Adoption of Integrated Pest Management for Red Palm Weevil Control among Farmers in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling Procedures
2.3. Survey Data Collection
2.4. Variable Measurement
2.5. Data Analysis
3. Results
3.1. Profile of the Respondents
3.2. Farmers’ Adoption of IPM for RPW Control
3.3. Cluster Analysis
3.4. Differences between Clusters of Adoption According to Farmers’ Socio-Economic Attributes and Farm Characteristics
4. Discussion
4.1. Adoption Rate of IPM for RPW Control
4.2. Differences between the Clusters According to the Adoption of RPW IPM Practices
4.3. Differences between the Clusters According to Socio-Economic Attributes and Farm Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.)—A review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Al-Mssallem, M.Q.; Alqurashi, R.M.; Al-Khayri, J.M. Bioactive Compounds of Date Palm (Phoenix dactylifera L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Springer: Berlin/Heidelberg, Germany, 2020; pp. 91–105. [Google Scholar] [CrossRef]
- Al-Dashti, Y.A.; Holt, R.R.; Keen, C.L.; Hackman, R.M. Date Palm Fruit (Phoenix dactylifera): Effects on Vascular Health and Future Research Directions. Int. J. Mol. Sci. 2021, 22, 4665. [Google Scholar] [CrossRef] [PubMed]
- MEWA. Achievement of the Date Palm Sector in 2021; Ministry of Environment, Water, and Agriculture: Riyadh, Saudi Arabia, 2021.
- Flowers, J.M.; Hazzouri, K.M.; Gros-Balthazard, M.; Mo, Z.; Koutroumpa, K.; Perrakis, A.; Ferrand, S.; Khierallah, H.S.M.; Fuller, D.Q.; Aberlenc, F.; et al. Cross-species hybridization and the origin of North African date palms. Proc. Natl. Acad. Sci. USA 2019, 116, 1651–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomón-Torres, R.; Krueger, R.; García-Vázquez, J.; Villa-Angulo, R.; Villa-Angulo, C.; Ortiz-Uribe, N.; Sol-Uribe, J.; Samaniego-Sandoval, L. Date Palm Pollen: Features, Production, Extraction and Pollination Methods. Agronomy 2021, 11, 504. [Google Scholar] [CrossRef]
- FAOSTAT. Crop Statistics; FAO: Rome, Italy, 2019. [Google Scholar]
- Jonoobi, M.; Shafie, M.; Shirmohammadli, Y.; Ashori, A.; Hosseinabadi, H.Z.; Mekonnen, T. A review on date palm tree: Properties, characterization and its potential applications. J. Renew. Mater. 2019, 7, 1055–1075. [Google Scholar] [CrossRef] [Green Version]
- Krueger, R.R. Date Palm (Phoenix dactylifera L.) Biology and Utilization. In The Date Palm Genome; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 3–28. [Google Scholar]
- Verneau, F.; Amato, M.; La Barbera, F. Edible Insects and Global Food Security. Insects 2021, 12, 472. [Google Scholar] [CrossRef]
- Liliane, T.N.; Charles, M.S. Factors Affecting Yield of Crops. In Agronomy-Climate Change & Food Security; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Naik, P.M.; Jain, S.M.; Johnson, D.V. Advances in Date Palm (Phoenix dactylifera L.) Breeding. In Advances in Plant Breeding Strategies: Fruits; Springer: Berlin/Heidelberg, Germany, 2018; pp. 727–771. [Google Scholar]
- Abdel-Baky, N.F.; Aldeghairi, M.A.; Motawei, M.I.; Al-Shuraym, L.A.M.; Al-Nujiban, A.A.S.; Alharbi, M.T.M.; Rehan, M. Genetic Diversity of Palm Weevils, Rhynchophorus Species (Coleoptera: Curculionidae) by Mitochondrial COI Gene Sequences Declares a New Species, R. bilineatus in Qassim, Saudi Arabia. Arab. J. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- FAO. Red Palm Weevil: Guidelines on Management Practices; FAO: Rome, Italy, 2020. [Google Scholar]
