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Abstract: Different chemical attributes, measured via total soluble solids (TSS), acidity, vitamin C
(VitC), total sugars (Tsugar), and reducing sugars (Rsugar), were determined for three groups of
citrus fruits (i.e., orange, mandarin, and acid); each group contains two cultivars. Artificial neural
network (ANN) and multiple linear regression (MLR) models were developed for TSS, acidity, VitC,
Tsugar, and Rsugar from fresh citrus fruits by applying different independent variables, namely
the dimensions of the fruits (length (FL) and diameter (FD)), fruit weight (FW), yield/tree, and
soil electrical conductivity (EC). The results of ANN application showed that a feed-forward back-
propagation network type with four input neurons (Yield/tree, FW, FL, and FD) and eight neurons in
one hidden layer provided successful modeling efficiencies for TSS, acidity, VitC, Tsugar, and Rsugar.
The effect of the EC variable was not significant. The hyperbolic tangent of both the hidden layer
and the output layer of the developed ANN model was chosen as the activation function. Based
on statistical criteria, the ANN developed in this study performed better than the MLR model in
predicting the chemical attributes of fresh citrus fruits. The root mean square error of TSS, acidity,
VitC, Tsugar, and Rsugar ranged from 0.064 to 0.453 and 0.068 to 0.634, respectively, for the ANN
model, and 0.568 to 4.768 and 0.550 to 4.830, respectively, for the MLR model using training and
testing datasets. In addition, the relative errors obtained through the ANN approach provided
high model predictability and feasibility. In chemical attribute modeling, the FD and FL variables
exhibited high contribution ratios, resulting in a reliable predictive model. The developed ANN
model generally showed a good level of accuracy when estimating the chemical attributes of fresh
citrus fruit.

Keywords: artificial neural network; multiple linear regression; citrus tree; fruit chemical characteristics

1. Introduction

Citrus, one of the most important fruit crops in the world, is grown on 10.072 million
hectares and produces 158.49 million tons of fruit annually [1]. Therefore, it is the world’s
largest cultivated fruit crop, accounting for approximately 18% of total fruit. Egypt is the
leading producer of citrus in Africa. The total area under citrus trees is 197,363 hectares,
out of which 178,492 hectares are fruitful, producing 4.34 million tons [2], which is also
of exceptional economic significance among fruit crops in Egypt, notably for exportation.
Citrus, as one of the most important crop types, is a significant source of income for farmers
and is popular among consumers due to its nutritional value [3,4]. They are widely spread
in the tropical and subtropical world due to their delicious flavors and therapeutic benefits,
which are essential for human health [5,6] due to their low energy and fat content, good
number of macronutrients (carbohydrates, organic acids, dietary fiber, vitamins), minerals,
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and bioactive phytochemicals, such as carotenoids, limonoids, flavonoids, and essential
oils [7]. It is also a significant source of human nutrition because it contains bioactive
substances such as antioxidants, i.e., ascorbic acid, flavonoids, carotenoids, limonoids,
terpenoids, phenolic compounds, and pectins [8–10], which can be used to create newer
food products that are safe for human nutrition [11,12].

The genus Citrus is one of the most important taxonomic subunits of the family
Rutaceae, including 162 species, and is a rich bounty of edible fruits such as oranges,
mandarins, tangerines, lemons, and limes [13,14]. The species belonging to the genus
Citrus occur naturally in areas with a warm and mild climate, mainly in the Mediterranean
region [15]. The most commonly used species of the genus Citrus included in this taxonomic
unit are: Citrus sinensis—orange; Citrus reticulata; Citrus clementina—mandarin; Citrus
latifolia; Citrus limon—acid group, and many others. Citrus species give rise to numerous
varieties, cultivars, and hybrids, which have wide variations in cultivar morphological and
genetic characteristics, and thus in their growth habits and yield production [15,16]. The
intrinsic variations in photosynthesis, plant hormones, fruit set, fruit retention, tree size,
and leaf area amongst cultivars may all be significant contributors to the diversity of fruit
yield and quality. Oranges are by far the most widely produced citrus fruit, accounting for
71% of total production in Egypt and encompassing several cultivars with varying fruit
quality. Mandarins are a diverse group of thin-skinned, easy-peeling fruits that include
popular citrus types such as mandarin and tangerine [17], the production of which has
recently undergone significant changes globally. Lemon and lime production has increased
significantly over the past ten years, and they are widely used as condiments, as flavoring
materials, especially for some hot cooked foods and vegetable salads, as an acidulant, and
in the manufacture of lemonade [18].

Citrus fruit quality is highly variable and highly influenced by climatic conditions
and agronomical and postharvest practices, and is dependent on the species and varieties,
growing regions, and destination markets [19] and postharvest variations in hygrothermal
conditions between refrigerated shipments [20]. Several studies have examined the effects
of these conditions and practices on the yield and characteristics of fruits. In mandarin trees,
Pedrero et al. [21] found that the use of reclaimed water in conjunction with deficit irrigation
may have a detrimental effect on the soil and plants because it resulted in a decrease in
fruit yield but an increase in fruit weight (FW) without appreciable changes in fruit quality.
Water conservation and the use of reclaimed water during the second stage of fruit devel-
opment in grapefruit trees had no detrimental effects on vegetative growth, yield, or fruit
quality [22]. The combination of deficit irrigation and saline water increased total soluble
solids (TSS), acidity, sugar content, and fruit ripening in peach [23,24], pomegranate [25–27],
grapefruit [26,27], and mandarin [28,29]. In addition, Romero et al. [30] noted that the redis-
tribution of photosynthesis by citrus trees toward their fruits as a result of a water shortage
caused a decrease in water content as well as an increase in sugar content, TSS, and acidity.
In date palm trees, Mattar et al. [31] found that deficit irrigation, whether with or without
freshwater, can enhance fruit quality while adversely affecting yield, particularly when saline
water is used. Shahin and Alhajhoj [32] discovered that date palm trees that were irrigated
with groundwater produced more fruit with the greatest length (FL), diameter (FD), and
flesh weight than those that were irrigated with both groundwater and agricultural drainage
water. As a result, researchers in agriculture have made it a priority to predict crop yield and
quality under these changes. In Egypt, citrus fruit quality is now valued as a key tool for
both domestic consumption and export to European and Gulf nations. Citrus fruits contain a
variety of important compounds, including TSS, acidity, vitamin C (VitC), sugars, and organic
acids. These substances are of interest because they significantly affect how fruit juices taste,
which is viewed as an important quality factor by both consumers and the food industry [33].
The ability of consumers and processors to accept citrus is largely dependent on a variety of
quality factors, including TSS, acidity, flavor, and taste characteristics [34]. The high chemical
properties of the fruit are crucial for identifying citrus quality for exportation markets and
lowering competition with other producers. Thus, consumers, food scientists, and processors
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must be aware of the anticipated chemical properties that will help to further strengthen the
citrus industry [35].

