Study of Primary and Secondary Metabolites of Stenospermocarpic, Parthenocarpic and Seeded Raisin Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Site
2.2. Drying Process
2.3. Analysis of Hormones in the Raisins Varieties
2.4. Analysis of Sugars in the Raisins Varieties
2.5. Analysis of Enzymes in the Raisins Varieties
2.6. Analysis of Vitamins in the Raisins Varieties
2.7. Analysis of Minerals in the Raisins Varieties
2.8. Analysis of Amino Acids in the Raisins Varieties
2.9. Statistical Analysis
3. Results and Discussion
3.1. Hormone Contents in Raisin
3.2. Sugar Contents in Raisins
3.3. Enzymatic Activity in Raisins
3.4. Vitamin Contents in Raisins
3.5. Mineral Contents in Raisins
3.6. Amino Acid Contents in Raisins
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, L.M. Fruit Development and ripening. In Plant Growth and Development; Academic Press: Cambridge, MA, USA, 2002; pp. 413–429. ISBN 978-0-12-660570-9. [Google Scholar]
- Varoquaux, F.; Blanvillain, R.; Delseny, M.; Gallois, P. Less Is Better: New Approaches for Seedless Fruit Production. Trends Biotechnol. 2000, 18, 233–242. [Google Scholar] [CrossRef]
- Dauelsberg, P.; Matus, J.T.; Poupin, M.J.; Leiva-Ampuero, A.; Godoy, F.; Vega, A.; Arce-Johnson, P. Effect of Pollination and Fertilization on the Expression of Genes Related to Floral Transition, Hormone Synthesis and Berry Development in Grapevine. J. Plant Physiol. 2011, 168, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Costantini, L.; Moreno-Sanz, P.; Nwafor, C.C.; Lorenzi, S.; Marrano, A.; Cristofolini, F.; Gottardini, E.; Raimondi, S.; Ruffa, P.; Gribaudo, I.; et al. Somatic Variants for Seed and Fruit Set in Grapevine. BMC Plant Biol. 2021, 21, 135. [Google Scholar] [CrossRef] [PubMed]
- Pratt, C. Reproductive Anatomy in Cultivated Grapes-A Review. Am. J. Enol. Vitic. 1971, 22, 92–109. [Google Scholar]
- Royo, C.; Carbonell-Bejerano, P.; Torres-Pérez, R.; Nebish, A.; Martínez, Ó.; Rey, M.; Aroutiounian, R.; Ibáñez, J.; Martínez-Zapater, J.M. Developmental, Transcriptome, and Genetic Alterations Associated with Parthenocarpy in the Grapevine Seedless Somatic Variant Corinto Bianco. J. Exp. Bot. 2016, 67, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Vargas, A.M.; Vélez, M.D.; de Andrés, M.T.; Laucou, V.; Lacombe, T.; Boursiquot, J.-M.; Borrego, J.; Ibáñez, J. Corinto Bianco: A Seedless Mutant of Pedro Ximenes. Am. J. Enol. Vitic. 2007, 58, 540–543. [Google Scholar]
- Lahogue, F.; This, P.; Bouquet, A. Identification of a Codominant Scar Marker Linked to the Seedlessness Character in Grapevine. Theor. Appl. Genet. 1998, 97, 950–959. [Google Scholar] [CrossRef]
- Ibáñez, J.; Vargas, A.M.; Palancar, M.; Borrego, J.; de Andrés, M.T. Genetic Relationships among Table-Grape Varieties. Am. J. Enol. Vitic. 2009, 60, 35–42. [Google Scholar]
- Adam-Blondon, A.-F.; Lahogue-Esnault, F.; Bouquet, A.; Boursiquot, J.M.; This, P. Usefulness of Two SCAR Markers for Marker-Assisted Selection of Seedless Grapevine Cultivars. Vitis 2001, 40, 155. [Google Scholar] [CrossRef]