- Al-Khateeb, S.; Hussain, A.; Lange, S.; Almutari, M.; Schneider, F. Battling Food Losses and Waste in Saudi Arabia: Mobilizing Regional Efforts and Blending Indigenous Knowledge to Address Global Food Security Challenges. Sustainability 2021, 13, 8402. [Google Scholar] [CrossRef]
- Mohammed, M.E.; El-Shafie, H.A.; Alhajhoj, M.R. Recent trends in the early detection of the invasive red palm weevil, Rhynchophorus ferrugineus (olivier). In Invasive Species-Introduction Pathways, Economic Impact, and Possible Management Options; IntechOpen: London, UK, 2020. [Google Scholar]
- Rehman, G.; Mamoon-Ur-Rashid, M. Evaluation of Entomopathogenic Nematodes against Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Insects 2022, 13, 733. [Google Scholar] [CrossRef]
- Kurdi, H.; Al-Aldawsari, A.; Al-Turaiki, I.; Aldawood, A.S. Early Detection of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier), Infestation Using Data Mining. Plants 2021, 10, 95. [Google Scholar] [CrossRef]
- Aldosary, N.M.N.; AlDobai, S.; Faleiro, J.R. Review on the management of red palm weevil Rhynchophorus ferrugineus olivier in date palm Phoenix dactylifera L. Emir. J. Food Agric. 2016, 28, 34–44. [Google Scholar] [CrossRef]
- Ali-Bob, M. Management of the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) using sustainable options in Saudi Arabia. Arab J. Plant Prot. 2019, 37, 163–169. [Google Scholar] [CrossRef]
- FAO. Framework Strategy for Eradication of Red Palm Weevil. In Scientific Consultation and High-level Meeting on Red Palm Weevil management; FAO: Rome, Italy, 2017; p. 30. [Google Scholar]
- MEWA. Statistical Book 2020; Ministry of Environment, Water, and Agriculture: Riyadh, Saudi Arabia, 2020.
- FAO. Food Chain Crisis. Red Palm Weevil; FAO: Rome, Italy, 2017. [Google Scholar]
- Aleid, S.M.; Al-Khayri, J.M.; Al-Bahrany, A.M. Date palm status and perspective in Saudi Arabia. In Date Palm Genetic Resources and Utilization; Springer: Berlin/Heidelberg, Germany, 2015; pp. 49–95. [Google Scholar]
- Kassem, H.S.; Alotaibi, B.A.; Ahmed, A.; Aldosri, F.O. Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms. Sustainability 2020, 12, 9647. [Google Scholar] [CrossRef]
- Hussain, A.; Rizwan-Ul-Haq, M.; Al-Jabr, A.; Al-Ayied, H. Managing invasive populations of red palm weevil: A worldwide perspective. J. Food Agric. Environ. 2013, 11, 456–463. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, M.I.; Sajjad, A.; Shakeel, Q.; Hussain, A. Environmental and health effects of pesticide residues. In Sustainable Agriculture Reviews 48; Springer: Berlin/Heidelberg, Germany, 2021; pp. 311–336. [Google Scholar]
- Al-Ayedh, H.; Hussain, A.; Rizwan-Ul-Haq, M.; AlJabr, A.M. Status of Insecticide Resistance in Field-collected Populations of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Int. J. Agric. Biol. 2016, 18, 103–110. [Google Scholar] [CrossRef]
- Ahmad, I. Integrated Pest Management of Rhynchophorus ferrugineus Olivier: An Efficient Approach to Reduce Infestation in Date Palm Trees. Pakistan J. Zool. 2021, 54, 927–936. [Google Scholar] [CrossRef]