The architecture of an artificial neural network (ANN) model, a mathematical con-
struction, is strikingly similar to that of the human brain. In essence, the layered and highly
interconnected processing components mimic how brain neurons are arranged [36]. The
ANNs learn through example, just as people do. Through a learning or training process, an
ANN is set up for a particular application, such as pattern recognition or data classification.
Even if the data are inaccurate and noisy, ANNs can handle challenges involving non-linear
and complicated data. Agricultural data are well suited for modeling because they are
known to be complicated and frequently non-linear. Although the idea of neural network
analysis was conceived approximately 50 years ago, it has only been in the last 20 years that
software applications have been developed to address practical issues. The ANN model has
gained popularity recently among researchers as a forecasting tool for a variety of topics,
including agricultural research [37–40]. The ANN technique has been used in agriculture
to predict the viscosity of clarified fruit juice for orange, peach, and pear fruits [41]; the
peroxide and acidity levels of olive oil [42]; the antioxidant activity of black and green
teas [43]; fatty acid composition of oils [44]; fruit quality of loquat [45]; fruit quality of
peach [46,47]; and evapotranspiration [48–52].

The multiple linear regression (MLR) model technique estimates the dependent vari-
able with the aid of a number of independent factors, creating a regression equation that
can be used to explain and forecast the value of the dependent variable. Although it is
more accurate and useful than single independent variable prediction, it cannot address
complex nonlinear issues. It estimates dependent variables by combining the best of many
independent variables [53]. In recent years, the use of MLR has seen remarkable progress
in predicting crop yield and fruit quality [54–56]. The MLR has been used to predict peach
firmness [57], avocado fruit maturity parameters [58], and nutritional status ranges in
grape leaves [59].

It is critical to be able to predict the chemical composition of fruit juice without the
need for costly analyses in order to assess fruit quality in the fruit industry [46]. There
is currently little information regarding the prediction of the chemical properties of fresh
citrus fruits [60]. We hypothesized that ANN is an accurate model to predict the chemical
attributes of VitC, total sugars (Tsugar), and reducing sugars (Rsugar) in fresh citrus
fruits. The objective of this study was to estimate the chemical attributes that are of prime
importance for the industry using tools of artificial intelligence.

2. Materials and Methods
2.1. Experimental Site and Plant Materials

This study was carried out on three groups of citrus, with two cultivars for each
group, during the 2021 growing season, including the Orange group: Washington Navel
orange (Citrus sinensis (L.) Osbeck), Valencia orange (Citrus sinensis (L.) Osbeck); Mandarin
group: Clementine tangerine (Citrus clementina (Hort. ex Tan.)), Murcott mandarin (Citrus
reticulata Blanco) x (Citrus sinensis (L.) Osbeck); Acid group: Bearss Seedless lime (Citrus
latifolia (Yu Tanaka) Tanaka) and Eureka lemon (Citrus limon (L.) Burm. f.). The trees were
budded on sour orange rootstock (Citrus aurantium L.), eight years old and grown in sandy
loam soil. After removing the topsoil, the physical and chemical soil properties of the site
were measured using the methods described by Page et al. [61] and Klute [62] at three soil
depths (10–30, 30–60, and 60–90 cm), as shown in Table 1. A drip irrigation system was
used in private commercial orchards near Nobaryia city, El-Behera Governorate, Egypt.
Citrus trees were fertilized with mineral and organic fertilizers according to Abdel-Sattar
et al. [63]. All citrus trees underwent the normal agricultural practices, i.e., pruning and
pest control methods, which follow the recommendations of the Ministry of Agriculture,
Egypt. Each citrus cultivar was replicated six times with four trees that were as uniform as
feasible for each replication. According to commercial practice, fruits were picked mature
when the color of the fruits became yellow-orange, and those with flaws such as splitting,
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bruising, or cuts in the husk were removed. The fruits were then immediately transported
to the laboratory.

Table 1. Physical and chemical properties of the soil at the experimental site.

Depth (cm)

Particle Size (%)

Texture

Soil’s Physical Properties Soil’s Chemical Properties

Sand Silt Clay ρb
(g cm−3)

FC
(%)

WP
(%)

TAW
m3 m−3

EC
(dS m−1) pH OM

(%)
CaCO3

(%)

0–30 73.1 12.9 14.0 Sandy loam 1.39 11.0 4.5 0.11 1.48 7.63 0.46 2.33
30–60 70.4 12.0 17.6 Sandy loam 1.25 12.1 5.2 0.12 1.44 7.67 0.52 2.28
60–90 71.2 11.8 17.0 Sandy loam 1.46 11.2 4.6 0.10 1.57 7.82 0.36 2.45

ρb, bulk density; FC, field capacity; WP, wilting point; TAW, total available water; EC, electrical conductivity; OM,
organic matter; CaCO3, total calcium carbonate.

2.2. Measurements

Twenty mature fruits were randomly selected from each experimental tree to determine
the physical and chemical properties of the fresh fruit. A digital weighing scale (ME1002E,
Mettler Toledo, Greifensee, Switzerland) with 0.01-g accuracy was used to weigh the
chosen samples of each cultivar in order to calculate fresh FW. By dividing the average
fruit weight per tree (kg) by the number of fruits per tree, one can calculate the yield per
tree (yield/tree). Two linear measures, namely FL and FD, were measured using a digital
caliper (SuperCaliper series 500–775, Mitutoyo, Japan) with 0.01 mm accuracy.

A hand refractometer was used to determine the percentage of TSS in the fruit juice
(MA871, Milwaukee Instruments, Menomonee Falls, WI, USA). According to AOAC [64],
the percentage of total acidity was determined by titration with 0.1 sodium hydrox-
ide using phenolphthaline as an indicator as the amount of citric acid per 100 mL of
juice. The ascorbic acid (VitC) content of the juice was determined by titration with 2,6-
dichlorophenolindolphenol blue dye in accordance with AOAC [64] and expressed as
milligrams of ascorbic acid/100 mm of juice. Moreover, the phenol sulfuric acid method
described by Malik and Singh [65] was used to evaluate the Tsugar content in fruit. Using
the Lane and Eynon approach, which was described by Egan et al. [66], the content of
Rsugar in fruit was measured.

2.3. Artificial Neural Networks (ANNs)

A single input layer, one hidden layer, and one output layer were used as the architec-
ture of the ANN. In this study, a back-propagation learning algorithm-based feed-forward
ANN was used. The most common algorithm used to train feed-forward ANNs is back-
propagation [67–70]. In feed-forward networks, a maximum of one hidden layer is needed
because a three-layer network can produce arbitrarily complex decision regions [71]. A
parallel network of linking nodes known as neurons is included in ANN. These connections,
which are referred to as synapses, contain weights for storing information (the connection
strengths and a transfer or activation function). A learning or training process is created
by altering these weights in a learning algorithm. The feed-forward of the input training
pattern, the calculation and back-propagation of the associated error, and the adjustment of
the weights are the three steps in the back-propagation algorithm training of a network.

The network can be explained mathematically, as follows:
The following equation gives the value of the output layer neuron (Yk):

Yk = f

( nj

∑
j=1

(W2)kj hj + (B2)k

)
(1)
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where (W2)kj is weights from the hidden layer to the output layer, nj is number of output
neurons; (B2)k is biases in the output layer, and hj is the neuron’s activation value in the
hidden layer with the following equation [72]:

hj = f

(
ni

∑
i=1

(W1)ji Xi + (B1)j

)
(2)

where (W1)ji is weights from the input layer to the hidden layer, Xi is input parameters,
ni is number of input neurons, (B1)j is biases in the hidden layer, and f (· · · ) is activation
(transfer) function.

