Quantification and Reduction in Heavy Metal Residues in Some Fruits and Vegetables: A Case Study Galați County, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit and Vegetable Samples
2.2. Sample Preparation and Digestion Using Microwave Digestion System
2.3. General ICP-MS Instrumental Parameters of Analysis
2.4. Reagents and Solutions
2.5. Quality Control of the Chemical Analyses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metal Concentrations in Fruits and Vegetables
3.1.1. Arsenic
3.1.2. Cadmium
3.1.3. Lead
3.1.4. Zinc
3.2. Reduce Heavy Metals in Fruits and Vegetables by Soaking with 5% Vinegar
3.3. Reduce Heavy Metals in Fruits and Vegetables by Soaking with 10% Vinegar
3.4. Lowering the Heavy Metal Concentration Using 5% and 10% Vinegar
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khlifi, R.; Hamza-Chaffai, A. Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicol. Appl. Pharmacol. 2010, 248, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, T. Phytoremediation of Heavy Metals from Soils. In Phytoremed; Tsao, D.T., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 97–123. [Google Scholar]
- Lane, T.W.; Morel, F.M.M. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA 2000, 97, 4627–4631. [Google Scholar] [CrossRef] [Green Version]
- Chronopoulos, J.; Haidouti, C.; Chronopoulou-Sereli, A.; Massas, I. Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece. Sci. Total Environ. 1997, 196, 91–98. [Google Scholar] [CrossRef]
- Fathabad, A.E.; Shariatifar, N.; Moazzen, M.; Nazmara, S.; Fakhri, Y.; Alimohammadi, M.; Azari, A.; Mousavi Khaneghah, A. Determination of heavy metal content of processed fruit products from Tehran’s market using ICP—OES: A risk assessment study. Food Chem. Toxicol. 2018, 115, 436–446. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Mai, V.C.; Rucińska-Sobkowiak, R.; Jeandet, P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, H.; Shah, M.H.; Mohiuddin, M.; Elshikh, M.S.; Hussain, Z.; Alkahtani, J.; Ullah, W.; Alwahibi, M.S.; Abbasi, A.M. Quantification of heavy metals and health risk assessment in processed fruits’ products. Arab. J. Chem. 2020, 13, 8965–8978. [Google Scholar] [CrossRef]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Berti, W.R.; Huang, J.W. Phytoremediation of contaminated soils. Trends Biotechnol. 1995, 13, 393–397. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Reeves, R.D.; Hajar, A.S.M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 1994, 127, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Raskin, I.; Kumar, P.B.A.N.; Dushenkov, S.; Salt, D.E. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. 1994, 5, 285–290. [Google Scholar] [CrossRef]
- Lone, M.I.; He, Z.-l.; Stoffella, P.J.; Yang, X.-e. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B 2008, 9, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roba, C.; Roşu, C.; Piştea, I.; Ozunu, A.; Baciu, C. Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 6062–6073. [Google Scholar] [CrossRef]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of Heavy Metal Content in Fruits and Vegetables Collected from Production and Market Sites in the Misurata Area of Libya. ISRN Anal. Chem. 2012, 2012, 827645. [Google Scholar] [CrossRef] [Green Version]
- Radwan, M.A.; Salama, A.K. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 2006, 44, 1273–1278. [Google Scholar] [CrossRef]
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef]
- Grembecka, M.; Szefer, P. Comparative assessment of essential and heavy metals in fruits from different geographical origins. Environ. Monit. Assess. 2013, 185, 9139–9160. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex. EUR-Lex—32007R1580—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32007R1580 (accessed on 15 October 2021).
- EUR-Lex. EUR-Lex—32006R1881—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1881 (accessed on 15 October 2021).
- FAO/WHO—Codex Alimentarius Commission. Food additives and contaminants. In Proceedings of the FAO/WHO Food Standards Pro-gramme Codex Committee on Contaminants in Foods, Fifth Session, The Hague, The Netherlands, 21–25 March 2011; Working Document for Information and Use in Discussions Related to Contaminants and Toxins in the GSCTFF (Prepared by Japan and the Netherlands); CF/5 INF/1. pp. 8–25. [Google Scholar]
- Legex.ro. Ordinul 640/2001. Legislatie Gratuita. Available online: http://www.legex.ro/Ordin-640-2001-27262.aspx (accessed on 16 October 2021).
