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Abstract: Mitogen-activated protein kinases (MAPKs) play essential roles in the process of stress
response and plant growth and development. MAPK family genes have been identified in many plant
species. In this study, 18 LsMAPK genes were identified in lettuce (Lactuca sativa). The LsMAPK mem-
bers were divided into Group A, B, C, and D by phylogenetic tree analysis among Arabidopsis, rice,
and lettuce. Cis-elements, which relate to abiotic stress, phytohormone response, and transcription
factor binding site, were identified to exist in the promoter region of LsMAPK genes. Chromosomal
location analysis showed the LsMAPK genes were distributed on eight chromosomes except chro-
mosome 6. Interaction network analysis showed that LsMAPKs could interact with MAPK kinase
(MAPKK), protein-tyrosine-phosphatase (PTP), and transcription factors (WRKY, bZIP). Quantitative
reverse transcription PCR (qRT-PCR) showed that LsMAPK genes were induced by different abiotic
stresses, hormone response, and stem enlargement. The comprehensive identification and characteri-
zation of LsMAPK genes in stem lettuce will lay a theoretical foundation for the functional analysis of
LsMAPK genes and advance our knowledge of the regulatory mechanism of MAPK genes in plants.

Keywords: stem lettuce; MAPK gene; genome-wide identification; abiotic stress; stem enlargement;
expression profile

1. Introduction

External stimuli, including abiotic stress (such as drought, salt, or extreme temper-
atures) and biotic stress (such as insect or pathogen infection), affect plant growth and
development. Plants have developed certain defense mechanisms to counteract negative
effects of extracellular stimuli [1,2]. The mitogen-activated protein kinase (MAPK) cascade
pathway serves as the key pathway in eukaryotic signal transduction. It can regulate vari-
ous cellular signaling cascades and participate in various fundamental biological processes.
The MAPK cascade pathway consists of MAPK (MPK), MAPK kinase (MAPKK/MKK),
and MAPKK kinase (MAPKKK/MEKK/MAP3K). The MAPK cascade pathway can be
activated after stimulation of plant cells by adverse environmental factors [3,4].

Although at the bottom of the MAPK signaling cascade, MAPK genes are considered
to be just some of the principal and highly conserved signaling molecular in eukary-
otes [5]. As an important signal transduction mode, MAPK genes can be phosphorylated
by activated MAPKKs and then modulate cellular response for normal growth and de-
velopment by phosphorylating downstream target genes (transcription factor or other
key proteins) [5–7]. Subsequently, the phosphorylated transcription factor could regulate
target genes by binding the cis-elements existing in their promoter regions. Therefore, it is
important to understand the process of signal transduction and regulation pathways in
plants under different stresses. Thus, we focus on the analysis of the molecular mechanism
of MAPKs involved in various biological processes.
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MAPK, a kind of serine/threonine protein kinase, regulates eukaryotic cell signal
transduction [8,9]. Eleven conserved motifs (I-XI) have been identified to exist in MAPKs.
TXY motif, containing the phosphorylation sites, has been identified in subdomains VII
and VIII. TXY motif is a key determinant of MAPK activity. The X residues in TXY motifs
vary among different MAPKs. MAPKs are divided into A, B, C, and D subfamilies based
on phylogenetic analysis and phosphorylation motifs. The TEY motif is the activation site
of A, B, and C subfamily members, while the TDY phosphorylation motif is the activation
site for members of the D subfamily [10,11]. Numerous MAPK genes have been identified
and reported in different plants. Up to now, there are 20, 43, 16, 92, 56, 28, and 20 in
Arabidopsis [12], strawberry [8], tartary buckwheat [13], Brassica napus [14], cotton [15],
sunflower [16], and barley [17].

Large numbers of studies have shown that MAPK genes play critical roles in response
to different stimuli. For example, Arabidopsis AtMPK3 and ZmMAPK1 genes positively
regulated drought stress response [18,19]. Sorghum SbMPK14 gene improved drought hy-
persensitivity by promoting water loss [20]. Similar results were shown in Zea mays MAPK
genes. ZmMPK3 and ZmSIMK1 enhanced plant growth by increasing tolerance to high
salinity [21,22]. MAPK genes are also involved in plant development and physiological
processes. AtMPK4 participated in photosynthesis regulation, plant growth, and immune
defense [23]. AtMAPK3 and AtMAPK6 were required for another development [24]. MAPK
proteins can participate in different biological processes through multiple regulation mecha-
nisms. Numerous studies have shown that MAPK proteins can interact with other proteins
such as transcription factors. For example, AtMAPK8 promoted seed germination by
interaction with the TCP14 transcription factor [25]. Nicotiana tabacum WRKY transcription
factors (WRKY4, WRKY6, and WRKY10) were able to interact with MAPK proteins to
modulate plant defense against whiteflies [26]. Magnaporthe oryzae MAPK protein MoMps1
showed interaction with an APSES family transcription factor, and the interaction was
required for hyphal and conidial morphogenesis, appressorial function and pathogenicity
of M. oryzae [27].