- Pérez, F.J.; Gómez, M. Possible Role of Soluble Invertase in the Gibberellic Acid Berry-Sizing Effect in Sultana Grape. Plant Growth Regul. 2000, 30, 111–116. [Google Scholar] [CrossRef]
- Rahman, M.A.; Balasubramani, S.P.; Basha, S.M. Molecular Characterization and Phylogenetic Analysis of MADS-Box Gene VroAGL11 Associated with Stenospermocarpic Seedlessness in Muscadine Grapes. Genes 2021, 12, 232. [Google Scholar] [CrossRef]
- Keskin, N.; Kaya, O.; Ates, F.; Turan, M.; Gutiérrez-Gamboa, G. Drying Grapes after the Application of Different Dipping Solutions: Effects on Hormones, Minerals, Vitamins, and Antioxidant Enzymes in Gök Üzüm (Vitis Vinifera L.) Raisins. Plants 2022, 11, 529. [Google Scholar] [CrossRef]
- Sério, S.; Rivero-Pérez, M.D.; Correia, A.C.; Jordão, A.M.; González-San José, M.L. Analysis of Commercial Grape Raisins: Phenolic Content, Antioxidant Capacity and Radical Scavenger Activity. Ciência Técnica Vitivinícola 2014, 29, 1–8. [Google Scholar] [CrossRef]
- Celik, M. The Effects of Some Local Cultivars and Pretreatment Solutions on Drying Period and Raisin Grape Quality. Erwerbs-Obstbau 2019, 61, 67–74. [Google Scholar] [CrossRef]
- Wang, D.; Javed, H.U.; Shi, Y.; Naz, S.; Ali, S.; Duan, C.Q. Impact of Drying Method on the Evaluation of Fatty Acids and Their Derived Volatile Compounds in ‘Thompson Seedless’ Raisins. Molecules 2020, 25, 608. [Google Scholar] [CrossRef] [Green Version]
- Javed, H.U.; Wang, D.; Shi, Y.; Wu, G.F.; Xie, H.; Pan, Y.Q.; Duan, C.Q. Changes of Free-Form Volatile Compounds in Pre-Treated Raisins with Different Packaging Materials during Storage. Food Res. Int. 2018, 107, 649–659. [Google Scholar] [CrossRef]
- Esmaiili, M.; Rezazadeh, G.; Sotudeh-Gharebagh, R.; Tahmasebi, A. Modeling of the Seedless Grape Drying Process Using the Generalized Differential Quadrature Method. Chem. Eng. Technol. 2007, 30, 168–175. [Google Scholar] [CrossRef]
- Kojima, K.; Ikarashi, H.; Andou, D.; Matsumoto, T. Endogenous Plant Hormone Profiles in Growing Campbell Early Grape Berries. Hort. J. 2020, 89, 509–515. [Google Scholar] [CrossRef]
- Kojima, K.; Tamura, Y.; Nakano, M.; Han, D.S.; Niimi, Y. Distribution of Indole-Acetic Acid, Gibberellin and Cytokinins in Apoplast and Symplast of Parthenocarpic Tomato Fruits. Plant Growth Regul. 2003, 41, 99–104. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.G.; Hong, Y.; Lee, E.J. Analysis of Eight Phytohormone Concentrations, Expression Levels of ABA Biosynthesis Genes, and Ripening-Related Transcription Factors during Fruit Development in Strawberry. J. Plant Physiol. 2019, 239, 52–60. [Google Scholar] [CrossRef]
- Nikolidaki, E.K.; Chiou, A.; Christea, M.; Gkegka, A.P.; Karvelas, M.; Karathanos, V.T. Sun Dried Corinthian Currant (Vitis Vinifera L., Var. Apyrena) Simple Sugar Profile and Macronutrient Characterization. Food Chem. 2017, 221, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Minucci, A.; Giardina, B.; Zuppi, C.; Capoluongo, E. Glucose-6-Phosphate Dehydrogenase Laboratory Assay: How, When, and Why? IUBMB Life 2009, 61, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Chikezie, P.C.; Chikezie, C.M.; Uwakwe, A.A.; Monago, C.C. Comparative Study of Glutathione S-Transferase Activity of Three Human Erythrocyte Genotypes Infected with Plasmodium Falciparum. J. Appl. Sci. Environ. Manag. 2010, 13, 13–18. [Google Scholar] [CrossRef]