The sigmoid and hyperbolic tangent (tanh) functions are the most frequently used
activation functions in most agricultural applications. In addition, the tanh function is
the most popular form and is calculated faster than a sigmoid function. It can display
various learning dynamics [73]. The neural network in this study was trained using the
tanh function. The tanh function’s general functional form is applied as follows:

f (x) =
1− exp(−2x)
1 + exp(−2x)

(3)

The importance ratio of each input variable in modeling the output of the system can
be determined using the connection weights obtained from ANNs, according to a technique
introduced by Garson [74]. Garson’s algorithm utilizes the absolute values of connection
weights without taking into account the direction in which the relationship exists.

2.4. ANN Development

The Qnet2000 program was used to develop the ANN model. The input parameters,
including yield/tree, FW, FL, FD, and EC, were used for estimating the TSS, acidity, VitC,
Tsugar, and Rsugar of citrus fruits as output parameters. The output layer had five neurons,
and the input layer had five neurons. The neural networks were trained with 70% of the 144
observations and tested with 30% of the remaining observations. The tested citrus groups
(i.e., orange, mandarin, and acid) were used separately during the validation process to
assess the effectiveness of the trained network (data not used in training). The statistical
parameters of the inputs and outputs used for training and testing the models are shown
in Table 2. The ANN model was developed through numerous iterations of trial and error.
When the level of error is acceptable, the training of the ANN model is stopped, and the
optimal number of hidden neurons is chosen [75]. Network inputs and outputs were
automatically normalized between 0.15 and 0.85 before the data were exported to the ANN
for training [72,73]. The training process is speeded up by this normalization, which also
enhances the network’s generalization abilities. The normalization equation was as follows:

Xn = (0.85− 0.15)
(

X0 − Xmin
Xmax − Xmin

)
+ 0.15 (4)

where Xn is normalized value, X0 is original value, Xmin is minimum value, and Xmax is
maximum value. Figure 1 shows a schematic representation of the ANN modeling approach.

There were two stages to the neural network development process. The first stage,
namely ANN configuration optimization, determined the number of input variables that
significantly affect the output variable by estimating the contribution ratios of the inputs to
the outputs, considering the error value. The second stage, namely the training process,
was conducted using the determined inputs from the first stage’s determination. Following
that, based on the statistical indicators, the ANN’s ideal hidden neuron count was decided.
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Table 2. Descriptive statistics of the variables used in models development.

Statistics EC Yield/Tree FW FL FD TSS Acidity VitC Tsugar Rsugar

Training set
xmean 1.50 103.37 134.82 6.43 6.39 11.06 2.80 43.63 7.39 4.31
xmax 1.68 162.12 246.69 8.55 7.82 14.60 7.22 58.98 8.98 6.34
xmin 1.28 64.45 34.56 4.30 4.20 7.08 0.90 33.46 5.18 2.41
Sx 0.12 24.44 61.34 1.44 1.14 2.26 2.49 7.02 1.10 1.08
Csx −0.27 0.66 0.04 −0.10 −0.45 −0.41 0.75 0.38 −0.31 0.37
kx −0.98 −0.35 −1.09 −1.68 −1.25 −1.32 −1.38 −0.95 −1.24 −0.68
Testing set
xmean 1.50 103.94 136.21 6.48 6.43 11.08 2.75 43.86 7.42 4.31
xmax 1.68 161.48 246.78 8.59 7.84 14.58 7.14 57.89 8.95 6.38
xmin 1.28 66.08 34.98 4.31 4.29 7.05 0.90 33.59 5.15 2.48
Sx 0.12 22.20 60.72 1.42 1.13 2.28 2.48 6.99 1.10 1.09
Csx −0.14 0.62 0.06 −0.16 −0.45 −0.42 0.81 0.38 −0.41 0.41
kx −1.16 0.14 −0.99 −1.66 −1.22 −1.28 −1.33 −0.91 −1.08 −0.50

xmean, mean value; xmax, maximum value; xmin, minimum value; Sx, standard deviation; Csx, skewness coefficient;
kx, kurtosis coefficient; EC, electrical conductivity; FW, fruit weight; FL, fruit length; FD, fruit diameter; TSS, total
soluble solids; VitC, vitamin C; Tsugar, total sugars; Rsugar, reducing sugars.
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2.5. Multiple Linear Regression

In order to evaluate the effectiveness of the developed ANN, the multiple linear
regression (MLR) method was used to determine which yield/tree, FW, FL, FD, and EC
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had a significant impact on the five identical output variables (TSS, acidity, VitC, Tsugar,
and Rsugar). Seventy percent of the datapoints (randomly chosen) were used to fit the
MLR models, and the remaining 30% were used to test the models, in accordance with the
same modeling strategy (datapoints) developed for ANN modeling. The MLR equation is
as follows:

Ŷ = b0 + b1X1 + b2X2 + b3X3 + · · ·+ bmXm (5)

where Ŷ is the predicted or expected value of the dependent variable; X1 through Xm
are m distinct independent or predictor variables; b0 is the value of Ŷ when all of the
independent variables (X1 through Xm) are equal to zero; and b1 through bm are the
estimated regression coefficients.

2.6. Models Evaluation

To evaluate the proposed models’ performance accuracy, statistical performance eval-
uation criteria were calculated. Five statistical measures, namely the coefficient of determi-
nation (R2), root mean square error (RMSE), mean absolute error (MAE), mean absolute
relative error (MARE), and relative error (RE), were used. The expressions for each of these
five statistical measures are as follows:

R2 =

(
∑N

i=1
(
Ei − E

)(
Pi − P

))2

∑N
i=1
(
Ei − E

)2 . ∑N
i=1
(

Pi − P
)2 (6)

RMSE =

√
∑N

i=1(Pi − Ei)
2

N
(7)

MAE =
∑N

i=1|Pi − Ei|
N

(8)

MARE =
1
N

(
N

∑
i=1

∣∣∣∣Pi − Ei
Ei

∣∣∣∣× 100

)
(9)

RE =
(Pi − Ei)

Ei
× 100 (10)

where Ei is experimental value, Pi is predicted value, E is averaged experimental values, P
is averaged predicted values, and N is number of observations.

R2 measures how closely experimental and predicted values are correlated, with values
close to 1 indicating strong model performance. The benefit of RMSE is that it expresses the
error in the same units as the variable, giving more insight into the model’s effectiveness [76].
The lower the RMSE, the more accurate the prediction. Without considering the direction of
the forecasts set, MAE calculates the average magnitude of the errors in them. Lower values
of MAE, which range from 0 to ∞, are preferable. MARE provides an error percentage. The
model quality increases as MARE approaches zero. According to RE, bias is the percentage
that models provide.