Lettuce (Lactuca sativa L.) is a popular vegetable with several cultivars such as oil
lettuce, leaf lettuce, and stem lettuce. Stem lettuce is a vegetable with low fat and high
nutritional value. Studies on stem lettuce have mainly focused on its cultivation techniques
and the effect of different fertilizers on yield and quality. The molecular mechanisms
of stem lettuce growth and development remain unclear. Previous research has found
that lettuce LsMAPK4 may be involved in high-temperature bolting in lettuce crops [28].
Here, we identified and analyzed the most important and highly conserved signaling
molecular MAPK genes in lettuce. The exon–intron structure, phylogenetic relationships,
motif compositions, collinearity analysis, and chromosome distribution of LsMAPK genes
were identified. To investigate the possible function of LsMAPKs in different biological
processes, the expression profiles of LsMAPK genes at different stages of stem expansion,
abiotic stresses, and plant hormones were also conducted. Our results provide the basis for
further research on the function of LsMAPK genes in stem expansion and stress response.

2. Materials and Methods
2.1. LsMAPK Genes Identification in Lettuce

The lettuce genome sequence used in this study was obtained from the Lettuce Genome
Resource database (https://lgr.genomecenter.ucdavis.edu/, URL (accessed on 1 December
2021)). MAPK genes from Arabidopsis were used as the query sequence to identify the
homologous genes of lettuce. The conserved domains within MAPK family genes were de-
termined using the Pfam (http://pfam.xfam.org/, URL (accessed on 1 December 2021)) and
NCBI Conserved Domain Database (CDD, https://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi, URL (accessed on 1 December 2021)). All gene sequences encoding complete
amino acid sequences with conserved domains were considered LsMAPK genes. Subse-
quently, the molecular weight (Mw) and isoelectric point (pI) of LsMAPKs were analyzed
using the ExPASY online tool (https://web.expasy.org/protparam/, URL (accessed on
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10 December 2021)). The subcellular localization analysis of LsMAPs was conducted using
an online WOLF PSORT platform (https://www.genscript.com/wolf-psort.html/; URL
(accessed on 10 December 2021)).

2.2. Characterization and Correlation Analysis of LsMAPKs in Lettuce

A phylogenetic tree among Arabidopsis, rice, and lettuce was constructed using the
MEGA 7.0 software by the Neighbor-Joining method with 1000 bootstrap replicates. The
MAPK amino acids of Arabidopsis and rice were obtained from the Arabidopsis Informa-
tion Resource (https://www.arabidopsis.org/, URL (accessed on 10 December 2021)) and
the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/, URL (accessed
on 10 December 2021)), respectively. Conserved motif and chromosomal distribution
of LsMAPKs were analyzed using the MEME online program (https://meme-suite.org/
meme/, URL (accessed on 10 December 2021)) and MapChart software (version 2.32),
respectively. The interaction network of LsMAPK proteins was predicted using STRING
software (https://cn.string-db.org/, URL (accessed on 10 December 2021)) and visualized
by Cytoscape software (version 3.9.1). The transcription start site (TSS) of LsMAPK genes
was predicated on the website: http://www.fruitflfly.org/seq_tools/promoter.html, URL
(accessed on 28 December 2021) [29]. The promoter region with 2000 bp of LsMAPK genes
was extracted from the upstream of the TSS. Then, cis-element analysis of the promoter re-
gion was conducted by using the PLACE (https://www.dna.affrc.go.jp/PLACE/?action=
newplace, URL (accessed on 28 December 2021)), PlantPAN 3.0 (http://plantpan.itps.ncku.
edu.tw/, URL (accessed on 28 December 2021)), and PlanCARE (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/, URL (accessed on 28 December 2021)) online
databases, respectively. Gene pair collinearity analysis among lettuce, Arabidopsis, and
rice was determined by MCScanX software (http://chibba.pgml.uga.edu/mcscan2; URL
(accessed on 28 December 2021)).