- Abedi, T.; Pakniyat, H. Antioxidant Enzymes Changes in Response to Drought Stress in Ten Cultivars of Oilseed Rape (Brassica napus L.). Czech J. Genet. Plant Breed. 2010, 46, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Angelini, R.; Manes, F.; Federico, R. Spatial and Functional Correlation between Diamine-Oxidase and Peroxidase Activities and Their Dependence upon de-Etiolation and Wounding in Chick-Pea Stems. Planta 1990, 182, 89–96. [Google Scholar] [CrossRef]
- Samydurai, P.; Ramakrishnan, R.; Nagarajan, N. Polyphenols, Vitamin-E Estimation and In Vitro Antioxidant Activity of Adiantum Capillus-Veneris. Int. J. Innov. Pharm. Res. 2013, 4, 258–262. [Google Scholar]
- Mozumder, N.H.M.R.; Akhter, J.M.; Khatun, A.A.; Rokibuzzaman, M.; Akhtaruzzaman, M. Estimation of Water-Soluble Vitamin B-Complex in Selected Leafy and Non-Leafy Vegetables by HPLC Method. Orient. J. Chem. 2019, 35, 1344–1351. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 1085–1121. ISBN 9780891188667. [Google Scholar]
- AOAC. Official Method Analysis 975.03. Metals in Plants and Pets Food Atomic Absorption Spectrophotometric Method, 18th ed.; Association of Official Analytical, Chemists: Arlington, VA, USA, 2005; Volume 4. [Google Scholar]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. Agil. Technol. 2000, 1100, 1–10. [Google Scholar]
- Schuster, R. Determination of Amino Acids in Biological, Pharmaceutical, Plant and Food Samples by Automated Precolumn Derivatization and High-Performance Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1988, 431, 271–284. [Google Scholar] [CrossRef]
- Lee, J.; Rennaker, C.D.; Thompson, B.D.; Karasev, A.V. Influence of Grapevine Red Blotch Virus (GRBV) on Idaho ‘Syrah’ Grape Composition. Sci. Hortic. 2021, 282, 110055. [Google Scholar] [CrossRef]
- Agüero, C.; Vigliocco, A.; Abdala, G.; Tizio, R. Effect of Gibberellic Acid and Uniconazol on Embryo Abortion in the Stenospermocarpic Grape Cultivars Emperatriz and Perlon. Plant Growth Regul. 2000, 30, 9–16. [Google Scholar] [CrossRef]
- Casanova, L.; González-Rossia, D.; Casanova, R.; Agustí, M. Scoring Increases Carbohydrate Availability and Berry Size in Seedless Grape ‘Emperatriz’. Sci. Hortic. 2009, 122, 62–68. [Google Scholar] [CrossRef]
- Pérez, F.J.; Viani, C.; Retamales, J. Bioactive Gibberellins in Seeded and Seedless Grapes: Identification and Changes in Content During Berry Development. Am. J. Enol. Vitic. 2000, 51, 315–318. [Google Scholar]
- Gomez, M.D.; Ventimilla, D.; Sacristan, R.; Perez-Amador, M.A. Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiol. 2016, 172, 2403. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Fang, Y.; Zhang, A.; Chen, S.; Xu, T.; Ren, Z.; Han, G.; Liu, J.; Li, H.; Zhang, Z.; et al. Phenolic Content and Antioxidant Capacity of Chinese Raisins Produced in Xinjiang Province. Food Res. Int. 2011, 44, 2830–2836. [Google Scholar] [CrossRef]