- El-Shafie, H.A.F. Integrated insect pest management. In Pests Control and Acarology; IntechOpen: London, UK, 2018; pp. 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dara, S.K. The New Integrated Pest Management Paradigm for the Modern Age. J. Integr. Pest Manag. 2019, 10, 12. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 1–35. [Google Scholar] [CrossRef]
- Faleiro, J.R.; Ferry, M.; Yaseen, T.; Al-Dobai, S. Overview of the gaps, challenges and prospects of red palm weevil management. Arab Soc. Plant Prot. 2018, 37, 170–177. [Google Scholar] [CrossRef]
- Midingoyi, S.G.; Kassie, M.; Muriithi, B.; Diiro, G.; Ekesi, S. Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya. J. Agric. Econ. 2018, 70, 452–470. [Google Scholar] [CrossRef]
- Grasswitz, T.R. Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities. Insects 2019, 10, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, R.; Safa, L.; Ganjkhanloo, M.M. Understanding farmers’ ecological conservation behavior regarding the use of integrated pest management- an application of the technology acceptance model. Glob. Ecol. Conserv. 2020, 22, e00941. [Google Scholar] [CrossRef]
- Ansari, M.; Harding, S. Management of Date Palm Pests: Lack of Commercial Input. Outlooks Pest Manag. 2022, 33, 5–7. [Google Scholar] [CrossRef]
- Dembilio, Ó.; Jaques, J.A. Biology and management of red palm weevil. In Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer: Berlin/Heidelberg, Germany, 2015; pp. 13–36. [Google Scholar]
- Wakil, W.; Faleiro, J.R.; Miller, T.A. Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Fajardo, M.; Rodríguez, X.; Hernández, C.; Barroso, L.; Morales, M.; González, A.; MartíN, R. The eradication of the invasive red palm weevil in the Canary Islands. In Area-Wide Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2021; pp. 539–550. [Google Scholar]
- Islam, A.H.M.S.; Schreinemachers, P.; Kumar, S. Farmers’ knowledge, perceptions and management of chili pepper anthracnose disease in Bangladesh. Crop Prot. 2020, 133, 105139. [Google Scholar] [CrossRef]
- Bueno, A.F.; Panizzi, A.R.; E Hunt, T.; Dourado, P.M.; Pitta, R.M.; Gonçalves, J. Challenges for Adoption of Integrated Pest Management (IPM): The Soybean Example. Neotrop. Entomol. 2021, 50, 5–20. [Google Scholar] [CrossRef]
- Steiro, L.; Kvakkestad, V.; Breland, T.A.; Vatn, A. Integrated Pest Management adoption by grain farmers in Norway: A novel index method. Crop Prot. 2020, 135, 105201. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Damalas, C.A.; Ganjkhanloo, M.M. Drivers of farmers’ intention to use integrated pest management: Integrating theory of planned behavior and norm activation model. J. Environ. Manag. 2019, 236, 328–339. [Google Scholar] [CrossRef]
- Mendesil, E.; Shumeta, Z.; Anderson, P.; Rämert, B. Smallholder farmers’ knowledge, perceptions and management of pea weevil in north and north-western Ethiopia. Crop Prot. 2016, 81, 30–37. [Google Scholar] [CrossRef]
- GAS. Detailed Results of Agricultural Census; General Authority for Statistics: Riyadh, Saudi Arabia, 2018.
- GAS. Demographics of Saudi Arabia; General Authority for Statistics: Riyadh, Saudi Arabia, 2020.