- Legex.ro. Ordinul nr. 1201/2003 Privind Completarea Ordinului Ministrului Sănătății și Familiei și al Ministrului Agriculturii, Alimentației și Pădurilor nr. 84/91/2002 pentru Aprobarea Normelor Privind Contaminanții din Alimente. Available online: https://lege5.ro/Gratuit/gq2dmmbv/ordinul-nr-1201-2003-privind-completarea-ordinului-ministrului-sanatatii-si-familiei-si-al-ministrului-agriculturii-alimentatiei-si-padurilor-nr-84-91-2002-pentru-aprobarea-normelor-privind-contaminan (accessed on 16 October 2021).
- Bora, F.D.; Bunea, C.I.; Chira, R.; Bunea, A. Assessment of the Quality of Polluted Areas in Northwest Romania Based on the Content of Elements in Different Organs of Grapevine (Vitis vinifera L.). Molecules 2020, 25, 750. [Google Scholar] [CrossRef]
- Bora, F.D.; Donici, A.; Rusu, T.; Bunea, A.; Popescu, D.; Bunea, C.I. Elemental Profile and 207Pb/206Pb, 208Pb/206Pb, 204Pb/206Pb, 87Sr/86Sr Isotope Ratio as Fingerprints for Geographical Traceability of Romanian Wines. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46. [Google Scholar] [CrossRef] [Green Version]
- Woldemariam, D.M.; Chandravanshi, B.S. Concentration levels of essential and non-essential elements in selected Ethiopian wines. Bull. Chem. Soc. Ethiop. 2011, 25, 169–180. [Google Scholar] [CrossRef]
- Bora, F.D.; Donici, A.; Oslobanu, A.; Fițiu, A.; Babeș, A.C.; Bunea, C.I. Qualitative Assessment of the White Wine Varieties Grown in Dealu Bujorului Vineyard, Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Rengel, Z.; Qaswar, M.; Amir, M.; Zafar-ul-Hye, M. Arsenic and heavy metals (cadmium, lead mercury and nickel) contamination in plant-based foods. In Plant and Human Health, Volume 2 Phytochemistry and Molecular Aspects; Springer: Cham, Switzerland, 2019; Volume 2, pp. 447–490. [Google Scholar]
- Naujokas Marisa, F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Graziano Joseph, H.; Thompson, C.; Suk William, A. The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef]
- Bailey, K.; Fry, R.C. Long-term health consequences of prenatal arsenic exposure: Links to the genome and the epigenome. Rev. Environ. Health 2014, 29, 9–12. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission [FAO/WHO]. Food Additives and Contaminants. Joint FAO/WHO Food Standards Program. ALINORM 01/12A, PP1-289. Available online: ftp://ftp.fao.org/Codex/Reports/Alinorm01/al01_27e.pdf (accessed on 6 January 2022).