3. Results
3.1. Exploratory Analysis with Six Cultivars

Analysis of variance revealed significant differences among the citrus cultivars for
the traits, i.e., FW, FL, FD, TSS, acidity, VitC, Tsugar, and Rsugar (Table 3). The fruit
yield/tree varied between 80.42 and 136.11 kg for all cultivars. The maximum yield/tree
was recorded in the cultivar Valencia orange, followed by the cultivar Eureka lemon, while
the minimum values of yield/tree were produced by the cultivar Clementine tangerine.
The FW in all the citrus cultivars under study was in the range of 72.92 to 226.20 g. The
most significant FW was recorded in the cultivar Washington Navel orange, followed by
the cultivar Valencia orange. The minimum FW was recorded in the Bearss Seedless lime
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cultivar, followed by the Clementine tangerine. The cultivars Washington Navel orange
and Valencia orange were recorded with the maximum FL (7.84 and 7.82 cm, respectively),
followed by the cultivar Eureka lemon, while the lowest fruit length was observed in
the cultivar Clementine tangerine. The most significant FD was recorded in cultivars
Washington Navel orange and Murcott mandarin, followed by Valencia orange. The lowest
FD was observed in the cultivar Bearss Seedless lime. In addition, the results revealed that
citrus cultivars had significant differences in TSS, acidity, VitC, Tsugar, and Rsugar. The
highest value of TSS was recorded in the cultivar Clementine tangerine, followed by the
Murcott mandarin cultivar. The Eureka lemon cultivar provided the lowest TSS (7.86%),
followed by Bearss Seedless lime (8.26%). The maximum acidity was recorded in Bearss
Seedless lime. However, the cultivars Washington Navel orange and Murcott mandarin
produced the minimum acidity (0.99%), followed by Clementine tangerine (1.04%). VitC
levels were highest in the cultivars Washington Navel orange and Valencia orange, with the
lowest levels found in the cultivar Bearss Seedless lime. In the citrus cultivars, the highest
percentage of Tsugar was obtained in the cultivars Washington Navel orange and Bearss
Seedless lime, whereas the lowest percentages of sugars were recorded in the Eureka lemon
cultivar. The Bearss Seedless lime cultivar had the highest sugar content of fruits, while the
Eureka lemon had the lowest sugar content.

Table 3. Distribution of mean values of yield, fruit weight (FW), fruit length (FL), fruit diameter (FD),
TSS, Acidity, Vitamin C (VitC), total sugar (Tsugar), and reducing sugar (Rsugar) of six cultivars of
mature citrus in the investigated sites.

Cultivars
Yield/tree FW FL FD TSS Acidity VitC Tsugar Rsugar

(Kg) (gm) (cm) (cm) (%) (%) (mg/100mL
Juice) (%) (%)

Washington Navel orange 95.01 c 226.20 a 7.84 a 7.49 a 11.93 c 0.99 d 53.00 a 8.44 a 4.79 b

Valencia orange 136.11 a 171.05 b 7.82 a 7.21 b 11.52 d 1.14 c 49.51 b 8.14 b 4.55 c

Murcott mandarin 92.67 c 146.86 c 5.71 c 7.44 a 13.05 b 0.99 d 38.15 e 6.55 d 3.63 e

Clementine tangerine 80.42 d 49.88 f 4.49 e 5.43 d 13.57 a 1.04 cd 43.70 c 6.93 c 3.81 d

Eureka lemon 116.65 b 136.24 d 7.65 b 6.17 c 7.86 f 5.77 b 40.85 d 5.67 e 2.78 f

Bearss Seedless lime 91.78 c 72.92 e 5.03 d 4.53 e 8.26 e 6.67 a 34.99 f 8.45 a 6.15 a

LSD (5%) 4.28 5.21 0.15 0.08 0.29 0.1335 1.1415 0.1134 0.0836

Different letters indicate that means are significantly different from each other (p < 0.05).

Using the correlation coefficient (r) test, the relationship or linkage between fruit
quality characteristics was investigated (Table 4). For six citrus cultivars, all factors were
connected to one another, either positively or negatively, with varied r-values; r-values
between 0.910 and 0.988 were found for Washington Navel oranges, 0.903 to 0.992 for
Valencia oranges, 0.923 to 0.992 for Murcott mandarins, 0.954 to 0.994 for Clementine
tangerines, 0.877 to 0.994 for Ureka Lemos, and 0.933 to 0.988 for Bearss Seedless limes,
indicating strong positive correlations between all chemical attributes, except acidity, of
fresh citrus fruit and dimensions of the fruits, FW, and yield/tree. This implies that raising
yield/tree, FW, FL, and FD increased the TSS, VitC, Tsugar, and Rsugar, while decreasing
acidity. The r-values in Washington Navel orange ranged from−0.924 to−0.983, in Valencia
orange from −0.894 to −0.99, in Murcott mandarin from −0.911 to −0.988, in Clementine
tangerine from −0.953 to −0.987, in Eureka lemon from −0.866 to −0.989, and in Bearss
Seedless lime from −0.933 to −0.985. It is clear that increasing the EC decreases the TSS,
VitC, Tsugar, and Rsugar. For six citrus cultivars, there was a positive correlation between
EC and acidity, with r-values ranging from 0.939 to 0.964.



Horticulturae 2022, 8, 1016 9 of 25

Table 4. Correlation coefficients describing the correlations among the yield/tree, fruit weight (FW),
fruit length (FL), and fruit diameter (FD) and chemical attributes for six cultivars of fresh citrus fruit.

EC Yield/Tree FW FL FD TSS Acidity VitC Tsugar Rsugar

Washington Navel orange
EC 1 −0.983 −0.962 −0.974 −0.924 −0.960 0.964 −0.959 −0.967 −0.957

Yield/tree 1 0.965 0.988 0.919 0.957 −0.961 0.967 0.968 0.955
FW 1 0.952 0.970 0.985 −0.977 0.988 0.977 0.962
FL 1 0.910 0.954 −0.949 0.949 0.974 0.967
FD 1 0.980 −0.940 0.966 0.965 0.957
TSS 1 −0.965 0.976 0.985 0.979

Acidity 1 −0.972 −0.963 −0.956
VitC 1 0.973 0.960

Tsugar 1 0.988
Rsugar 1

Valencia orange
EC 1.000 −0.966 −0.955 −0.894 −0.956 −0.965 0.939 −0.982 −0.990 −0.974

Yield/tree 1 0.988 0.962 0.991 0.991 −0.980 0.976 0.974 0.978
FW 1 0.968 0.992 0.986 −0.975 0.969 0.966 0.972
FL 1 0.969 0.958 −0.966 0.909 0.903 0.908
FD 1 0.992 −0.985 0.967 0.971 0.974
TSS 1 −0.985 0.974 0.977 0.976

Acidity 1 −0.950 −0.953 −0.959
VitC 1 0.987 0.986

Tsugar 1 0.987
Rsugar 1

Murcott mandarin
EC 1 −0.988 −0.978 −0.911 −0.958 −0.957 0.959 −0.975 −0.972 −0.962

Yield/tree 1 0.992 0.941 0.977 0.978 −0.968 0.989 0.985 0.981
FW 1 0.923 0.964 0.974 −0.961 0.984 0.974 0.979
FL 1 0.978 0.947 −0.942 0.927 0.956 0.932
FD 1 0.984 −0.972 0.976 0.989 0.971
TSS 1 −0.965 0.982 0.982 0.989

Acidity 1 −0.966 −0.967 −0.960
VitC 1 0.978 0.985

Tsugar 1 0.977
Rsugar 1

Clementine tangerine
EC 1 −0.971 −0.971 −0.987 −0.953 −0.987 0.954 −0.986 −0.964 −0.972

Yield/tree 1 0.985 0.983 0.973 0.988 −0.978 0.984 0.978 0.974
FW 1 0.984 0.980 0.992 −0.979 0.988 0.987 0.982
FL 1 0.970 0.992 −0.976 0.989 0.975 0.978
FD 1 0.981 −0.988 0.968 0.984 0.957
TSS 1 −0.983 0.994 0.989 0.985