- PME. The Meteorology of Al-Kharj; Presidency of Meteorology and Environment: Riyadh, Saudi Arabia, 2020. [Google Scholar]
- Faridi, M.R.; Sulphey, M.M. Food security as a prelude to sustainability: A case study in the agricultural sector, its impacts on the Al Kharj community in The Kingdom of Saudi Arabia. Entrep. Sustain. Issues 2019, 6, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- Adam, A.M. A Study on Sample Size Determination in Survey Research. New Ideas Concern. Sci. Technol. 2021, 4, 125–134. [Google Scholar]
- Kassem, H.S.; Bello, A.R.S.; Alotaibi, B.M.; Aldosri, F.O.; Straquadine, G.S. Climate Change Adaptation in the Delta Nile Region of Egypt: Implications for Agricultural Extension. Sustainability 2019, 11, 685. [Google Scholar] [CrossRef] [Green Version]
- Köhn, H.F.; Hubert, L.J. Hierarchical cluster analysis. Wiley StatsRef: Stat. Ref. Online 2014, 1–13. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Mann–Whitney u test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Berlin/Heidelberg, Germany, 2016; pp. 103–132. [Google Scholar]
- Zibran, M.F. Chi-squared test of independence. Dep. Comput. Sci. Univ. Calg. Alta. Can. 2007, 1, 1–7. [Google Scholar]
- Aristizábal, L.F.; Bustillo, A.E.; Arthurs, S.P. Integrated Pest Management of Coffee Berry Borer: Strategies from Latin America that Could Be Useful for Coffee Farmers in Hawaii. Insects 2016, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Creissen, H.E.; Jones, P.; Tranter, R.B.; Girling, R.D.; Jess, S.; Burnett, F.; Gaffney, M.; Thorne, F.S.; Kildea, S. Measuring the unmeasurable? A method to quantify adoption of integrated pest management practices in temperate arable farming systems. Pest Manag. Sci. 2019, 75, 3144–3152. [Google Scholar] [CrossRef]
- Parsa, S.; Morse, S.; Bonifacio, A.; Chancellor, T.C.B.; Condori, B.; Crespo-Pérez, V.; Hobbs, S.L.A.; Kroschel, J.; Ba, M.N.; Rebaudo, F.; et al. Obstacles to integrated pest management adoption in developing countries. Proc. Natl. Acad. Sci. USA 2014, 111, 3889–3894. [Google Scholar] [CrossRef] [Green Version]
- Timprasert, S.; Datta, A.; Ranamukhaarachchi, S. Factors determining adoption of integrated pest management by vegetable growers in Nakhon Ratchasima Province, Thailand. Crop Prot. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Khan, F.Z.A.; Manzoor, S.A.; Gul, H.T.; Ali, M.; Bashir, M.A.; Akmal, M.; Haseeb, M.; Imran, M.U.; Taqi, M.; Lukac, M.; et al. Drivers of farmers’ intention to adopt integrated pest management: A case study of vegetable farmers in Pakistan. Ecosphere 2021, 12, e03812. [Google Scholar] [CrossRef]
- FAO. Proceedings of the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management; FAO: Rome, Italy, 2017; p. 200. [Google Scholar]
- Azmi, W.A.; Lian, C.J.; Zakeri, H.A.; Yusuf, N.; Omar, W.B.W.; Wai, Y.K.; Husasin, M. The red palm weevil, Rhynchophorus ferrugineus: Current issues and challenges in Malaysia. Oil Palm Bull. 2017, 74, 17–24. [Google Scholar]
- Soroker, V.; Suma, P.; Pergola, A.l.; Cohen, Y.; Alchanatis, V.; Golomb, O.; Goldshtein, E.; Hetzroni, A.; Galazan, L.; Kontodimas, D. Early detection and monitoring of red palm weevil: Approaches and challenges. In Proceedings of the Colloque Méditerranéen Sur les Ravageurs des Palmiers, Nice, France, 16–18 January 2013. [Google Scholar]