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef]
- Imeri, R.; Kullaj, E.; Millaku, L. Distribution of Heavy Metals in Apple Tissues Grown in the Soils of Industrial Area. J. Ecol. Eng. 2019, 20, 57–66. [Google Scholar] [CrossRef]
- Marín, S.; Pardo, O.; Sánchez, A.; Sanchis, Y.; Vélez, D.; Devesa, V.; Font, G.; Yusà, V. Assessment of metal levels in foodstuffs from the Region of Valencia (Spain). Toxicol. Rep. 2018, 5, 654–670. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, Y.; Li, X.; Han, Y.; Qu, M.; Ni, Z.; Tang, F.; Liu, Y. Risk assessment and prediction for toxic heavy metals in chestnut and growth soil from China. J. Sci. Food. Agric. 2019, 99, 4114–4122. [Google Scholar] [CrossRef]
- Ciocarlan, A.; Hristozova, G.; Aricu, A.; Dragalin, I.; Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Popescu, V. Determination of the Elemental Composition of Aromatic Plants Cultivated Industrially in the Republic of Moldova Using Neutron Activation Analysis. Agronomy 2021, 11, 1011. [Google Scholar] [CrossRef]
- Ohta, H.; Cherian, M.G. Gastrointestinal absorption of cadmium and metallothionein. Toxicol. Appl. Pharmacol. 1991, 107, 63–72. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Nordberg, G.; Ye, T.; Bo, M.; Wang, H.; Zhu, G.; Kong, Q.; Bernard, A. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environ. Res. 2004, 96, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Angeli, J.K.; Cruz Pereira, C.A.; de Oliveira Faria, T.; Stefanon, I.; Padilha, A.S.; Vassallo, D.V. Cadmium exposure induces vascular injury due to endothelial oxidative stress: The role of local angiotensin II and COX-2. Free Rad. Biol. Med. 2013, 65, 838–848. [Google Scholar] [CrossRef] [Green Version]
- Messner, B.; Bernhard, D. Cadmium and cardiovascular diseases: Cell biology, pathophysiology, and epidemiological relevance. BioMetals 2010, 23, 811–822. [Google Scholar] [CrossRef]
- Rusin, M.; Domagalska, J.; Rogala, D.; Razzaghi, M.; Szymala, I. Concentration of cadmium and lead in vegetables and fruits. Sci. Rep. 2021, 11, 11913. [Google Scholar] [CrossRef]
- Bagdatlioglu, N.; Nergiz, C.; Ergonul, P.G. Heavy metal levels in leafy vegetables and some selected fruits. J. Für Verbrauch. Und Lebensm. 2010, 5, 421–428. [Google Scholar] [CrossRef]
- Zeiner, M.; Juranović Cindrić, I. Harmful Elements (Al, Cd, Cr, Ni, and Pb) in Wild Berries and Fruits Collected in Croatia. Toxics 2018, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, M.; Fiore, M.; Ledda, C.; Cicciù, F.; Alonzo, E.; Fallico, R.; Platania, F.; Di Mauro, R.; Valenti, L.; Sciacca, S. Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy). Ig. Sanita Pubbl. 2013, 69, 47–54. [Google Scholar]
- Mladenovic, S.; Radanović, D.; Balijagić, J.; Jovančević, M.; Licina, V. Heavy metals content in selected soils and fruits in Montenegro and estimation of their daily intake through fruits consumption. J. Contemp. Agric. 2009, 58, 44–51. [Google Scholar]