- Deluc, L.G.; Grimplet, J.; Wheatley, M.D.; Tillett, R.L.; Quilici, D.R.; Osborne, C.; Schooley, D.A.; Schlauch, K.A.; Cushman, J.C.; Cramer, G.R. Transcriptomic and Metabolite Analyses of Cabernet Sauvignon Grape Berry Development. BMC Genom. 2007, 8, 429. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Matthews, M.A.; Shaghasi, T.H.; McElrone, A.J.; Castellarin, S.D. Sugar and Abscisic Acid Signaling Orthologs Are Activated at the Onset of Ripening in Grape. Planta 2010, 232, 234. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulou, E.A.; Chiou, A.; Nikolidaki, E.K.; Christea, M.; Karathanos, V.T. Corinthian Raisins (Vitis Vinifera L., Var. Apyrena) Antioxidant and Sugar Content as Affected by the Drying Process: A 3-Year Study. J. Sci. Food Agric. 2019, 99, 915–922. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Kelebek, H.; Jourdes, M.; Selli, S.; Teissedre, P.L. Comparative Evaluation of the Phenolic Content and Antioxidant Capacity of Sun-Dried Raisins. J. Sci. Food Agric. 2013, 93, 2963–2972. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin Profile and Antioxidant Activity from 24 Grape Varieties Cultivated in Two Portuguese Wine Regions. Oeno One 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Iqbal, M.P.; Kazinm, S.F.; Mehboobali, N. Ascorbic Acid Contents of Pakistani Fruits and Vegetables-PubMed. Pak. J. Pharm. Sci. 2006, 19, 282–285. [Google Scholar]
- Nikniaz, Z.; Mahdavi, R.; Rafraf, M.; Jouyban, A. Total Phenols and Vitamin C Contents of Iranian Fruits. Nutr. Food Sci. 2009, 39, 603–608. [Google Scholar] [CrossRef]
- Keskin, N.; Bilir Ekbic, H.; Kaya, O.; Keskin, S. Antioxidant Activity and Biochemical Compounds of Vitis Vinifera L. (Cv. ‘Katıkara’) and Vitis Labrusca L. (Cv. ‘Isabella’) Grown in Black Sea Coast of Turkey. Erwerbs-Obstbau 2021, 63, 115–122. [Google Scholar] [CrossRef]
- Wang, J.; Mu, W.S.; Fang, X.M.; Mujumdar, A.S.; Yang, X.H.; Xue, L.Y.; Xie, L.; Xiao, H.W.; Gao, Z.J.; Zhang, Q. Pulsed Vacuum Drying of Thompson Seedless Grape: Effects of Berry Ripeness on Physicochemical Properties and Drying Characteristic. Food Bioprod. Process. 2017, 106, 117–126. [Google Scholar] [CrossRef]
- Fabani, M.P.; Baroni, M.v.; Luna, L.; Lingua, M.S.; Monferran, M.v.; Paños, H.; Tapia, A.; Wunderlin, D.A.; Feresin, G.E. Changes in the Phenolic Profile of Argentinean Fresh Grapes during Production of Sun-Dried Raisins. J. Food Compos. Anal. 2017, 58, 23–32. [Google Scholar] [CrossRef]
- Ghrairi, F.; Lahouar, L.; Amira, E.A.; Brahmi, F.; Ferchichi, A.; Achour, L.; Said, S. Physicochemical Composition of Different Varieties of Raisins (Vitis Vinifera L.) from Tunisia. Ind. Crops Prod. 2013, 43, 73–77. [Google Scholar] [CrossRef]