2.3. Plant Growth and Treatments

The seeds of stem lettuce cultivar ‘Yonganhong’ were sown in a controlled environ-
ment chamber for 12 h photoperiod at 22 and 18 ◦C (day vs. night) with a light intensity
of 20,000 µmol/m2/s (lux) at Linyi University (Linyi, China). For plant hormone treat-
ment, seedlings at the four-leaf stage were sprayed with 75 µmol/L abscisic acid (ABA),
50 µmol/L gibberellin (GA), 0.5 mmol/L salicylic acid (SA). Seedlings in the control group
were sprayed with distilled water. The seedlings were collected and frozen under liquid ni-
trogen after spraying for 0 h and 12 h. For abiotic stress treatment, four-leaf stage seedlings
were treated with 200 mmol/L NaCl (salt), 20% PEG6000 (drought), 4 ◦C (low temperature),
and 37 ◦C (high temperature). The treated and untreated leaves were collected at 0 h and
12 h. Each treatment (plant hormone, abiotic stress) contained 15 seedlings and all the
treatments were replicated three times and harvested after the treatments. The stem tissue
of stem lettuce was also collected with three biological replicates at different stages of stem
enlargement: S1 (transverse diameter length is 1 cm), S2 (transverse diameter length is
2 cm), S3 (transverse diameter length is 3 cm), and S4 (transverse diameter length is 4 cm).

2.4. Quantitative Reverse Transcription PCR (qRT-PCR) of LsMAPK Genes

To identify the differentially expressed genes, the four stem enlargement stages (S1,
S2, S3, and S4) of ‘Yonganhong’ were chosen to conduct the RNA sequencing. The tran-
script abundance of LsMAPK genes at different stages of stem enlargement was obtained
according to the RNA-Seq, which has been submitted to public transcriptome data (NCBI:
PRJNA844256). The transcript abundance of LsMAPK genes at different developmental
stages was counted by FPKM (fragments per kilobase exon per million fragments mapped).
Total RNA was isolated from the samples using a plant total RNA isolation kit (Vazyme,
Nanjing, China). For qRT-PCR, 6 LsMAPK genes involved in the process of stem enlarge-
ment were chosen to conduct expression pattern analysis. For qRT-PCR, 20 µL reaction
system containing 10 µL SYBR qPCR master mix (Vazyme, Nanjing, China), 0.4 µL of each
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primer, 2 µL diluted cDNA and 7.2 µL deionized water was performed. The qRT-PCR
was conducted using Roche LightCycler 96 with the following procedure: 95 ◦C for 30 s
initially, followed by 40 cycles at 95 ◦C for 10 s, 60 ◦C for 30 s, and melting curve analysis at
95 ◦C for 15 s, 60 ◦C for 60 s, 95 ◦C for 15 s. The calculation of relative expression levels
of LsMAPK genes used the 2−∆∆CT methods based on the mean value of three technical
repeats referred to previous research methods [30]. The expression levels of each LsMAPK
gene were standardized and calculated by LsTIP41 (Lsat_1_v5_gn_5_116421) [31]. The
experiments were repeated in three independent bio-replicates and tech-replicates. Primer
Premier 6.0 was used to design the primer pairs used in the study (Supplemental Table S1).
SPSS 17.0 software was used to analyze significant difference at 0.05 levels.

3. Results
3.1. The LsMAPK Genes in Lettuce

A total of 18 putative LsMAPK genes (denoted LsMAPK01-LsMAPK18) were identified
in lettuce after homologous alignment and conservative domain verification with Ara-
bidopsis MAPK genes. The nucleotide and amino acid sequences of LsMAPKs are shown
in Supplemental Table S2. Sequence alignment showed the presence of TEY or TDY phos-
phorylation sites in the 18 LsMAPK genes (Supplemental Figure S1). As shown in Table 1,
the amino acid length of 18 LsMAPKs ranged from 369 (LsMAPK8) to 761 (LsMAPK11).
The pI and Mw of LsMAPK proteins varied from 4.99 (LsMAPK14) to 9.30 (LsMAPK10),
and 42.416 kD (LsMAPK1) to 85.362 kD (LsMAPK11), respectively. According to the grand
average of hydropathicity (GRAVY) values, which ranged from −0.174 (LsMAPK1) to
−0.549 (LsMAPK15), all the LsMAPKs are hydrophilic proteins. Subcellular localization
analysis showed that 12 LsMAPK proteins were located only in the cytoplasm, while two
LsMAPK (LsMAPK13 and LsMAPK14) proteins were located in the cytoplasm and the
cytoskeleton. LsMAPK9 was predicted to be located in the cytoskeleton. LsMAPK11 and
LsMAPK18 were located in the chloroplast. LsMAPK15 was located both in the cytoplasm
and the chloroplast.

Table 1. The characteristic of LsMAPK genes.