- Popa, V.M.; Moigrădean, D.; Gergen, I.; Raba, D.N.; Poiană, M.A.; Moldovan, C.; Jianu, I. Research regarding the mineral elements in some herbal seasoning from the Banat area. Lucr. Ştiinţifice USAMV Ion Ionescu De La Brad 2010, 53, 55–58. [Google Scholar]
- Manea, D.N.; Ienciu, A.A.; Ştef, R.; Şmuleac, I.L.; Gergen, I.I.; Nica, D.V. Health Risk Assessment of Dietary Heavy Metals Intake from Fruits and Vegetables Grown in Selected Old Mining Areas—A Case Study: The Banat Area of Southern Carpathians. Int J. Environ. Res. Public. Health 2020, 17, 5172. [Google Scholar] [CrossRef] [PubMed]
- Nuran, E.; Hande, G.-O.; Nukhet, A.-B. Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Me-tal induced Oxidative Damage. Curr. Top. Med. Chem. 2001, 1, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Waalkes, M.; Rice, J.M. Lead as a carcinogen: Experimental evidence and mechanisms of action. Am. J. Ind. Med. 2000, 38, 316–323. [Google Scholar] [CrossRef]
- Yedjou, C.G.; Tchounwou, P.B. N-Acetyl-L-Cysteine Affords Protection against Lead-Induced Cytotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2) Cells. Int. J. Environ. Res. Public Health 2007, 4, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DemİRezen, D.; Aksoy, A. Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni and exceeded for Cd and Pb. J. Food Qual. 2006, 29, 252–265. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol 2008, 82, 493. [Google Scholar] [CrossRef]
- Ali, M.H.H.; Al-Qahtani, K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J. Aquat Res. 2012, 38, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.E.; Lauria, D.C.; Porto da Silveira, C.L. Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci. Total Environ. 2004, 327, 69–79. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Yin Chan, K.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Michenaud-Rague, A.; Robinson, S.; Landsberger, S. Trace elements in 11 fruits widely-consumed in the USA as determined by neutron activation analysis. J. Radioanal. Nucl. Chem. 2012, 291, 237–240. [Google Scholar] [CrossRef]
- Corregidor, V.; Antonio, A.L.; Alves, L.C.; Cabo Verde, S. Castanea sativa shells and fruits: Compositional analysis by proton induced X-ray emission. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 477, 98–103. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, M. Heavy Metal Load Of Soil, Water And Vegetables In Peri-Urban Delhi. Environ. Monit. Assess. 2006, 120, 79–91. [Google Scholar] [CrossRef]
- Yusuf, K.A.; Oluwole, S.O. Heavy Metal (Cu, Zn, Pb) Contamination of Vegetables in Urban City: A Case Study in Lagos. Res. J. Environ. Sci. 2009, 3, 292–298. [Google Scholar] [CrossRef]
Sample Name | Scientific Name | As | Cd | Pb | Zn | ||||
---|---|---|---|---|---|---|---|---|---|
Origin of the Samples | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | |
Fruiting Vegetables | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b; 0.2 c,d | 0.5 a; 0.2 b,c; 0.3 d | 5.0 a | |||||
Tomato | Llycopersicon esculentum Mill. | 388.86 ± 29.10 | 374.26 ± 42.10 | 16.48 ± 6.42 | 17.93 ± 4.59 | 66.81 ± 12.38 | 73.34 ± 15.72 | 3942.11 ± 431.55 | 4113.70 ± 125.40 |