- Antonacci, D.; Velenosi, M.; Rocco, P.; Basile, T.; Forleo, L.R.; Marsico, A.D.; Bergamini, C.; Cardone, M.F. Production of Ready to Drink Red and Rosé Wines from New Seedless Grapevine Crossbreeds. BIO Web Conf. 2017, 9, 04010. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Regules, A.; Ros-García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Gómez-Plaza, E. Differences in Morphology and Composition of Skin and Pulp Cell Walls from Grapes (Vitis Vinifera L.): Technological Implications. Eur. Food Res. Technol. 2008, 227, 223–231. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Pérez-Álvarez, E.P.; Garde-Cerdán, T.; Moreno-Simunovic, Y. Grape and Wine Amino Acid Composition from Carignan Noir Grapevines Growing under Rainfed Conditions in the Maule Valley, Chile: Effects of Location and Rootstock. Food Res. Int. 2018, 105, 344–352. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Alañón-Sánchez, N.; Mateluna-Cuadra, R.; Verdugo-Vásquez, N. An Overview about the Impacts of Agricultural Practices on Grape Nitrogen Composition: Current Research Approaches. Food Res. Int. 2020, 136, 109477. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of Nitrogen Nutrition for Grapes, Fermentation and Wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
Manisa | Konya | |
---|---|---|
Growing-season (April–September) | ||
Precipitations (mm) | 223.89 | 180.21 |
ETo (mm) | 924.04 | 952.04 |
Minimum temperature (°C) | 0.88 | −1.01 |
Average temperature (°C) | 23.45 | 20.53 |
Maximum temperature (°C) | 37.14 | 31.2 |
RH (%) | 63.1 | 55.23 |
Accumulated radiation (MJ m−2) | 3683 | 3878 |
Warmest month (July) | ||
Average radiation (MJ m−2) | 21.78 | 22.86 |
ETo (mm) | 175.42 | 178.12 |
Annual | ||
Precipitations (mm) | 627.4 | 386.25 |
ETo (mm) | 1490 | 1540 |
Sultani Çekirdeksiz | Black Kishmish | Black Corinth | Ekşi Kara | Gök Üzüm | |
---|---|---|---|---|---|
Gibberellic acid (GA) | 243.60 ± 3.743 b | 220.12 ± 2.122 c | 285.49 ± 7.813 a | 187.79 ± 9.208 d | 212.71 ± 8.393 c |
Salicylic acid (SA) | 90.04 ± 1.227 b | 106.94 ± 4.625 a | 76.33 ± 4.422 c | 51.31 ± 1.717 d | 54.95 ± 1.381 d |
Indole-3-acetic acid (IAA) | 1.26 ± 0.057 a | 1.29 ± 0.045 a | 1.12 ± 0.031 b | 0.19 ± 0.017 c | 0.19 ± 0.012 c |
Abscisic acid (ABA) | 0.24 ± 0.015 b | 0.17 ± 0.015 b | 0.21 ± 0.015 b | 7.78 ± 0.330 a | 7.65 ± 0.521 a |
Sultani Çekirdeksiz | Black Kishmish | Black Corinth | Ekşi Kara | Gök Üzüm | |
---|---|---|---|---|---|
Sucrose | 70.41 ± 1.79 a | 75.93 ± 1.76 a | 68.15 ± 1.38 a | 35.76 ± 2.11 b | 36.66 ± 4.26 b |
Glucose | 11.56 ± 0.49 b | 9.70 ± 0.52 b | 13.17 ± 0.27 b | 17.72 ± 35.05 a | 18.20 ± 55.44 a |
Fructose | 9.26 ± 0.56 b | 7.81 ± 0.16 b | 10.07 ± 0.18 b | 22.31 ± 1.32 a | 24.53 ± 1.42 a |
Rhamnose | 2.30 ± 0.15 b | 2.89 ± 0.83 b | 2.96 ± 0.36 b | 10.69 ± 41.72 a | 11.67 ± 89.71 a |
Galactose | 3.44 ± 0.34 b | 3.74 ± 0.27 b | 4.22 ± 0.11 b | 42.87 ± 1.52 a | 44.18 ± 1.80 a |
Xylose | 2.71 ± 0.23 b | 2.45 ± 0.08 b | 3.00 ± 0.11 b | 54.76 ± 3.40 a | 60.19 ± 7.34 a |
Arabinose | 3.62 ± 0.17 b | 2.74 ± 0.04 b | 3.13 ± 0.11 b | 22.25 ± 2.28 a | 28.12 ± 3.18 a |
Sultani Çekirdeksiz | Black Kishmish | Black Corinth | Ekşi Kara | Gök Üzüm | |
---|---|---|---|---|---|
Glutathione reductase (nmol g−1) | 1504.33 ± 44.99 c | 2125.67 ± 110.18 a | 1766.67 ± 45.00 b | 39.05 ± 1.53 d | 43.33 ± 2.11 d |