Gene Name Amino Acid/aa ORF/bp Molecular Weight/kD pI Instability Index GRAVY Subcellular Localization

LsMAPK1 371 1116 42.416 5.83 40.87 −0.174 Cytoplasm
LsMAPK2 382 1149 43.937 5.65 41.96 −0.296 Cytoplasm
LsMAPK3 571 1716 65.308 6.97 80.79 −0.541 Cytoplasm
LsMAPK4 410 1233 47.512 5.89 95.39 −0.229 Cytoplasm
LsMAPK5 378 1137 43.461 6.32 90.26 −0.388 Cytoplasm
LsMAPK6 501 1506 57.520 6.93 85.47 −0.456 Cytoplasm
LsMAPK7 373 1122 43.077 6.50 97.21 −0.236 Cytoplasm
LsMAPK8 369 1110 42.706 6.94 95.64 −0.239 Cytoplasm
LsMAPK9 370 1113 42.559 5.62 93.08 −0.272 Cytoskeleton

LsMAPK10 584 1755 66.322 9.30 79.95 −0.447 Cytoplasm
LsMAPK11 761 2286 85.362 9.08 90.46 −0.220 Chloroplast
LsMAPK12 738 2217 84.028 7.15 85.35 −0.355 Cytoplasm
LsMAPK13 453 1362 51.788 6.01 84.77 −0.430 Cytoplasm, Cytoskeleton
LsMAPK14 381 1146 43.284 4.99 93.39 −0.283 Cytoplasm, Cytoskeleton
LsMAPK15 600 1803 67.890 7.08 76.57 −0.549 Chloroplast, Cytoplasm
LsMAPK16 598 1797 67.857 9.15 77.29 −0.505 Cytoplasm
LsMAPK17 373 1119 42.879 5.38 89.38 −0.328 Cytoplasm
LsMAPK18 372 1119 42.749 5.86 95.86 −0.299 Chloroplast

Note: aa: amino acid; bp: base pair; kD: kilodalton; pI: isoelectric point; GRAVY: grand average of hydropathicity.

3.2. Phylogenetic Analysis of LsMAPKs in Lettuce

The amino acid sequences of 18 lettuce LsMAPKs, 20 Arabidopsis AtMPKs, and 16 rice
OsMPKs were used to analyze the evolutionary relationships (Figure 1). As shown in
Figure 1, 18 LsMAPKs were divided into A, B, C, and D subfamilies. The TEY motif existed
in the A, B, and C subfamily LsMAPKs, while LsMAPKs in the D subfamily contained the
TDY motif (Supplemental Figure S1). The D subfamily had the most LsMAPK members
(eight), followed by the C subfamily, which had four members. The A and B subfamilies
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contained an equal number of LsMAPK members. LsMAPK2, LsMAPK9, and LsMAPK17
were classified into the A subfamily, which contained well-characterized AtMPK3, AtMPK6,
AtMPK10, OsMPK3, and OsMPK6. LsMAPK5, LsMAPK14, and LsMAPK18 were classified
into the B subfamily, which included AtMPK4, AtMPK11, AtMPK13, AtMPK12, AtMPK5,
and OsMPK16.
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Figure 1. Phylogenetic tree of MAPK proteins among lettuce, Arabidopsis, and rice. MAPK proteins
were divided into four subfamilies (A, B, C, and D), with each color group representing a subfamily.

3.3. Analysis of Gene Structure and Motif of LsMAPK Genes

The LsMAPK protein structure was examined using the MEME online program. As
shown in Figure 2B, ten motifs were identified. Motifs 1, 2, 7, and 3 existed in all LsMAPK
proteins, while most LsMAPK proteins contained motifs 4, 5, 6, and 8. LsMAPKs in the
same subfamily had similar motifs. For example, most LsMAPKs belonging to Group D
except LsMAPK13 had specific motif 9. LsMAPK proteins belonging to Groups A and B
contained motif 10.

The exon–intron structures of the identified LsMAPK genes were analyzed (Figure 2C).
LsMAPK genes belonging to the same subfamily had conserved exon–intron structure. For
instance, the LsMAPKs identified in Groups A and B, except LsMAPK9, had six exons, while
Group C LsMAPK genes had two to three exons. The LsMAPK4 in Group C had three exons,
while LsMAPK1, LsMAPK7, and LsMAPK8 each had two exons. Group D LsMAPK genes
had eight to eleven exons. LsMAPK3 and LsMAPK15 had the highest number of exons
(eleven).
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introns, respectively; grey boxes represent the UTR; UTR: untranslated region, CDS: coding sequence.