Yellow Cherry Tomato | Lycopersicon esculentum Var. cerasiforme (sun gold hybrid) | 254.53 ± 29.19 | no samples | 23.49 ± 3.79 | no samples | 51.34 ± 7.35 | no samples | 3563.84 ± 27.11 | no samples |
Red Cherry Tomato | Lycopersicon esculentum Mill | 334.37 ± 50.77 | 317.90 ± 29.14 | BLD | BLD | 18.58 ± 4.67 | BLD | 3780.45 ± 113.00 | 4113.81 ± 122.88 |
Long Cucumber | Cucumis sativus | 258.23 ± 46.76 | 240.03 ± 12.41 | 46.41 ± 2.53 | 48.63 ± 4.61 | 112.04 ± 22.24 | 59.82 ± 16.25 | 2847.48 ± 451.78 | 3039.74 ± 73.08 |
Kirby Cucumber | BLD | BLD | BLD | BLD | BLD | BLD | 1358.74 ± 68.01 | 1853.70 ± 124.23 | |
Red Beans | Phaseolus vulgaris | BLD | no samples | 23.90 ± 7.99 | no samples | 46.15 ± 8.13 | no samples | 1735.33 ± 124.80 | no samples |
White Beans | 163.04 ± 9.30 | 129.52 ± 5.91 | 18.76 ± 4.62 | BLD | 43.60 ± 15.94 | 26.81 ± 15.94 | 2821.95 ± 410.66 | 4061.19 ± 424.96 | |
Zucchini | Cucurbita pepo | 100.78 ± 20.41 | BLD | 14.18 ± 1.05 | 18.51 ± 5.72 | 30.20 ± 2.55 | 35.69 ± 8.58 | 2184.42 ± 168.16 | 1956.63 ± 72.16 |
Fruits | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.2 b; 0.2 c; 0.2 d | 5.0 a | |||||
Raspberry | Rubus idaeus | BLD | BLD | BLD | BLD | BLD | BLD | 1374.39 ± 50.70 | 1489.97 ± 152.52 |
Blueberry | Vaccinium corymbosum | BLD | no samples | BLD | no samples | BLD | no samples | 2366.08 ± 210.54 | no samples |
Strawberry | Fragaria x ananassa | 69.67 ± 26.76 | 73.95 ± 15.99 | 17.78 ± 3.50 | BLD | 10.78 ± 1.85 | 9.92 ± 4.38 | 1143.59 ± 168.11 | 1374.25 ± 71.85 |
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.1 b; 0.1c; 0.1 d | 5.0 a | |||||
Watermelon | Citrullus lanatus | 68.40 ± 24.06 | 43.13 ± 38.85 | BLD | BLD | BLD | BLD | 1102.96 ± 117.96 | 1305.56 ± 31.76 |
Bell pepper | Capsicum annuum L. var. grossum (Sendt) | BLD | BLD | BLD | BLD | BLD | BLD | 1533.63 ± 95.21 | 1817.25 ± 40.87 |
Chestnut | Castanea sativa Mill. | 27.47 ± 4.27 | no samples | 12.74 ± 1.30 | no samples | BLD | no samples | 3807.96 ± 217.90 | no samples |
Apples | Malus domestica Borkh. | BLD | BLD | BLD | BLD | BLD | BLD | 946.53 ± 62.51 | 909.56 ± 72.67 |
Plums | Prunus domestica L. | 116.92 ± 15.97 | 132.36 ± 21.03 | BLD | BLD | BLD | BLD | 596.93 ± 49.63 | 738.75 ± 132.90 |
Pear | Pyrus communis L. | BLD | BLD | 15.19 ± 2.95 | 15.82 ± 3.97 | 78.13 ± 14.95 | 69.15 ± 23.18 | 440.15 ± 99.11 | 379.37 ± 63.19 |
Quince | Cydonia oblonga Mill. | BLD | BLD | BLD | BLD | BLD | BLD | 3218.11 ± 218.26 | 2993.33 ± 124.35 |
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.1 b; 0.1 c; 0.2 d | 5.0 a | |||||
Grapes | Vitis vinifera | 81.85 ± 45.11 | 48.78 ± 6.94 | 14.78 ± 5.71 | BLD | 27.48 ± 15.75 | 18.32 ± 5.41 | 1362.93 ± 85.83 | 1288.26 ± 267.83 |
Leafy vegetables | |||||||||
Maximum levels (mg/kg) | - | 0.20 a,b,c,d | 0.5 a; 0.3 b; 0.3 c; 0.3 d | - | |||||
Cabbage | Brassica oleracea convar. capitata (L.) f. alba L. | 19.78 ± 12.59 | BLD | 9.70 ± 1.31 | BLD | 25.41 ± 7.72 | BLD | 2814.32 ± 121.77 | 2885.18 ± 138.52 |
Tarragon | Artemisia dracunculus L. | BLD | no samples | BLD | no samples | BLD | no samples | 4964.44 ± 280.40 | no samples |