- Hetzroni, A.; Soroker, V.; Cohen, Y. Toward practical acoustic red palm weevil detection. Comput. Electron. Agric. 2016, 124, 100–106. [Google Scholar] [CrossRef]
- Eldin, H.A.; Waleed, K.; Samir, M.; Tarek, M.; Sobeah, H.; Salam, M.A. A Survey on Detection of Red Palm Weevil Inside Palm Trees: Challenges and Applications. In Proceedings of the 2020 9th International Conference on Software and Information Engineering (ICSIE), Cairo, Egypt, 11–13 November 2020; pp. 119–125. [Google Scholar]
- Koubaa, A.; Aldawood, A.; Saeed, B.; Hadid, A.; Ahmed, M.; Saad, A.; Alkhouja, H.; Ammar, A.; Alkanhal, M. Smart Palm: An IoT Framework for Red Palm Weevil Early Detection. Agronomy 2020, 10, 987. [Google Scholar] [CrossRef]
- Rach, M.M.; Gomis, H.M.; Granado, O.L.; Malumbres, M.P.; Campoy, A.M.; Martín, J.J.S. On the Design of a Bioacoustic Sensor for the Early Detection of the Red Palm Weevil. Sensors 2013, 13, 1706–1729. [Google Scholar] [CrossRef] [PubMed]
- Balijepalli, S.; Faleiro, J. Is policy paralysis on quarantine issues in the Near East and North Africa region leading to the buildup and spread of red palm weevil, Rhynchophorus ferrugineus? Arab J. Plant Prot. 2019, 37, 89–100. [Google Scholar] [CrossRef]
- Dewidar, A. Water saving in arid regions: A comparison of surface and subsurface drip irrigation systems for irrigation of date palms. Amer. J. Innov. Res. Appl. Sci. 2016, 2, 289–296. [Google Scholar]
- Salah, M. Importance of field operations for reducing red palm weevil (RPW) infestation on date palm. Arab J. Plant Prot. 2019, 37, 159–162. [Google Scholar] [CrossRef]
- Muriithi, B.; Gathogo, N.; Diiro, G.; Mohamed, S.; Ekesi, S. Potential Adoption of Integrated Pest Management Strategy for Suppression of Mango Fruit Flies in East Africa: An Ex Ante and Ex Post Analysis in Ethiopia and Kenya. Agriculture 2020, 10, 278. [Google Scholar] [CrossRef]
- Rahman, S. Farmers’ perceptions of integrated pest management (IPM) and determinants of adoption in vegetable production in Bangladesh. Int. J. Pest Manag. 2022, 68, 158–166. [Google Scholar] [CrossRef]
- Rahman, M.S.; Norton, G.W. Adoption and impacts of integrated pest management in Bangladesh: Evidence from smallholder bitter gourd growers. Horticulturae 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Owusu, V.; Abdulai, A. Examining the economic impacts of integrated pest management among vegetable farmers in Southern Ghana. J. Environ. Plan. Manag. 2019, 62, 1886–1907. [Google Scholar] [CrossRef]
- Loko, Y.L.E.; Akohonwe, J.; Toffa, J.; Orobiyi, A.; Assogba, P.; Dansi, A.; Tamò, M. Farmers knowledge, perceptions and management of Kersting’s groundnut (Macrotyloma geocarpum Harms) insect pests in Benin. J.Basic Appl. Zool. 2019, 80, 41. [Google Scholar] [CrossRef]
- Giblin-Davis, R.M.; Faleiro, J.R.; Jacas, J.A.; Peña, J.E.; Vidyasagar, P. Biology and management of the red palm weevil, Rhynchophorus ferrugineus. Poten. Invas. Pests of Agric. Crops 2013, 3, 1. [Google Scholar]
Farmers’ Characteristics | Number of Farmers (n = 156) | |||||
---|---|---|---|---|---|---|
Frequency | % | Min. | Max. | Mean | Standard Deviation | |
Age | ||||||
Less than 40 years | 22 | 14.1 | 28 | 80 | 56.35 | 13.67 |
40–60 years | 71 | 45.5 | ||||