3.4. Cis-Element Analysis of LsMAPK Genes

To better understand the function of LsMAPKs involved in different biological pro-
cesses, we analyzed the cis-elements existing in the promoter regions of LsMAPK genes by
using PLCAE (Figure 3), PlantCARE database (Supplement Table S3), and PlantPAN 3.0
(Supplement Table S4), respectively. As shown in Figure 3, the identified cis-elements were
related to abiotic stress, phytohormone responses, and transcription factors. Abiotic- re-
lated elements contained five cis-elements such as low-temperature responsiveness element
(LTR), drought inducibility element, salt induced element, CBF, and W-box. The promoter
region of nine LsMAPK genes contained the LTR element, which was essential for the low
temperature responsive. W-box, CBFHV, and GT1GMSCAM4 motifs appeared 71, 24, and
46 times, respectively. All LsMAPK genes contained the wound response element W-box.
According to the analysis by the PLACE and PlantCARE database, cis-elements related
to phytohormone responses also existed in LsMAPK genes, including GA, auxin, ABRE,
ERE, TCA-element, and CGTCA/TGACG motif (Figure 3 and Supplemental Table S3). Six
LsMAPK genes contained the auxin-responsive element. Twelve out of eighteen LsMAPK
genes contained a GA responsive element (GAREAT) in their promoter region. Apart from
stress-related and plant hormone-related cis-elements, some cis-elements, belonging to the
binding sites of transcription factors (Dof, MYB, RAV, and bZIP), were also identified by
the analysis of the PLACE and PlantPAN database (Figure 3 and Supplemental Table S4).
Dof transcription factor binding sites existed in the promoter region of all the LsMAPK
genes. All LsMAPK genes except LsMAPK7 contained the RAV transcription factor binding
site. Cis-elements of the MYB transcription factor binding site were identified to exist in the
promoter region of 16 LsMAPKs, except LsMAPK3 and LsMAPK6.
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3.5. Chromosomal Location of LsMAPK Genes

As shown in Figure 4, the chromosomal distribution of 18 LsMAPK genes was investi-
gated. The 18 LsMAPK genes were mapped on eight chromosomes except chromosome 6,
which contained zero MAPK genes. Chromosomes 2, 4, and 5 had only one LsMAPK, i.e.,
LsMAPK3, LsMAPK7, and LsMAPK8, respectively. Chromosome 1 contained two LsMAPK
genes. LsMAPK1 and LsMAPK2 were mapped on chromosomes 1. In addition, three
LsMAPK genes were found on chromosomes 3, 8, and 9. Chromosome 7 had the largest
number of LsMAPK genes, including LsMAPK10, LsMAPK11, LsMAPK12, and LsMAPK13.
Interesting, LsMAPK genes belonging to the same subfamily were not distributed on the
same chromosomes. For example, LsMAPK5, LsMAPK14, and LsMAPK18, which both
belong to the Group B subfamily, were mapped on chromosomes 3, 8, and 9, respectively.
LsMAPK genes (LsMAPK2, LsMAPK9, and LsMAPK17) belonging to Group A were divided
into three different chromosomes (1, 8, and 9).
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3.6. Synteny Analysis of MAPK Genes

As shown in Figure 5, seven LsMAPK gene pairs in lettuce chromosome were iden-
tified as collinear pairs by collinearity analysis. The collinear pairs of LsMAPK genes in
lettuce belonged to the same subfamily, for example, LsMAPK1 and LsMAPK7, LsMAPK10
and LsMAPK16. To further determine the evolutionary relationship, MAPK genes of Ara-
bidopsis and rice were chosen for synteny analysis with lettuce. Five pairs of orthologous
MAPK genes were identified between Arabidopsis and lettuce. The collinear pairs between
Arabidopsis and lettuce were clustered on the same branch, such as LsMAPK4 and AtMPK7,
LsMAPK6 and AtMPK17, LsMAPK10 and AtMPK19 (Figure 6, Supplemental Table S5).
However, no collinear pairs of MAPK genes were identified between rice and lettuce,
indicating the genetic relationship between lettuce and Arabidopsis was more advanced
than that of rice, and the MAPK genes were conserved in the evolution of dicotyledons,
not in the evolution of monocotyledon.
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3.7. Interaction Network Analysis of LsMAPK Proteins