Parsley | Petroselinum crispum convar. crispum (Denst.) | BLD | BLD | BLD | BLD | BLD | BLD | 1366.95 ± 146.26 | 1698.12 ± 233.44 |
Lovage | Levisticumofficinale Koch. | no samples | BLD | no samples | BLD | no samples | BLD | no samples | 428.81 ± 55.18 |
Dill | Anethum graveolens L. | 7.60 ± 4.11 | no samples | BLD | no samples | 79.41 ± 13.01 | no samples | 994.47 ± 235.14 | no samples |
Lettuce | Lactuca sativa L. convar. capitata (L.) | 1.44 ± 0.60 | 0.81 ± 0.51 | 46.88 ± 11.16 | 39.11 ± 4.54 | 155.07 ± 28.25 | 73.25 ± 17.70 | 1055.13 ± 61.07 | 3030.91 ± 777.65 |
Celery | Apium graveolens L. conv. rapaceum (Mill.) | BLD | BLD | BLD | BLD | BLD | BLD | 741.26 ± 267.80 | 742.48 ± 168.77 |
Bulbs | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.1 a; 0.05 b; 0.1 c,d | 0.5 a; 0.1 b,c,d; | 15.0 a | |||||
Garlic | Allium sativum ssp. vulgare | 207.88 ± 82.87 | 153.52 ± 31.21 | 0.14 ± 0.06 | BLD | BLD | BLD | 5139.25 ± 525.83 | 6178.18 ± 1468.35 |
Onion | Allium cepa | BLD | BLD | BLD | BLD | BLD | BLD | 2737.88 ± 336.55 | 1163.25 ± 153.30 |
Root vegetables | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.1 a; 0.1 b,c,d | 0.5 a; 0.1 b,c,d; | 15.0 a | |||||
Potato | Solanum tuberosum | BLD | BLD | 28.60 ± 12.84 | BLD | 65.41 ± 27.71 | 29.70 ± 77.3 | 6256.99 ± 2200.29 | 7640.07 ± 1095.27 |
Parsley | Petroselinum crispum convar. radicosum (Def.) | BLD | BLD | BLD | BLD | BLD | BLD | BLD | BLD |
Carrot | Daucus carota L. conv. sativus | BLD | no samples | 5.18 ± 1.69 | no samples | 14.56 ± 5.69 | no samples | 1039.56 ± 174.48 | no samples |
Sample Name | Scientific Name | As | Cd | Pb | Zn | ||||
---|---|---|---|---|---|---|---|---|---|
Origin of the Samples | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | |
Fruiting vegetables | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b; 0.2 c,d | 0.5 a; 0.2 b,c; 0.3 d | 5.0 a | |||||
Tomato | Llycopersicon esculentum Mill. | 202.19 ± 19.22 | 175.40 ± 19.06 | 12.20 ± 2.23 | 7.00 ± 1.91 | 53.96 ± 9.52 | 55.45 ± 5.02 | 3328.74 ± 212.85 | 3937.54 ± 80.91 |
Yellow Cherry Tomato | Lycopersicon esculentum Var. cerasiforme (sun gold hybrid) | 188.89 ± 11.96 | no samples | 17.27 ± 0.97 | no samples | 37.73 ± 2.92 | no samples | 3251.94 ± 49.52 | no samples |
Red Cherry Tomato | Lycopersicon esculentum Mill | 243.73 ± 9.60 | 231.29 ± 2.39 | BLD | BLD | 14.24 ± 3.75 | BLD | 3753.05 ± 47.37 | 4032.43 ± 60.30 |
Long Cucumber | Cucumis sativus | 220.67 ± 18.93 | 212.70 ± 5.34 | 41.23 ± 0.92 | 46.21 ± 2.22 | 76.19 ± 8.07 | 45.26 ± 5.14 | 2856.76 ± 481.35 | 3012.07 ± 40.88 |
Zucchini | Cucurbita pepo | 91.35 ± 11.41 | BLD | BLD | BLD | 22.98 ± 0.94 | 28.61 ± 14.47 | 1996.25 ± 14.47 | 1943.09 ± 65.85 |
Fruits | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.2 b; 0.2 c; 0.2 d | 5.0 a | |||||
Strawberry | Fragaria x ananassa | 52.79 ± 12.89 | 66.44 ± 16.86 | BLD | BLD | BLD | BLD | 1119.83 ± 120.00 | 1354.20 ± 33.55 |
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.1 b; 0.1 c; 0.1 d | 5.0 a | |||||