Acidity 1 −0.969 −0.982 −0.963
VitC 1 0.981 0.991

Tsugar 1 0.978
Rsugar 1

Eureka lemon
EC 1 −0.982 −0.966 −0.866 −0.980 −0.989 0.956 −0.976 −0.981 −0.971

Yield/tree 1 0.986 0.891 0.986 0.989 −0.965 0.987 0.983 0.978
FW 1 0.918 0.976 0.982 −0.975 0.978 0.974 0.968
FL 1 0.901 0.877 −0.970 0.908 0.922 0.926
FD 1 0.983 −0.973 0.984 0.994 0.986
TSS 1 −0.959 0.978 0.982 0.974

Acidity 1 −0.975 −0.981 −0.981
VitC 1 0.984 0.980

Tsugar 1 0.991
Rsugar 1

Bearss Seedless lime
EC 1 −0.972 −0.985 −0.933 −0.958 −0.975 0.960 −0.982 −0.979 −0.957

Yield/tree 1 0.968 0.967 0.978 0.967 −0.984 0.971 0.984 0.977
FW 1 0.933 0.963 0.975 −0.957 0.974 0.981 0.953
FL 1 0.965 0.940 −0.972 0.937 0.955 0.988
FD 1 0.953 −0.979 0.965 0.971 0.971
TSS 1 −0.967 0.964 0.969 0.956

Acidity 1 −0.977 −0.979 −0.975
VitC 1 0.981 0.959

Tsugar 1 0.972
Rsugar 1

EC, electrical conductivity; TSS, total soluble solids; VitC, vitamin C; Tsugar, total sugars; Rsugar, reducing sugars.

3.2. Optimal ANN Architecture Selection

Using a trial-and-error procedure based on the statistical indicators displayed in
Figures 2 and 3, the optimum ANN architecture was chosen. As previously described,
two stages were implemented in this procedure. In the first stage (i.e., ANN configuration
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optimization) using all input variables (five input neurons), the R2, RMSE, MAE, and MARE
values of the ANN models for TSS, acidity, VitC, Tsugar, and Rsugar with an increasing
number of hidden neurons are shown in Figure 2, using the tanh function during the
training process. The ANN architecture was considerably improved with the addition
of hidden neurons, as evidenced by the values of the statistical indicators. High values
of R2 and low values of RMSE, MAE, and MARE, indicating good model performance,
were obtained by increasing the number of neurons in the hidden layer to more than three.
With the increase of the number of hidden neurons to 9, there was a clear improvement in
the ANN for TSS, acidity, VitC, Tsugar, and Rsugar, as shown in Figure 2. The statistical
parameters values were R2 of 0.998, 0.998, 0.996, 0.996, and 0.998; RMSE of 0.102, 0.102,
0.452, 0.065, and 0.053; MAE of 0.083, 0.075, 0.344, 0.047, and 0.041; and MARE of 0.807,
4.815, 0.769, 0.648, and 1.020 for TSS, acidity, VitC, Tsugar, and Rsugar, respectively. The
importance ratio of input variables for the 5-9-2 construction of the ANN model showed
that the EC variable is not significant, contributing only 3.69%, 2.82%, 8.97%, 5.41%, and
4.14%, respectively, for TSS, acidity, VitC, Tsugar, and Rsugar, while FD is the dominant
input variable.
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Figure 2. Number of hidden neurons verse statistical performance of the ANN model for total soluble
solids (TSS), acidity, vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) during the
stage of ANN configuration optimization. R2, coefficient of determination; RMSE, root mean square
error; MAE, mean absolute error; MARE, mean absolute relative error.
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Figure 3. Number of hidden neurons verse statistical performance of the ANN model for total soluble
solids (TSS), acidity, vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) during
the training process. R2, coefficient of determination; RMSE, root mean square error; MAE, mean
absolute error; MARE, mean absolute relative error.
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In the stage of training, the ANN model was developed using the following four
input variables: yield/tree, FW, FL, and FD. Figure 3 shows that when increasing the
number of neurons in the hidden layer from 3 to 5, there was a marked improvement in
network performance for the TSS, acidity, VitC, Tsugar, and Rsugar. With TSS, the R2 value
was approximately 3.98% increasing, while RMSE, MAE, and MARE values were about
45.84%, 41.48%, and 40.26% decreasing, respectively. The same trend applies for acidity,
VitC, Tsugar, and Rsugar. The R2 values were in the range of 0.32–4.38% increasing, while
decreasing in the range of 24.25–59.67%, 19.91–60.61%, and 33.32–61.92%, respectively
(Figure 3). The ANN model considerably improved when the number of hidden neurons
was increased from 5 to 8. This gave an R2 value increase of approximately, on average,
0.45% for the previous architecture (4-5-4) for TSS, acidity, VitC, Tsugar, and Rsugar. The
corresponding RMSE, MAE, and MARE values decreased by approximately, in average,
29.88%, 28.72%, and 28.26%, respectively. As shown in Figure 3, increasing the number
of hidden neurons to more than 8 hampered ANN performance. The most appropriate
ANN architecture is 4-8-4 with a tanh function that gave the best prediction of TSS, acidity,
VitC, Tsugar, and Rsugar with the lowest error (the maximum R2 and the minimum RMSE,
MAE, and MARE). Using an ANN model reduces the amount of input data and is less
time-consuming, and it has higher performance and accuracy. The production values of
the adjusted bias and weight matrices of the proposed ANN model had to be delivered to a
spreadsheet (i.e., Microsoft Excel) or in the Visual Basic programming language to create
an interactive computer tool for predicting the chemical attributes of fresh citrus fruit. The
TSS, acidity, VitC, Tsugar, and Rsugar models can be represented by an algebraic system of
equations using the trained values of the weights and biases (Table 5).

Table 5. Values of weights (W) and biases (B) between the layers for the developed ANN model.

Inputs
Inputs
Neurons
(i)

Hidden Neurons (j)

(W1)ji

1 2 3 4 5 6 7 8

Yield/tree 1 −2.84 1.90 −3.90 −1.09 −3.42 3.61 0.35 4.27
FW 2 1.04 −5.01 1.31 4.20 −1.93 −2.53 1.43 3.36
FL 3 3.22 −3.53 −8.77 3.57 0.45 0.72 −5.33 −3.10
FD 4 −6.13 −0.76 16.53 0.10 −7.76 −5.50 2.33 −15.45

(B1)j −0.04 6.90 −3.00 −1.48 4.75 2.67 0.79 3.54

Outputs
Outputs
Neurons
(k)

(W2)kj
(B2)k

1 2 3 4 5 6 7 8

TSS 1 0.23 −1.66 2.69 −3.50 −3.24 2.49 1.13 0.69 1.46
Acidity 2 2.49 −0.94 −5.08 1.76 0.87 −1.61 3.04 −0.78 0.61

VitC 3 1.75 −7.01 2.85 0.72 −2.40 5.98 0.83 0.11 0.45
TSugar 4 −2.69 −1.42 4.92 0.40 −2.08 2.47 −4.60 6.75 −0.93
RSugar 5 −3.22 −0.07 3.30 1.08 −0.98 1.00 −3.22 6.42 −2.20

(W1)ji , weights from the input layer to the hidden layer; (B1)j, biases in the hidden layer; (W2)kj, weights from
the hidden layer to the output layer; (B2)k , biases in the output layer; FW, fruit weight; FL, fruit length; FD, fruit
diameter; TSS, total soluble solids; VitC, vitamin C; Tsugar, total sugars; Rsugar, reducing sugars.