In order to identify the interaction relationship of LsMAPK proteins with other proteins
in lettuce, an interaction network analysis was conducted based on orthologous genes in A.
thaliana, using STRING software. As shown in Figure 7, LsMAPK proteins in Groups A,
B, C, and D showed complex interaction relationships with other proteins. For Group A
MAPK proteins LsMAPK2 (a homolog of Arabidopsis MPK6) and LsMAPK9/17 (a homolog
of Arabidopsis MPK3), both showed interaction with MKK2/4/5, WRKY33, PP2C (protein
phosphatase 2C family protein), and protein-tyrosine-phosphatase (PTP1). For Group B
MAPK proteins, MPK4 (LsMAPK5) and ATMAPK13 (LsMAPK14/18) were able to interact
with MKK proteins (MKK2, MKK6), PP2C, and PTP1. Furthermore, LsMAPK5 also showed
an interaction relationship with WRKY transcription factors (WRKY33 and WRKY25).
For Group C MAPK proteins, LsMAPK1/4/7/8 proteins, the Arabidopsis MPK7 homologs,
showed the same interaction networks. They both showed complex interaction with PP2C,
MKK, and bZIP transcription factor. For Group D MAPK proteins, MPK9 (LsMAPK3/6/15),
MPK16 (LsMAPK11/12/13), MPK18 (LsMAPK16), and MPK19 (LsMAPK10) showed ten
interaction relationships with other proteins, including PTP1, PP2C, and bZIP transcription
factor (HY5, HYH) (Supplemental Table S6).

3.8. Expression Patterns of LsMAPK Genes in Response to Stem Enlargement

Numerous studies have shown that MAPK genes can participate in the process of
plant growth and development. In this study, the roles of LsMAPKs involved in the stem
enlargement process of stem lettuce were evaluated by RNA-Seq (Supplemental Table S7).
As shown in Figure 8, seven LsMAPK genes, including LsMAPK1, LsMAPK8, LsMAPK11,
LsMAPK12, LsMAPK15, LsMAPK17, and LsMAPK18, showed different expression during
four stem enlargement stages (S1, S2, S3, and S4). LsMAPK8, LsMAPK11, LsMAPK17, and
LsMAPK18 showed increased expression levels during the process of stem enlargement,
while LsMAPK1 and LsMAPK12 showed decreased expression levels at S2-S4 stages com-
pared with the S1 stage. Expression of LsMAPK15 showed no significant change during the
process of stem enlargement.
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Figure 7. An interaction network analysis of LsMAPK proteins. (A) Interaction proteins of LsMAPK
proteins belonging to the Group A subfamily. (B) Interaction proteins of LsMAPK proteins belonging
to the Group B subfamily. (C) Interaction proteins of LsMAPK proteins belonging to the Group C
subfamily. (D) Interaction proteins of LsMAPK proteins belonging to the Group D subfamily.
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Figure 8. Expression profiles of LsMAPK genes by transcriptome data analysis at different lettuce
stem enlargement periods. S1: diameter length is 1 cm; S2: diameter length is 2 cm; S3: diameter
length is 3 cm; S4: diameter length is 4 cm. Different color represented different expression levels of
LsMAPK genes identified by RNA-Seq.

The accuracy of the transcriptome profiles was validated by qRT-PCR analysis. The
expression profiles of six LsMAPK genes (LsMAPK1, LsMAPK8, LsMAPK11, LsMAPK15,
LsMAPK17, and LsMAPK18) were quantified at different stem enlargement stages (S1, S2, S3,
and S4). As shown in Figure 9, these six genes showed differential expression patterns. For
instance, LsMAPK1 peaked at the S4 stage. The expression levels of LsMAPK17 increased
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significantly during the process of stem enlargement and peaked at the S3 stage. Compared
with the S1 stage, the expression profiles of LsMAPK11 and LsMAPK15 decreased at the
S2 and S3 stages but increased at the S4 stage. LsMAPK18 showed decreased expression
levels. Overall, the RNA-Seq and qRT-PCR analysis results of most LsMAPK genes were
consistent, suggesting that the LsMAPK genes may be involved in the stem enlargement
process.
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3.9. Expression Levels of LsMAPK Genes Involved in Abiotic Stresses

