 (1.344) | PTB3 (0.619) | polyUb (0.962) | 18S (0.514) | F-box (0.692) | 18S (0.707) | 18S (0.634) | TUBA (0.613) |
9 | 18S (0.903) | 18S (0.922) | ACT (1.384) | 18S (0.713) | 18S (1.032) | TUBA (0.68) | TUBA (0.806) | TUBA (0.754) | SAND (0.909) | UBC (0.666) |
10 | GAPDH (2.627) | GAPDH (2.339) | GAPDH (4.001) | GAPDH (0.997) | GAPDH (3.277) | GAPDH (2.495) | GAPDH (2.012) | GAPDH (2.17) | GAPDH (1.908) | GAPDH (1.818) |
Rank | Total | Abiotic Stresses | Tissues | Heat | Mannitol | ||||||||||
Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | |
1 | TUBB | 0.38 | 1.87 | TUBB | 0.38 | 1.88 | SAND | 0.29 | 1.28 | TUBB | 0.39 | 1.89 | polyUb | 0.26 | 1.43 |
2 | polyUb | 0.42 | 2.37 | polyUb | 0.43 | 2.39 | 18S | 0.30 | 3.90 | ACT | 0.42 | 1.78 | TUBB | 0.36 | 1.78 |
3 | SAND | 0.49 | 2.11 | UBC | 0.49 | 2.21 | polyUb | 0.30 | 1.68 | polyUb | 0.43 | 2.42 | UBC | 0.40 | 1.82 |
4 | UBC | 0.51 | 2.33 | F-box | 0.50 | 2.13 | TUBB | 0.30 | 1.50 | UBC | 0.43 | 1.91 | F-box | 0.43 | 1.82 |
5 | F-box | 0.54 | 2.30 | ACT | 0.51 | 2.22 | UBC | 0.36 | 1.68 | 18S | 0.48 | 6.62 | ACT | 0.45 | 1.98 |
6 | 18S | 0.57 | 7.68 | SAND | 0.52 | 2.23 | F-box | 0.70 | 3.05 | F-box | 0.53 | 2.21 | SAND | 0.48 | 2.07 |
7 | ACT | 0.65 | 2.88 | 18S | 0.60 | 8.07 | TUBA | 0.78 | 4.15 | PTB3 | 0.57 | 2.34 | 18S | 0.58 | 7.56 |
8 | TUBA | 0.70 | 3.58 | TUBA | 0.65 | 3.35 | ACT | 0.86 | 4.07 | SAND | 0.68 | 2.81 | TUBA | 0.58 | 2.94 |
9 | PTB3 | 0.75 | 3.21 | PTB3 | 0.71 | 3.06 | PTB3 | 0.90 | 3.91 | TUBA | 0.77 | 3.83 | PTB3 | 0.61 | 2.61 |
10 | GAPDH | 2.10 | 9.14 | GAPDH | 1.96 | 8.64 | GAPDH | 3.11 | 12.71 | GAPDH | 2.98 | 11.7 | GAPDH | 1.85 | 8.31 |
Rank | NaCl | Cold | ABA | MeJA | SA | ||||||||||
Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | Gene | SD | CV | |
1 | UBC | 0.19 | 0.89 | UBC | 0.25 | 1.17 | TUBB | 0.12 | 0.61 | polyUb | 0.24 | 1.36 | TUBB | 0.20 | 0.99 |
2 | PTB3 | 0.38 | 1.65 | F-box | 0.41 | 1.77 | F-box | 0.26 | 1.12 | F-box | 0.34 | 1.43 | F-box | 0.27 | 1.16 |
3 | SAND | 0.38 | 1.67 | SAND | 0.42 | 1.84 | UBC | 0.27 | 1.25 | ACT | 0.37 | 1.62 | 18S | 0.30 | 3.94 |
4 | TUBB | 0.42 | 2.10 | TUBB | 0.43 | 2.16 | ACT | 0.33 | 1.47 | TUBB | 0.38 | 1.84 | polyUb | 0.32 | 1.77 |
5 | polyUb | 0.44 | 2.49 | TUBA | 0.44 | 2.33 | SAND | 0.33 | 1.44 | SAND | 0.42 | 1.85 | TUBA | 0.37 | 1.91 |
6 | F-box | 0.52 | 2.29 | ACT | 0.46 | 2.04 | PTB3 | 0.37 | 1.60 | PTB3 | 0.43 | 1.90 | SAND | 0.39 | 1.69 |
7 | 18S | 0.58 | 7.51 | polyUb | 0.48 | 2.61 | TUBA | 0.38 | 2.00 | 18S | 0.58 | 7.65 | ACT | 0.41 | 1.81 |
8 | TUBA | 0.66 | 3.50 | PTB3 | 0.59 | 2.52 | 18S | 0.39 | 5.48 | UBC | 0.58 | 2.59 | UBC | 0.50 | 2.29 |
9 | ACT | 0.69 | 3.09 | 18S | 0.64 | 9.12 | polyUb | 0.48 | 2.72 | TUBA | 0.74 | 3.79 | PTB3 | 0.59 | 2.57 |
10 | GAPDH | 1.94 | 9.21 | GAPDH | 0.71 | 3.23 | GAPDH | 2.22 | 10.15 | GAPDH | 1.64 | 7.43 | GAPDH | 1.50 | 6.85 |
Experimental Treatments | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cold | Heat | ABA | Mannitol | MeJA | |||||
Most | Least | Most | Least | Most | Least | Most | Least | Most | Least |
UBC | GAPDH | F-box | GAPDH | F-box | GAPDH | polyUb | GAPDH | F-box | GAPDH |
F-box | TUBB | UBC | UBC | SAND | |||||
TUBB | ACT | TUBB | TUBB | TUBB | |||||
NaCl | SA | Abiotic Stresses | Tissues | Total | |||||
Most | Least | Most | Least | Most | Least | Most | Least | Most | Least |
TUBB | GAPDH | F-box | GAPDH | TUBB | GAPDH | TUBB | GAPDH | TUBB | GAPDH |
polyUb | TUBB | F-box | UBC | F-box | |||||
UBC | ACT | ACT | SAND | UBC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Huang, X.; Cong, H.; Qiao, F.; Cheng, Y.; Chen, Y. Selection and Identification of a Reference Gene for Normalizing Real-Time PCR in Mangos under Various Stimuli in Different Tissues. Horticulturae 2022, 8, 882. https://doi.org/10.3390/horticulturae8100882
Yao R, Huang X, Cong H, Qiao F, Cheng Y, Chen Y. Selection and Identification of a Reference Gene for Normalizing Real-Time PCR in Mangos under Various Stimuli in Different Tissues. Horticulturae. 2022; 8(10):882. https://doi.org/10.3390/horticulturae8100882
Chicago/Turabian StyleYao, Rundong, Xiaolou Huang, Hanqing Cong, Fei Qiao, Yunjiang Cheng, and Yeyuan Chen. 2022. "Selection and Identification of a Reference Gene for Normalizing Real-Time PCR in Mangos under Various Stimuli in Different Tissues" Horticulturae 8, no. 10: 882. https://doi.org/10.3390/horticulturae8100882
APA StyleYao, R., Huang, X., Cong, H., Qiao, F., Cheng, Y., & Chen, Y. (2022). Selection and Identification of a Reference Gene for Normalizing Real-Time PCR in Mangos under Various Stimuli in Different Tissues. Horticulturae, 8(10), 882. https://doi.org/10.3390/horticulturae8100882