Glutathione (nmol g−1) | 1925.00 ± 56.32 c | 2637.00 ± 83.80 a | 2120.33 ± 89.67 b | 262.41 ± 11.11 d | 264.65 ± 22.05 d |
Glutathione S-transferase (nmol g−1) | 3396.33 ± 169.99 b | 3856.00 ± 69.66 a | 3551.67 ± 212.56 b | 1245.89 ± 66.54 c | 1271.32 ± 74.05 c |
Catalase (EU g berry−1) | 244.00 ± 10.54 c | 373.33 ± 27.10 a | 312.33 ± 11.50 b | 69.91 ± 4.08 d | 75.99 ± 8.60 d |
Peroxidase (EU g berry−1) | 12339.67 ± 210.60 c | 15181.33 ± 280.45 a | 13623.00 ± 171.29 b | 4504.37 ± 172.71 d | 4703.83 ± 93.14 d |
Superoxide dismutase (EU g berry−1) | 457.67 ± 16.80 b | 326.00 ± 16.37 c | 551.33 ± 38.53 a | 112.11 ± 2.99 d | 112.94 ± 5.79 d |
Sultani Çekirdeksiz | Black Kishmish | Black Corinth | Ekşi Kara | Gök Üzüm | |
---|---|---|---|---|---|
Vitamin B1 | 12.27 ± 1.00 c | 15.15 ± 0.29 c | 13.74 ± 0.61 c | 18.65 ± 50.78 b | 19.49 ± 38.60 a |
Vitamin B2 | 18.52 ± 0.76 a | 19.64 ± 0.45 a | 18.52 ± 0.97 a | 0.47 ± 0.04 b | 0.49 ± 0.04 b |
Vitamin B6 | 66.93 ± 1.70 b | 73.07 ± 3.37 a | 65.30 ± 3.95 b | 30.40 ± 2.14 c | 32.31 ± 3.37 c |
Vitamin C | 34.27 ± 1.12 a | 27.52 ± 1.91 b | 29.18 ± 1.75 b | 18.80 ± 1.12 c | 18.76 ± 1.09 c |
Vitamin E | 50.93 ± 2.90 b | 61.78 ± 3.94 a | 55.01 ± 4.20 b | 23.31 ± 1.26 c | 20.15 ± 2.12 c |
Sultani Çekirdeksiz | Black Kishmish | Black Corinth | Ekşi Kara | Gök Üzüm | |
---|---|---|---|---|---|
Nitrogen (%) | 2.40 ± 0.05 c | 3.11 ± 0.12 a | 2.76 ± 0.08 b | 0.73 ± 0.04 d | 0.84 ± 0.03 d |
Calcium | 17,521.67 ± 717.12 c | 23,982.48 ± 760.06 a | 19,606.00 ± 709.54 b | 3962.67 ± 140.09 d | 4178.67 ± 51.64 d |
Potassium | 9040.00 ± 179.64 c | 14,055.00 ± 1398.16 a | 10,111.00 ± 192.57 c | 4784.00 ± 61.02 b | 4885.33 ± 92.72 b |
Magnesium | 2511.33 ± 153.30 c | 4179.43 ± 160.69 a | 3037.33 ± 65.77 b | 153.00 ± 9.00 d | 180.67 ± 8.50 d |
Sodium | 411.67 ± 23.50 b | 585.43 ± 85.25 a | 373.33 ± 41.79 b | 148.67 ± 6.11 c | 132.00 ± 5.29 c |
Phosphorous | 3229.33 ± 109.74 c | 3925.33 ± 55.22 a | 3521.00 ± 167.69 b | 713.00 ± 9.54 d | 734.00 ± 8.00 d |
Sulphur | 1226.00 ± 21.63 b | 1454.00 ± 22.52 a | 1100.00 ± 79.05 c | 1300.33 ± 50.52 b | 1433.67 ± 21.50 a |
Manganese | 24.33 ± 0.89 b | 28.62 ± 0.78 a | 29.00 ± 1.28 a | 3.99 ± 0.21 c | 4.39 ± 0.21 c |
Cupper | 11.45 ± 0.80 c | 14.58 ± 0.38 a | 13.15 ± 0.27 b | 3.37 ± 0.33 d | 3.70 ± 0.33 d |
Iron | 120.71 ± 2.29 c | 140.52 ± 4.49 a | 129.16 ± 3.90 b | 23.15 ± 1.05 d | 28.50 ± 1.65 d |
Zinc | 15.31 ± 0.89 c | 21.78 ± 1.28 a | 16.89 ± 1.08 b | 2.84 ± 0.11 d | 2.71 ± 0.25 d |
Boron | 11.04 ± 0.79 c | 14.32 ± 1.00 a | 12.22 ± 0.40 b | 1.22 ± 0.04 d | 1.37 ± 0.07 d |
Sultani Çekirdeksiz | Black Kishmish | Black Corinth | Ekşi Kara | Gök Üzüm | |
---|---|---|---|---|---|
Asparagine | 3133.52 ± 132.53 b | 2762.80 ± 62.46 c | 1666.21 ± 112.82 d | 3766.33 ± 55.19 a | 3702.67 ± 53.16 a |
Glutamate | 1235.33 ± 52.25 b | 1100.03 ± 31.63 c | 702.19 ± 86.51 d | 1487.33 ± 38.55 a | 1503.00 ± 51.47 a |
Aspartic acid | 10704.29 ± 517.01 c | 9094.90 ± 228.38 d | 5496.71 ± 369.93 e | 13736.00 ± 141.74 a | 12589.33 ± 341.80 b |