Pear | Pyrus communis L. | BLD | BLD | 14.79 ± 1.33 | 16.78 ± 0.40 | 74.94 ± 4.37 | 63.97 ± 19.74 | 437.57 ± 98.91 | 374.30 ± 67.95 |
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.1 b; 0.1 c; 0.2 d | 5.0 a | |||||
Grapes | Vitis vinifera | 76.63 ± 14.46 | 48.71 ± 5.38 | 14.66 ± 2.35 | BLD | 24.44 ± 14.31 | 16.98 ± 4.96 | 1354.49 ± 97.81 | 1237.83 ± 188.78 |
Leafy vegetables | |||||||||
Maximum levels (mg/kg) | - | 0.20 a,b,c,d | 0.5 a; 0.3 b; 0.3 c; 0.3 d | - | |||||
Cabbage | Brassicaoleracea convar. capitata (L.) f. alba L. | BLD | BLD | BLD | BLD | BLD | BLD | 2695.65 ± 217.47 | 2858.42 ± 41.64 |
Lettuce | Lactuca sativa L. convar. capitata (L.) | BLD | BLD | 43.67 ± 1.81 | 33.78 ± 6.62 | 108.79 ± 5.60 | 71.49 ± 3.06 | 1035.12 ± 22.58 | 2949.49 ± 462.23 |
Bulbs | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.1 a; 0.05 b; 0.1 c,d | 0.5 a; 0.1 b,c,d; | 15.0 a | |||||
Garlic | Allium sativum ssp. vulgare | 191.13 ± 54.07 | 151.87 ± 10.66 | BLD | BLD | BLD | BLD | 5003.11 ± 157.42 | 5293.34 ± 367.19 |
Root vegetables | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.1 a; 0.1 b,c,d | 0.5 a; 0.1 b,c,d; | 15.0 a | |||||
Potato | Solanum tuberosum | BLD | BLD | 27.97 ± 9.42 | BLD | 63.47 ± 1.48 | 13.22 ± 1.82 | 6134.38 ± 476.38 | 7084.80 ± 727.80 |
Carrot | Daucus carota L. conv. sativus | BLD | no samples | BLD | no samples | BLD | no samples | 1022.26 ± 91.29 | no samples |
Sample Name | Scientific Name | As | Cd | Pb | Zn | ||||
---|---|---|---|---|---|---|---|---|---|
Origin of the Samples | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | Vegetable and Fruit Market | Amateur Farmers | |
Fruiting vegetables | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b; 0.2 c,d | 0.5 a; 0.2 b,c; 0.3 d | 5.0 a | |||||
Tomato | Llycopersicon esculentum Mill. | 217.02 ± 16.92 | 181.48 ± 9.20 | 9.92 ± 0.28 | 7.88 ± 0.48 | 53.54 ± 3.19 | 47.90.90 | 3249.31 ± 149.70 | 3638.93 ± 157.78 |
Yellow Cherry Tomato | Lycopersicon esculentum Var. cerasiforme (sun gold hybrid) | 184.12 ± 8.31 | no samples | 16.93 ± 1.32 | no samples | 32.95 ± 1.79 | no samples | 3319.00 ± 86.28 | no samples |
Red Cherry Tomato | Lycopersicon esculentum Mill | 223.28 ± 15.74 | 206.65 ± 5.69 | BLD | BLD | 8.55 ± 1.05 | BLD | 3756.90 ± 65.57 | 3917.89 ± 94.31 |
Long Cucumber | Cucumis sativus | 212.82 ± 4.09 | 200.74 ± 2.02 | 39.99 ± 1.50 | 41.81 ± 4.79 | 102.45 ± 6.74 | 53.33 ± 14.95 | 2485.62 ± 122.53 | 2951.89 ± 62.65 |
Zucchini | Cucurbita pepo | 82.87 ± 6.82 | BLD | BLD | BLD | 20.60 ± 1.32 | 23.42 ± 7.58 | 2160.86 ± 53.14 | 1923.14 ± 29.58 |
Fruits | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.2 b; 0.2 c; 0.2 d | 5.0 a | |||||
Strawberry | Fragaria x ananassa | 44.16 ± 2.63 | 45.16 ± 5.81 | BLD | BLD | BLD | BLD | 1059.94 ± 26.37 | 1361.67 ± 19.76 |
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.1 b; 0.1 c; 0.1 d | 5.0 a | |||||
Pear | Pyrus communis L. | BLD | BLD | 14.94 ± 1.46 | 15.79 ± 1.41 | 69.03 ± 1.37 | 64.36 ± 19.48 | 393.68 ± 52.57 | 377.08 ± 54.10 |
Maximum levels (mg/kg) | 0.5 a | 0.05 a,b,c,d | 0.5 a; 0.1 b; 0.1 c; 0.2 d | 5.0 a | |||||