3.3. ANN Model Performance

For the prediction of TSS, acidity, VitC, Tsugar, and Rsugar in fresh citrus fruits, a
feed-forward back-propagation ANN with a tanh transfer function in the hidden and
output layers was chosen. The 4-8-4 architecture of ANN was obtained through the best
fit during the training process, as previously mentioned. To illustrate the goodness of fit,
Figure 4 shows, for the used training data (green points), a comparison of the experimental
and predicted TSS, acidity, VitC, Tsugar, and Rsugar values with the proposed ANN. It
is clear from that figure that the predicted values using the proposed ANN model have a
perfect fit with the observed values of TSS, acidity, VitC, Tsugar, and Rsugar. The R2 values
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had a range of 0.996–0.998, which is very close to one. Approximately 99.6% of the observed
TSS variable can be explained in terms of the desired TSS, which is more homogeneous
data with a strongly positive linear correlation [77], and so on for other variables. The
values of the slope for the fit-line equation for TSS, acidity, VitC, Tsugar, and Rsugar (0.995,
0.999, 0.995, 0.995, and 0.997, respectively) are close to 1, while the intercept values (0.051,
0.003, 0.219, 0.035, and 0.013, respectively) for the equation are close to 0. For this network,
the RMSE, MAE, and MARE values obtained had a range of 0.064–0.453, 0.05–0.384, and
0.793–5.007%, respectively, as presented in Table 6. The RMSE, MAE, and MARE values are
close to zero.
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Figure 4. Comparison between experimental and predicted values of total soluble solids (TSS), acidity,
vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) using ANN and MLR models
during training process.

Table 6. Statistical performance of the developed ANN model for total soluble solids (TSS), acid-
ity, vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) for the training and
testing processes.

Statistical Parameters TSS Acidity VitC Tsugar Rsugar

Training process
RMSE 0.143 0.119 0.453 0.072 0.064
MAE 0.109 0.090 0.384 0.058 0.050

MARE 1.057 5.007 0.891 0.793 1.241
Testing process

RMSE 0.137 0.106 0.634 0.080 0.068
MAE 0.098 0.085 0.506 0.061 0.052

MARE 0.973 4.819 1.153 0.834 1.231

RMSE, root mean square error; MAE, mean absolute error; MARE, mean absolute relative error.

In the testing process, Figure 5 shows that TSS, acidity, VitC, Tsugar, and Rsugar values
mostly follow the 1:1 line, with slopes of 1.014, 1.007, 1.001, 1.003, and 0.993 (close to 1),
respectively, and intercepts of 0.151, 0.051, 0.052, 0.018, and 0.047 (close to 0) in the fit-line
equations, indicating a very good match between the predicted and experimental data,
while R2 values were generally close to one. Table 6 shows statistical values for ANN
outputs for test data. RMSE, MAE, and MARE test values were extremely low for all
outputs. The ANN models excelled fairly similarly in their performances on both training
and test datasets as there were no important differences in R2, RMSE, MAE, and MARE
values (between the training and testing datasets) for TSS, acidity, VitC, Tsugar, and Rsugar.
As Figure 6 depicts, the relative errors (RE) of predicted TSS, acidity, VitC, Tsugar, and
Rsugar values (green points) are mostly around ±10%, except for some of a few datapoints
with acidity values. Thus, these statistical criteria provide an indication that the proposed
ANN model performance is sufficiently accurate.

3.4. Comparison between the Selected ANN and MLR Models

To verify the effectiveness of the suggested ANN model, MLR models were created.
Table 7 presents the MLR equations developed for TSS, acidity, VitC, Tsugar, and Rsugar in
order to confirm the capability of the proposed ANN model to predict these outputs. The
MLR models were developed for TSS, acidity, VitC, Tsugar, and Rsugar data, which were
used in the training process for developing the ANN. Table 8 also includes the regression
analysis (SE, t-stat, and p-value) performed to determine the independent variables with
significant effects on outputs at a 95% confidence level. It is observed that the absolute
values of the independent variables’ t-stat for all MLR models are greater than 1.99, except
for variable VitC, confirming the p-values (p < 0.05). The p-value of independent variables
given in Table 8 indicates that FD is the most significant variable in the MLR models with
the highest t-stat. The SE of the FD coefficients average was 33.16 × 10−2. The coefficients
associated with the FD are larger than those associated with the other variables, indicating
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that the FD contributes more to the estimation of TSS, acidity, VitC, Tsugar, and Rsugar
values than the other variables.
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Figure 5. Comparison between experimental and predicted values of total soluble solids (TSS), acidity,
vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) using ANN and MLR models
during the testing process.
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Figure 6. Relative error for the ANN and MLR models using the total soluble solids (TSS), acidity,
vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) data during the testing process.

Table 7. Equations derived from the MLR models for total soluble solids (TSS), acidity, vitamin C
(VitC), total sugars (Tsugar), and reducing sugars (Rsugar).

Model Equation R2

TSS TSS = 5.05 + 6.58 × 10−3YT − 6.51 × 10−3FW − 1.46FL + 2.44FD 0.741
Acidity Acidity = 13.82 + 8.24 × 10−3YT + 15.34 × 10−3FW + 0.71FL − 2.90FD 0.911
VitC VitC = 23.83 + 36.81 × 10−3YT + 48.27 × 10−3FW + 0.55FL + 0.93FD 0.534
Tsugar Tsugar = 14.12 + 25.47 × 10−3YT + 42.26 × 10−3FW − 1.13FL − 1.22FD 0.542
Rsugar Rsugar = 13.45 + 26.49 × 10−3YT + 44.33 × 10−3FW − 1.26FL − 1.52FD 0.722

R2, coefficient of determination; YT: yield/tree; FW, fruit weight; FL, fruit length; FD, fruit diameter
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Table 8. Standard error of regression coefficients, t statistic, and probability factor of independent
variables for regression models.

Intercept
Independent Variables

Yield/Tree FW FL FD

TSS
SE 1.29 7.44 × 10−3 6.37 × 10−3 22.89 × 10−2 22.14 × 10−2

t-stat 3.92 0.89 –1.02 –6.36 11.00
p-value 1.68 × 10−4 37.84 × 10−2 30.88 × 10−2 6.8 × 10−9 1.06 × 10−18

Acidity
SE 1.45 8.37 × 10−3 7.17 × 10−3 25.76 × 10−2 24.91 × 10−2

t-stat 9.52 0.98 2.14 2.77 –11.63
p-value 1.58 × 10−15 32.75 × 10−2 34.82 × 10−3 6.77 × 10−3 4.93 × 10−20

VitC
SE 5.38 3.10 × 10−2 2.66 × 10−2 95.52 × 10−2 92.38 × 10−2

t-stat 4.43 1.19 1.82 0.58 1.01
p-value 2.53 × 10−5 23.86 × 10−2 7.23 × 10−2 56.51 × 10−2 31.64 × 10−2

Tsugar
SE 85.05 × 10−2 4.91 × 10−3 4.20 × 10−3 15.09 × 10−2 14.60 × 10−2

t-stat 16.60 5.19 10.07 –7.50 –8.33
p-value 5.72 × 10−30 1.16 × 10−6 1.08 × 10−16 3.17 × 10−11 5.58 × 10−13

Rsugar
SE 68.65 × 10−2 3.96 × 10−3 3.39 × 10−3 12.19 × 10−2 11.78 × 10−2

t-stat 19.59 6.69 13.08 –10.34 –12.94
p-value 2.65 × 10−35 1.49 × 10−9 4.73 × 10−23 2.80 × 10−17 9.17 × 10−23

SE, standard error of regression coefficients; t-stat, t statistic; p-value, probability; FW, fruit weight; FL, fruit length;
FD, fruit diameter.