MAPK genes not only participated in plant growth and development, but were also in-
volved in various abiotic stresses such as drought, salt, and extreme temperature. Analysis
of cis-elements showed that LsMAPK genes contained various abiotic stresses includ-
ing low-temperature-responsive element LTR, and drought-induced MYB binding site
(Figure 3). For a preliminary investigation of the potential role of LsMAPK genes under abi-
otic stresses, six LsMAPK genes (LsMAPK1, LsMAPK8, LsMAPK11, LsMAPK15, LsMAPK17,
and LsMAPK18) which responded to stem enlargement periods were selected to deter-
mine the roles of LsMAPK genes in abiotic stress response (drought, salt, low temperature,
and high temperature) by qRT-PCR. As shown in Figure 10, the expression profiles of
the six LsMAPK genes differed after drought treatment for 12 h. The expression of three
genes, including LsMAPK1, LsMAPK8, and LsMAPK11, increased. The expression levels
of LsMAPK1 and LsMAPK11 both increased twice as much as CK. However, the expres-
sion levels of LsMAPK15 and LsMAPK18 decreased after drought treatment. There was
no significant change in the expression of LsMAPK17 under drought treatment. For salt
treatment, the expression patterns of these six LsMAPK genes were similar to drought
treatment. Four LsMAPK genes showed increased expression levels, including LsMAPK1,
LsMAPK8, LsMAPK11, and LsMAPK17; however, the expression levels of LsMAPK15 and
LsMAPK18 under salt treatment decreased by 0.86-fold and 0.57-fold, respectively. Low
temperature also induced the expression of four LsMAPK genes. The expression levels of
LsMAPK1, LsMAPK11, LsMAPK17, and LsMAPK18 increased by 2.5-fold, 4.0-fold, 3.21-fold,
and 1.32-fold, respectively, whereas LsMAPK8 and LsMPAK15 were insensitive to low tem-
perature. For high-temperature treatment, only LsMAPK1 and LsMAPK8, which belong to
Group C, showed significantly increased expression; the expression levels of LsMAPK1 and
LsMAPK8 increased by about 2.5-fold and 2-fold, respectively. In contrast, the expression
patterns of LsMAPK15, LsMAPK17, and LsMAPK18 decreased under high temperatures.
LsMAPK11 showed no significant change in expression level compared to the control under
high temperatures.

3.10. LsMAPK Genes Expression Patterns in Response to Hormone Stresses

MAPK genes have been identified as participating in regulating plant hormone signal
transduction. To investigate whether LsMAPK genes participate in hormone signal trans-
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duction, expression levels of LsMAPK genes under different plant hormone treatments
were investigated using qRT-PCR. As shown in Figure 11, SA induced the expression of
four genes (LsMAPK1, LsMAPK8, LsMAPK11, and LsMAPK17) except for LsMAPK15 and
LsMAPK18. The expression levels of LsMAPK17, LsMAPK1, and LsMAPK11 increased by
about 5.5-fold, 2.5-fold, and 2.5-fold, respectively, under SA treatment. For GA treatment,
three LsMAPK genes—LsMAPK15, LsMAPK17, and LsMAPK18—showed decreased ex-
pression levels. Only the expression profile of LsMAPK11 was up-regulated under GA
treatment; the expression level of LsMAPK11 increased 2-fold. For ABA treatment, the
expression level of LsMAPK8 increased about 2-fold, while LsMAPK1 and LsMAPK18
expression decreased. The expression patterns of three genes, LsMAPK11, LsMAPK15, and
LsMAPK17, showed no significant change under ABA treatment.
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4. Discussion

During their lifetime, plants encounter various abiotic stresses which can seriously
affect their growth and development, and change the distribution of plant species [32].
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Higher plants adapt to various adverse environmental factors by developing complex signal
transduction pathways. The MAPK cascade is one of the important signal transduction
pathways in all eukaryotes and can provide developmental and environmental clues on
intracellular responses [33]. Studies have shown that MAPK genes play critical roles
in modulating various abiotic stress (temperature, drought, salinity, UV, heavy metal),
biotic stress (pathogen infection, wounding), plant hormone response, and plant growth
and development [34–36]. The possible function of gene family can be predicated by
phylogenetic, evolutionary, and structural analysis. To predicate the roles of LsMAPK genes
in lettuce, the gene structure of LsMAPK genes was analyzed. As shown in Figure 2, the
exon–intron numbers in the same group of lettuce LsMAPKs were similar. The LsMAPKs
in group C contained two or three exons, while, LsMAPKs in group D contained eight or
eleven exons. Similar results were also shown in other plant species, such as Arabidopsis,
poplar, and tomato [37–39]. The results showed that the evolution of exon–intron structure
among different species was highly conserved.

Previous research has shown that there were 17 LsMAPK family genes in lettuce [40].
In the study, 18 LsMAPK genes were identified to exist in lettuce. There were some
differences in the results of our study and those of Wang et al. [40]. For example, the
LsMAPK16 (Lsat_1_v5_gn_9_101600), which was not identified in 2022 by Wang et al. [40],
was identified as a member of the MAPK family in our study. This difference may be
related to the different e values used when searching the genes by BLASTP. Phylogenetic
tree analysis showed the lettuce LsMAPKs were classified into A, B, C, and D groups based
on the TE(D)Y motif. Research demonstrates that group D has the largest number of MAPK
members than other groups, which indicates that group D has undergone significant
expansion in the evolution of MAPKs [8]. In the study, the number of LsMAPK genes
in different groups varied, and group D contained the largest number of members (8).
Phylogenetic tree analysis also showed that 18 LsMAPKs in lettuce were more closely
clustered with Arabidopsis than with rice, indicating the evolution relationship between
lettuce and Arabidopsis was closer than with rice. The results were consistent with the
results of synteny analysis. As shown in Figure 6, the collinear gene pairs among lettuce,
Arabidopsis, and rice were performed. Five collinear gene pairs existed between lettuce and
Arabidopsis, while no collinear gene pairs existed between lettuce and rice. The LsMAPK
genes and their corresponding AtMPKs were clustered on the same branch, which indicated
a similar function among these genes [41].