More than 60 years | 63 | 40.4 | ||||
Education | ||||||
Less than 7 years | 81 | 51.9 | 0 | 16 | 8.11 | 4.26 |
7–12 years | 58 | 37.2 | ||||
More than 12 years | 17 | 10.9 | ||||
Farming experience | ||||||
Less than 20 years | 61 | 39.1 | 8 | 65 | 25.71 | 17.78 |
20–30 years | 59 | 37.8 | ||||
More than 30 years | 36 | 23.1 | ||||
Farm size | ||||||
Less than 3 hectares | 92 | 59.0 | 1 | 8 | 2.80 | 1.61 |
3–5 hectares | 47 | 30.1 | ||||
More than 5 hectares | 17 | 10.9 | ||||
Number of date palm trees on the farm | ||||||
Less than 500 trees | 92 | 59.0 | 200 | 4000 | 628.33 | 364.25 |
500–1500 trees | 33 | 21.2 | ||||
More than 1500 trees | 31 | 19.8 | ||||
Off-farm income | ||||||
Yes | 92 | 59 | 0 | 1 | 0.58 | 0.36 |
No | 64 | 41 | ||||
Attending extension activities for RPW in the last three years | ||||||
Frequently | 14 | 9.0 | 1 | 3 | 1.37 | 0.64 |
Sometimes | 30 | 19.2 | ||||
Rarely | 112 | 71.8 |
Farm Characteristics | Frequency (n = 156) | % |
---|---|---|
Crops | ||
Date palm only | 36 | 23.1 |
Date palm and vegetables | 78 | 50.0 |
Date palm and field crops | 29 | 18.6 |
Date palm, vegetables, and field crops | 13 | 8.3 |
Source of irrigation | ||
Surface water | 54 | 34.6 |
Groundwater | 102 | 65.4 |
Type of irrigation | ||
Flood irrigation | 66 | 42.3 |
Drip irrigation | 90 | 57.7 |
Cultivars * | ||
Khodri | 130 | 83.3 |
Barhi | 93 | 59.6 |
Shishi | 81 | 51.9 |
Khalas | 126 | 80.8 |
Salg | 28 | 17.9 |
Tree spacing | ||
4 × 4 m2 | 24 | 15.4 |
5 × 5 m2 | 33 | 21.2 |
6 × 6 m2 | 44 | 28.2 |
7 × 7 m2 | 36 | 23.0 |
8 × 8 m2 | 19 | 12.2 |
Categories of Practices | Adoption Level | Min. | Max. | Rank | |
---|---|---|---|---|---|
Mean (%) | SD | ||||
Prevention | 43.30 | 14.83 | 25.00 | 75.00 | 5 |
Legislative control | 54.77 | 12.72 | 30.00 | 75.00 | 1 |
Cultural practices | 50.44 | 16.53 | 25.00 | 75.00 | 2 |
Mechanical control | 45.75 | 14.40 | 25.00 | 70.83 | 3 |
Chemical control | 43.96 | 19.98 | 25.00 | 75.00 | 4 |
Total | 47.64 | 15.69 | 25.00 | 75.00 |
Practices | Cluster I (n = 89) | Cluster II (n = 67) | Mann–Whitney U | Z | p-Value | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
P1 | 2.41 | 0.97 | 1.51 | 0.55 | 1.416.000 ** | −6.213 | 0.00 |
P2 | 2.92 | 0.88 | 1.69 | 0.77 | 1.041.000 ** | −7.386 | 0.00 |
P3 | 2.94 | 1.00 | 1.54 | 0.65 | 881.000 ** | −8.025 | 0.00 |
P4 | 2.37 | 0.98 | 1.26 | 0.15 | 1.072.500 ** | −7.929 | 0.00 |
P5 | 2.82 | 0.87 | 1.45 | 0.55 | 701.000 ** | −8.775 | 0.00 |
L1 | 3.44 | 0.66 | 2.81 | 0.66 | 1.682.000 ** | −5.269 | 0.00 |
L2 | 2.62 | 0.92 | 1.52 | 0.52 | 1.083.000 ** | −7.387 | 0.00 |
L3 | 3.35 | 0.71 | 1.95 | 0.79 | 756.500 ** | −8.532 | 0.00 |
L4 | 3.18 | 0.77 | 1.39 | 0.51 | 303.500 ** | −10.199 | 0.00 |
L5 | 3.48 | 0.69 | 3.05 | 0.79 | 2.142.000 ** | −3.594 | 0.00 |
C1 | 3.32 | 0.65 | 1.52 | 0.61 | 336.000 ** | −10.282 | 0.00 |
C2 | 3.04 | 0.94 | 1.81 | 0.76 | 1.057.000 ** | −7.284 | 0.00 |
C3 | 3.00 | 0.77 | 2.05 | 0.91 | 1.391.500 ** | −6.078 | 0.00 |
C4 | 3.34 | 0.72 | 1.36 | 0.35 | 129.500 ** | −10.856 | 0.00 |
M1 | 2.51 | 0.85 | 1.31 | 0.26 | 680.500 ** | −9.195 | 0.00 |
M2 | 3.10 | 0.75 | 1.66 | 0.73 | 689.000 ** | −8.697 | 0.00 |
M3 | 3.55 | 0.59 | 2.27 | 0.57 | 562.000 ** | −9.530 | 0.00 |
M4 | 2.30 | 0.49 | 1.34 | 0.33 | 722.500 ** | −9.309 | 0.00 |