Figure 4 shows that many points in the MLR models are located above and below the
1:1 line for outputs during the training process. The values of slope in the fit-line equations
are close to one, and the values of intercept reach zero with MLR models for TSS, acidity,
and Rsugar, with the R2 values falling between 0.722 and 0.911. While MLR models for
VitC and Tsugar showed a small correlation with experimental values, the R2 values were
0.534 and 0.542, respectively. The MLR models shown in Table 9 ranged in the RMSE of
0.568–4.768, MAE of 0.446–4.211, and MARE of 8.88–75.397%, based on the training subset.
The MLR model’s Tsugar estimates were also closer to the corresponding experimental
values, with lower values of RMSE, MAE, and MARE than those of the other models. The
MLR model produced acidity values with the lowest accuracy, with a MARE of 75.397%.
The RE in TSS, acidity, VitC, Tsugar, and Rsugar during the training process is plotted in
Figure 5. We can see that singularities are produced by the proposed MLR (violet points)
and are mostly around ±30%. Table 9 shows that MLR to model Tsugar has the best result
compared to the other models during the testing dataset. This result is reflected in the
RMSE, MAE, and MARE values. Finally, the estimated TSS, acidity, VitC, Tsugar, and
Rsugar values from the MLR models during the testing process showed the same trend of
results as with these models during the training process.

Based on the graphic comparison in Figure 4, the variability in the scatter plot of the
ANN model is marginally less than that of the MLR models using the training dataset.
This Figure shows that the ANN model exhibited a relatively close performances based
on fit line equations, whereas the R2 of the ANN models is larger than that of the MLR
models during the training process. The RE during the training process for TSS, acidity,
VitC, Tsugar, and Rsugar is plotted in Figure 5. It is observed that singularity zones when
using the proposed MLR are located throughout the graph. The low RE supports the use
of the developed ANN model. A comparison between the performance statistics of the
models is given in Tables 3 and 6, which show considerable differences between the ANN
and MLR models in terms of RMSE, MAE, and MARE. Using MLR to model TSS and
Rsugar raised the RMSE, MAE, and MARE values to eight times the values for the ANN
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model, while these values increased approximately ten times with VitC and Tsugar, and
twelve times with acidity during the training process.

Table 9. Statistical performance of the developed MLR models for total soluble solids (TSS), acid-
ity, vitamin C (VitC), total sugars (Tsugar), and reducing sugars (Rsugar) for the training and
testing processes.

Statistical Parameters TSS Acidity VitC Tsugar Rsugar

Training process
RMSE 1.143 1.200 4.768 0.740 0.568
MAE 1.023 1.126 4.211 0.619 0.446

MARE 9.263 75.397 9.925 8.880 11.523
Testing process

RMSE 1.140 1.187 4.830 0.724 0.550
MAE 1.013 1.115 4.206 0.619 0.440

MARE 9.167 73.393 9.845 8.734 10.905

RMSE, root mean square error; MAE, mean absolute error; MARE, mean absolute relative error.

The testing dataset led to a more realistic assessment of the predictive accuracy.
Figure 5 depicts the relationship between the experimental and predicted values of TSS,
acidity, VitC, Tsugar, and Rsugar during the testing process using the ANN and MLR
models. As in the training process, the developed ANN model outperforms the MLR
model in terms of agreement between experimental and predicted values. The R2 values for
the ANN model were almost one for the MLR model. As can be seen from Tables 3 and 6,
the RMSE, MAE, and MARE values provide an indication that the MLR model performance
is inadequately accurate. These findings indicate that ANN can be used to successfully
model TSS, acidity, VitC, Tsugar, and Rsugar.

3.5. TSS, Acidity, VitC, Tsugar, and Rsugar of the Citrus Fruits Groups with the Selected ANN
and MLR Models

The developed ANN model’s accuracy was validated by using the orange, mandarin,
and acid groups, which are separately used to check on the performance of the model. As
seen in Table 10, the ANN model and the MLR model exhibit a considerable divergence.
The table makes it clear that using the developed ANN model rather than the MLR model
results in a reasonable agreement between experimental and predicted values of TSS, acidity,
VitC, Tsugar, and Rsugar for the three citrus groups. The values of statistical parameters,
such as RMSE, MAE, and MARE, clearly reflect this agreement. RMSE, MAE, and MARE
values were close to zero with the ANN model for TSS, acidity, VitC, Tsugar, and Rsugar of
the tested citrus fruits. The MLR model for TSS had average values of RMSE, MAE, and
MARE that were approximately 7, 9, and 8 times, respectively, less accurate than those
from the ANN model. The MLR model for acidity had average values of RMSE, MAE, and
MARE that were approximately 10, 13, and 15 times, respectively, less accurate than those
from the ANN model. Meanwhile, the MLR models had average values of RMSE, MAE,
and MARE that were approximately 7 times for VitC, 9 times for Tsugar, and 7 times for
Rsugar, respectively, less accurate; they were less accurate than those from the MLR model.
The statistical criteria for the two models confirm that the MLR model performs poorly.

However, the results of statistical criteria show that the developed ANN model, as
shown in Table 10, performs best when used to forecast the TSS and VitC of the mandarin
group, the acidity of the orange group, and the Tsugar and Rsugar of the acid group. The
RMSE value for TSS and VitC for the mandarin group decreased (approximately 50% and
18%, respectively) from 0.177 and 0.567 in the acid group to 0.088 and 0.478. The RMSE
value for acidity’s orange group decreased (approximately 44%) from 0.121 in the acid
group to 0.084. Finally, the RMSE value for Tsugar and Rsugar for the acid group decreased
(approximately 134% and 40%, respectively) from 0.108 and 0.074 in the mandarin group to
0.046 and 0.053.
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Table 10. Total soluble solids (TSS), acidity, vitamin C (VitC), total sugars (Tsugar), and reducing
sugars (Rsugar) of the fresh fruits for three citrus groups with the developed ANN and MLR models
for the validation process.

Statistical Parameters
Orange Group Mandarin Group Acid Group

ANN MLR ANN MLR ANN MLR

TSS
RMSE 0.131 0.762 0.088 1.610 0.177 0.882
MAE 0.093 0.681 0.072 1.569 0.129 0.814

MARE 0.811 5.728 0.534 11.645 1.586 10.373
Acidity

RMSE 0.084 0.977 0.118 1.664 0.121 1.104
MAE 0.066 0.952 0.098 1.663 0.098 1.016

MARE 5.677 8.525 9.345 16.131 1.638 16.734
VitC

RMSE 0.799 3.428 0.478 6.906 0.567 3.368
MAE 0.649 2.745 0.382 6.743 0.477 3.234

MARE 1.252 5.060 0.945 16.235 1.253 8.580
Tsugar

RMSE 0.072 0.695 0.108 0.821 0.046 0.647
MAE 0.064 0.659 0.078 0.642 0.042 0.554

MARE 0.775 7.955 1.124 9.428 0.608 8.876
Rsugar

RMSE 0.075 0.492 0.074 0.627 0.053 0.528
MAE 0.062 0.451 0.048 0.413 0.047 0.455

MARE 1.328 9.683 1.244 11.112 1.115 12.007

RMSE, root mean square error; MAE, mean absolute error; MARE, mean absolute relative error.