Serine | 3665.82 ± 155.04 b | 3223.83 ± 73.84 c | 1966.93 ± 132.66 d | 5492.33 ± 165.96 a | 5340.00 ± 60.00 a |
Glutamine | 3437.83 ± 145.40 b | 2974.90 ± 116.54 c | 1854.49 ± 127.89 d | 4443.33 ± 113.43 a | 4472.00 ± 161.45 a |
Histidine | 1245.37 ± 52.67 c | 1142.27 ± 81.57 c | 700.09 ± 75.92 d | 2230.67 ± 45.17 a | 2088.67 ± 86.00 b |
Glycine | 2320.01 ± 98.12 b | 2028.90 ± 53.39 c | 1236.44 ± 83.21 d | 2667.33 ± 62.15 a | 2773.67 ± 50.14 a |
Threonine | 2350.14 ± 99.40 b | 2124.27 ± 103.61 b | 1246.83 ± 85.21 c | 3313.33 ± 171.35 a | 2985.00 ± 498.99 a |
Arginine | 7462.20 ± 315.61 c | 6575.70 ± 148.60 c | 3946.99 ± 274.45 d | 8437.67 ± 80.60 a | 8251.67 ± 92.05 a |
Alanine | 5664.44 ± 239.57 c | 4812.93 ± 329.05 d | 3056.03 ± 210.93 c | 7122.67 ± 37.87 a | 6717.00 ± 116.86 b |
Tyrosine | 1044.51 ± 44.18 a | 906.27 ± 32.12 b | 575.63 ± 48.93 c | 890.67 ± 16.80 b | 932.33 ± 24.13 b |
Cystine | 652.82 ± 27.61 b | 587.50 ± 24.88 b | 377.27 ± 55.20 c | 1096.33 ± 73.80 a | 1115.67 ± 73.80 a |
Valine | 1235.33 ± 52.25 a | 1103.03 ± 35.13 b | 710.19 ± 98.67 de | 697.00 ± 38.59 e | 811.00 ± 35.76 c |
Methionine | 873.77 ± 36.96 b | 852.12 ± 56.73 b | 535.21 ± 34.68 c | 1378.33 ± 90.03 a | 1312.33 ± 95.66 a |
Tryptophane | 1064.59 ± 45.03 c | 864.10 ± 102.86 d | 582.77 ± 45.79 e | 1641.67 ± 72.29 b | 1772.33 ± 55.14 a |
Phenylalanine | 883.81 ± 37.38 b | 880.47 ± 84.81 b | 518.45 ± 86.99 c | 1462.00 ± 61.02 a | 1541.33 ± 99.03 a |
Isoleucine | 1185.11 ± 50.12 c | 1056.30 ± 73.19 c | 678.99 ± 91.07 d | 1771.33 ± 96.46 a | 1600.67 ± 31.21 b |
Leucine | 3464.95 ± 146.55 a | 3042.83 ± 71.32 b | 1858.47 ± 125.23 d | 2077.00 ± 85.71 c | 2003.00 ± 57.94 cd |
Lysine | 2129.19 ± 90.05 c | 1843.80 ± 70.34 d | 1168.55 ± 94.55 e | 2730.00 ± 167.31 b | 2939.00 ± 77.90 a |
Hydroxyproline | 832.19 ± 76.59 b | 738.07 ± 75.21 b | 425.20 ± 29.09 c | 1138.00 ± 43.49 a | 1126.00 ± 86.02 a |
Proline | 70.30 ± 2.97 b | 60.63 ± 2.68 c | 38.01 ± 2.66 d | 81.00 ± 1.73 a | 77.67 ± 5.69 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, O.; Ates, F.; Kara, Z.; Turan, M.; Gutiérrez-Gamboa, G. Study of Primary and Secondary Metabolites of Stenospermocarpic, Parthenocarpic and Seeded Raisin Varieties. Horticulturae 2022, 8, 1030. https://doi.org/10.3390/horticulturae8111030
Kaya O, Ates F, Kara Z, Turan M, Gutiérrez-Gamboa G. Study of Primary and Secondary Metabolites of Stenospermocarpic, Parthenocarpic and Seeded Raisin Varieties. Horticulturae. 2022; 8(11):1030. https://doi.org/10.3390/horticulturae8111030
Chicago/Turabian StyleKaya, Ozkan, Fadime Ates, Zeki Kara, Metin Turan, and Gastón Gutiérrez-Gamboa. 2022. "Study of Primary and Secondary Metabolites of Stenospermocarpic, Parthenocarpic and Seeded Raisin Varieties" Horticulturae 8, no. 11: 1030. https://doi.org/10.3390/horticulturae8111030
APA StyleKaya, O., Ates, F., Kara, Z., Turan, M., & Gutiérrez-Gamboa, G. (2022). Study of Primary and Secondary Metabolites of Stenospermocarpic, Parthenocarpic and Seeded Raisin Varieties. Horticulturae, 8(11), 1030. https://doi.org/10.3390/horticulturae8111030