M5 | 2.99 | 1.04 | 1.30 | 0.33 | 612.500 ** | −9.296 | 0.00 |
M6 | 2.82 | 0.87 | 1.36 | 0.42 | 577.500 ** | −9.305 | 0.00 |
CH1 | 3.01 | 1.01 | 1.26 | 0.15 | 522.500 ** | −9.665 | 0.00 |
CH2 | 2.92 | 0.92 | 1.28 | 0.31 | 496.500 ** | −9.706 | 0.00 |
CH3 | 2.81 | 0.88 | 1.28 | 0.21 | 490.500 ** | −9.713 | 0.00 |
Variable | Category | Cluster 1 (%) | Cluster 2 (%) | χ2 | p-Value |
---|---|---|---|---|---|
Age | <40 | 21.3 | 4.5 | 13.25 ** | 0.001 |
40–60 | 48.3 | 41.8 | |||
>60 | 30.4 | 53.8 | |||
Education | Less than 7 years | 30.3 | 80.6 | 39.85 ** | 0.00 |
7–12 years | 51.7 | 10.4 | |||
More than 12 years | 18.0 | 9.0 | |||
Farm size | <3 | 68.5 | 46.3 | 7.89 * | 0.02 |
3–5 | 23.6 | 38.8 | |||
>5 | 7.9 | 14.9 | |||
Farming experience | <20 | 51.7 | 22.4 | 21.1 ** | 0.00 |
20–30 | 37.1 | 38.8 | |||
>30 | 11.2 | 38.8 | |||
Number of date palm trees on the farm | <500 | 74.2 | 38.8 | 20.7 ** | 0.00 |
500–1500 | 14.6 | 29.9 | |||
>1500 | 11.2 | 31.3 | |||
Off-farm income | Yes | 27.0 | 56.7 | 14.12 ** | 0.00 |
No | 73.0 | 43.3 | |||
Performing extension activities related to RPW in the last three years | Frequently | 10.1 | 7.5 | 1.86 | 0.14 |
Sometimes | 22.5 | 14.9 | |||
Rarely | 67.4 | 77.6 | |||
Main activity | Date palm only | 30.4 | 13.4 | 7.22 * | 0.03 |
Date palm and vegetables | 49.4 | 50.7 | |||
Date palm and field crops | 13.5 | 25.4 | |||
Date palm, vegetables, and field crops | 6.7 | 10.5 | |||
Source of irrigation | Surface water | 47.2 | 17.9 | 14.48 ** | 0.00 |
Groundwater | 52.8 | 82.1 | |||
Type of irrigation | Flood irrigation | 33.7 | 53.7 | 6.27 ** | 0.01 |
Drip irrigation | 66.3 | 46.3 | |||
Growing ‘Khodri’ cultivar | Yes | 76.4 | 92.5 | 7.16 ** | 0.006 |
No | 23.6 | 7.5 | |||
Growing ‘Barhi’ cultivar | Yes | 46.1 | 77.6 | 15.79 ** | 0.00 |
No | 53.9 | 22.4 | |||
Growing ‘Shishi’ cultivar | Yes | 57.3 | 44.8 | 2.4 | 0.082 |
No | 42.7 | 55.2 | |||
Growing ‘Khalas’ cultivar | Yes | 79.8 | 82.1 | 0.13 | 0.83 |
No | 20.2 | 17.9 | |||
Growing ‘Salg’ cultivar | Yes | 22.5 | 11.9 | 2.87 | 0.09 |
No | 77.5 | 88.1 | |||
Tree spacing | 4 × 4 m2 | 7.9 | 25.4 | 9.98 ** | 0.01 |
5 × 5 m2 | 12.4 | 32.8 | |||
6 × 6 m2 | 35.9 | 17.9 | |||
7 × 7 m2 | 28.1 | 16.4 | |||
8 × 8 m2 | 15.7 | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, B.A.; Ahmed, A.; Al-Zaidi, A.A.; Kassem, H.S. Adoption of Integrated Pest Management for Red Palm Weevil Control among Farmers in Saudi Arabia. Horticulturae 2022, 8, 1005. https://doi.org/10.3390/horticulturae8111005
Alotaibi BA, Ahmed A, Al-Zaidi AA, Kassem HS. Adoption of Integrated Pest Management for Red Palm Weevil Control among Farmers in Saudi Arabia. Horticulturae. 2022; 8(11):1005. https://doi.org/10.3390/horticulturae8111005
Chicago/Turabian StyleAlotaibi, Bader Alhafi, Ali Ahmed, Abdullah Awad Al-Zaidi, and Hazem S. Kassem. 2022. "Adoption of Integrated Pest Management for Red Palm Weevil Control among Farmers in Saudi Arabia" Horticulturae 8, no. 11: 1005. https://doi.org/10.3390/horticulturae8111005
APA StyleAlotaibi, B. A., Ahmed, A., Al-Zaidi, A. A., & Kassem, H. S. (2022). Adoption of Integrated Pest Management for Red Palm Weevil Control among Farmers in Saudi Arabia. Horticulturae, 8(11), 1005. https://doi.org/10.3390/horticulturae8111005