3.6. Importance-Ratio Analysis

Using the established ANN model, it was possible to calculate the contribution ratio
of the yield/tree, FW, FL, and FD (inputs) to the TSS, acidity, VitC, Tsugar, and Rsugar
(outputs), and the results are displayed in Figure 7 for citrus fruits. The importance of the
input variable increases with the contribution percentage value. The findings obtained
could indicate that the FD and FL are implicitly considered when estimating the TSS, acidity,
Tsugar, and Rsugar values, where the contributions of FD and FL were 39.93% and 33.23%,
52.81% and 23.67%, 35.02% and 31.56%, and 42.32% and 26.73%, respectively. While FL
and yield/tree contributed the most to VitC, with contribution ratios of 30.79% and 29.81%,
respectively, FD contributed the least, with a value of 16.46%. Furthermore, FW contributed
the lowest values for TSS, Tsugar, and Rsugar in the range of 10.04% to 12.89%.
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Figure 7. Contribution ratio of the input variables in the ANN model. FW, fruit weight; FL, fruit
length; FD, fruit diameter; TSS, total soluble solids; VitC, vitamin C; Tsugar, total sugars; Rsugar,
reducing sugars.

4. Discussion

Fruit quality is one of the most important competitive market factors because it affects
both the price and the amount of fruit sold [78]. The results of the present data analysis
were consistent with the past findings as they mentioned significantly varied values for
yield and physico-chemical fruit parameters among the citrus cultivars. Based on genetic
make-up, intrinsic traits, climatic adaptability, growth factors, blooming, and fruit setting
and management approached in cultivated areas in each region, various researchers have
observed that citrus cultivars significantly differed in yield/tree, FW, FL, and FD, TSS,
acidity, VitC, Tsugar, and Rsugar [15,16,19,79].

In order to assess fruit quality in the fruit industry, prediction of the chemical com-
position of fruit juice using mathematical models without the need for costly analyses
is important [46]. Using the ANN model provides more accurate prediction values for
the target variables. After examining the inputs, the network’s first layer was present
with four inputs (Yield/tree, FW, FL, and FD), and its single output layer represented
the quality chemical attributes. How well a dataset can be learned can be influenced by
how many hidden neurons there are, which is important for identifying the best network
architecture [80]. If the neurons are insufficiently used, this prevents the network from
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learning. When there are too many hidden neurons, overfitting can happen, which hinders
the ability to generalize the input/output relationship but enhances network learning and
data memorization [80,81]. The MLR models were developed to evaluate the performance
of the proposed ANN model. An R2 value is commonly used to evaluate the performance
of a definite model, while RMSE, MAE, and MARE can be used to evaluate the precision of
a model by residual analysis. The ANN model was able to precisely predict the FW, FL, FD,
TSS, acidity, VitC, Tsugar, and Rsugar of six different citrus cultivars with values of higher
R2 and lower RMSE, MAE, and MARE than the values for MLR models for the test dataset,
which was not used in the training phase. Previous prediction studies in various research
areas have also demonstrated that ANN modeling methods are much more accurate than
MLR modeling [46,82]. It is crucial to employ a dependable modeling technique to predict
subjects in order to create an accurate prediction model [83]. Additionally, importance-ratio
analysis is a useful tool in ANN models for extracting detailed information about the
relationship between the input variables and the outcomes [84]. The importance of each
predictor (independent variable) is calculated in this analysis in order to calculate the
likelihood of an output in an ANN model [85]. The FD and FL variables were the most
important, creating a powerful predictive ANN model, while the FW variable contributed
the least. Abdel-Sattar et al. [46] showed that the FW of peach contributed different values
to TSS, acidity, and VitC in the range of 19.61–23.48%.

From patterns of input and output data, ANNs can learn complex relationships
and simplify outcomes. An ANN model’s main benefit is that it can predict a variety
of non-linear functions, allowing for the development of the most accurate prediction
model without the need to specify a prior closely fitting function. As a result, ANN is an
effective method for simulating complex issues for which accurate models or workable
solutions have not yet been developed. The quality of the training data, the type of data,
the architecture of the ANN, and the learning algorithm used in that particular case can all
have an impact on how well an ANN solves a problem [86]. Recently, more researchers
have shown that the ANN model is a very effective forecasting tool to predict the accuracy
of fruit quality, mainly including the classification and grading of fruit quality [87–89], the
prediction of kiwi fruit yield [90], and fruit quality in loquat and peach [45,47]. Additionally,
using inputs of juice volume, FW, and sphericity percentage, ANN was developed to
forecast the TSS, acidity, TSS/acidity, anthocyanin, VitC, and total carotenoids content
for fresh peach fruit [46]. Huang et al. [91] reported that developed ANN models with
different topologies could accurately predict the FW, TSS, and acidity of loquat. A number
of necessary assumptions, such as the fact that the linear function was regressed when
the conventional MLR was used, were largely responsible for the ANN model’s superior
performance compared with the MLR model. The established MLR model may therefore
have only limited applications. The ANN model, in contrast, performed well at identifying
patterns and fitting various functions to various types of data [92]. However, the ANN
modeling method is constrained in some ways. Standardized coefficients that correspond to
each parameter may not be as straightforward to identify in these procedures as they are in
regular regression models. Regression analyses using the ANN procedure produce weights
that are challenging to interpret because they are frequently affected by the computer
software that created them [92,93].

We suggest that the established ANN model is capable of predicting the chemical
properties of citrus fruits based on the high level of accuracy of the predicted data in both the
training and testing stages [82]. The ANN technique had satisfactory generalizability when
handling an entirely new dataset [94,95]. Lastly, it is very beneficial to predict the chemical
properties of citrus fruits as improved raw materials for industrial or research applications
because knowing the qualities of citrus samples will help with selecting the best fruit
samples during the harvesting period and raising the price of potential commercial citrus.
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5. Conclusions

The chemical attributes of citrus fruits at harvesting time play a significant role in the
fruit industry. We used ANN to model the chemical attributes of citrus fruits, including
TSS, acidity, VitC, Tsugar, and Rsugar (outputs) for three citrus groups. The yield/tree,
FW, FL, FD, and EC (inputs) were used to create an ANN model with a feed-forward back
propagation algorithm and hyperbolic tangent as the activation function in the hidden and
output layers. The outcomes were contrasted with those derived from MLR models, which
were used to forecast the chemical attributes of citrus fruits. The models’ performance was
assessed using R2, RMSE, MAE, and MARE. Several neural network architectures were
trained and tested to find the best structure with the least amount of errors, each with a
different number of neurons in a single hidden layer. The maximum ANN model perfor-
mance, as determined by statistical criteria, was achieved with 8 neurons in the hidden
layer. Thus, the 4-8-5 neuron configuration was found to be the best ANN architecture,
and the EC variable was disregarded because of its minimal contribution. The FD and
FL were also the dominant factors, leading to a strong predictive model. As a result, an
agronomist can recognize and concentrate on the factors that impact the state of the output
while ignoring those that have minimal effects. The TSS, acidity, VitC, Tsugar, and Rsugar
values of citrus fruits can be predicted with sufficient precision using the ANN model,
which has demonstrated greater prediction ability than the MLR model. As a result, ANN
is an effective and trustworthy technique for predicting the chemical characteristics of
citrus fruits.
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