Grapes | Vitis vinifera | 78.35 ± 3.55 | 46.25 ± 5.22 | 12.65 ± 0.81 | BLD | 20.74 ± 12.80 | 14.39 ± 3.95 | 1240.40 ± 127.27 | 1125.31 ± 84.77 |
Maximum levels (mg/kg) | - | 0.20 a,b,c,d | 0.5 a; 0.3 b; 0.3 c; 0.3 d | - | |||||
Leafy vegetables | |||||||||
Cabbage | Brassicaoleracea convar. capitata (L.) f. alba L. | BLD | BLD | BLD | BLD | BLD | BLD | 2565.82 ± 133.88 | 1473.58 ± 171.45 |
Lettuce | Lactuca sativa L. convar. capitata (L.) | BLD | BLD | 36.16 ± 4.58 | 33.20 ± 7.66 | 94.52 ± 4.53 | 73.14 ± 1.97 | 1031.40 ± 17.28 | 2064.13 ± 61.28 |
Bulbs | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.1 a; 0.05 b; 0.1 c,d | 0.5 a; 0.1 b,c,d; | 15.0 a | |||||
Garlic | Allium sativum ssp. vulgare | 167.03 ± 12.94 | 129.89 ± 4.11 | BLD | BLD | BLD | BLD | 4682.37 ± 113.49 | 4731.25 ± 477.80 |
Root vegetables | |||||||||
Maximum levels (mg/kg) | 0.5 a | 0.1 a; 0.1 b,c,d | 0.5 a; 0.1 b,c,d; | 15.0 a | |||||
Potato | Solanum tuberosum | BLD | BLD | BLD | BLD | 60.24 ± 5.33 | 30.50 ± 15.07 | 5628.20 ± 775.49 | 6022.00 ± 120.16 |
Carrot | Daucus carota L. conv. sativus | BLD | BLD | BLD | BLD | BLD | BLD | 943.34 ± 45.57 | BLD |
Element | Washing with Water | Washing with Vinegar (5% Acetic Acid) |
---|---|---|
As (µg/kg) | 121.94 | 90.49 |
Cd (µg/kg) | 15.78 | 11.48 |
Pb (µg/kg) | 42.71 | 32.15 |
Zn (µg/kg) | 2983.51 | 2836.13 |
Element | Washing with Water | Washing with Vinegar (10% Acetic Acid) |
---|---|---|
As (µg/kg FW) | 121.94 | 84.16 |
Cd (µg/kg FW) | 15.78 | 9.55 |
Pb (µg/kg FW) | 42.71 | 32.07 |
Zn (µg/kg FW) | 2983.13 | 2629.32 |
Element | Washing with Vinegar (5% Acetic Acid) | Washing with Vinegar (10% Acetic Acid) |
---|---|---|
As (µg/kg FW) | 90.49 | 84.16 |
Cd (µg/kg FW) | 11.48 | 9.55 |
Pb (µg/kg FW) | 32.15 | 32.07 |
Zn (µg/kg FW) | 2836.13 | 2629.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bora, F.D.; Bunea, A.; Pop, S.R.; Baniță, S.I.; Duşa, D.Ş.; Chira, A.; Bunea, C.-I. Quantification and Reduction in Heavy Metal Residues in Some Fruits and Vegetables: A Case Study Galați County, Romania. Horticulturae 2022, 8, 1034. https://doi.org/10.3390/horticulturae8111034
Bora FD, Bunea A, Pop SR, Baniță SI, Duşa DŞ, Chira A, Bunea C-I. Quantification and Reduction in Heavy Metal Residues in Some Fruits and Vegetables: A Case Study Galați County, Romania. Horticulturae. 2022; 8(11):1034. https://doi.org/10.3390/horticulturae8111034
Chicago/Turabian StyleBora, Florin Dumitru, Andrea Bunea, Sergiu Rudolf Pop, Sabin Ioan Baniță, Dorin Ştefan Duşa, Alexandra Chira, and Claudiu-Ioan Bunea. 2022. "Quantification and Reduction in Heavy Metal Residues in Some Fruits and Vegetables: A Case Study Galați County, Romania" Horticulturae 8, no. 11: 1034. https://doi.org/10.3390/horticulturae8111034
APA StyleBora, F. D., Bunea, A., Pop, S. R., Baniță, S. I., Duşa, D. Ş., Chira, A., & Bunea, C. -I. (2022). Quantification and Reduction in Heavy Metal Residues in Some Fruits and Vegetables: A Case Study Galați County, Romania. Horticulturae, 8(11), 1034. https://doi.org/10.3390/horticulturae8111034