Plants have developed complex mechanisms to protect themselves from various abiotic
stresses (extreme temperature, salinity, drought, and UV). MAPK proteins participate in
plant abiotic stress response [42,43]. For instance, the PtrMAPK-overexpressing transgenic
tobacco lines showed improved drought tolerance than wild-type (WT) varieties [44].
BnMAPK1 from Brassica napus enhanced drought resistance by increasing root activity and
cell water retention [45]. In our study, a large number of cis-elements related to abiotic
stresses were found in the promoter region of LsMAPK genes, which indicated the possible
function of LsMAPK genes in response to abiotic stress. The expression patterns of six
LsMAPK genes were determined by qRT-PCR analysis. LsMAPK1 and LsMAPK8 were
significantly induced by drought, salt, and high temperature. The function analysis of
Arabidopsis MPK3, MPK4, and MPK6 was comprehensive and thorough. MPK3 and
MPK4, which belong to group A, participated in plant salinity response through a complex
regulation network [46]. MPK3 and MPK4 promoted salt tolerance by interacting with
and phosphorylating key cytokinin signaling components, ARR genes, or heat shock factor
HSFA4A [46,47]. In the study, the expression of LsMAPK17, a homolog of AtMPK3, was
significantly induced by salt treatment and low temperature. Rice group A MAPK gene
OsMPK3 positively regulated low-temperature response by phosphorylating OsICE1 genes,
which directly targeted OsTPP1, the key enzyme in the trehalose biosynthetic pathway, to
improve cold tolerance [48]. Similar, tomato SlMPK3 enhanced low-temperature tolerance
by improving antioxidant enzyme activity; however, SlMPK1 served as a negative regulator
in response to high temperature [49,50]. Arabidopsis MPK3/MPK6 played a negative role
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in response to low temperature, while the cold tolerance in mutation MPK3, MPK6, or both
lines was improved compared with WT lines [51]. These results indicated that MAPK genes
classified in the same group may play similar functions in response to abiotic stresses.

Although the roles of MAPK proteins in plant stress response are characterized, their
functions in diverse signaling networks, including plant development such as pollen
development and plant ovule development, are unclear [52,53]. In the study, the expression
patterns of LsMAPK genes involved in stem enlargement process were detected. The
expression levels of several LsMAPK genes, including LsMAPK1 and LsMAPK17, were
significantly increased in the stem enlargement process. In Arabidopsis, AtMPK3, AtMPK4,
and AtMPK6 were involved in flower development, including early pollen development,
anther, and ovule integument development [54,55]. As the homolog of AtMPK3, the
expression levels of LsMAPK17 increased continuously in the process of stem expansion,
implying they may participate in regulating this process. However, the important roles of
LsMAPK genes in the stem enlargement process need to be explored further.

Some studies have confirmed the interconnections between MAPK signaling and
plant hormones. ABA enhanced plants’ resistance to various unfavorable environmental
conditions and was needed for plant growth and development. Studies have shown
that MAPK genes are involved in ABA signaling through different molecular biology
techniques. Arabidopsis MPK3 negatively regulated the ABA signaling pathway. The
MPK3-overexpressed Arabidopsis seedlings were stunted even under ABA treatment [56].
Interestingly, MPK3 also participated in ABA-inhibited stomatal opening [57]. In addition,
Arabidopsis MPK9 and MPK12 were involved in ABA signaling [58]. Arabidopsis MPK3
and MPK6 were able to disrupt normal plant growth and development by inducing SA
accumulation [59]. LsMAPK17, the homolog of AtMPK3, was significantly induced under
SA treatment, and the expression level increased about 6-fold. The roles of MAPK genes in
JA, auxin, and the ethylene signaling pathway have also been identified in plants including
Arabidopsis, tomato, and tobacco [36]. Here, different expression patterns under ABA,
GA and SA existed in the examined LsMAPK genes, indicating the potential different
functions of these genes in lettuce hormone signaling pathways. In summary, when stem
lettuce is threatened by different adverse environments, various stimuli (abiotic stress, plant
hormone, and plant growth and development) will be transmitted to the MAPK cascades
through signaling molecular on the cell membrane. MAPK cascades can phosphorylate
downstream target genes such as transcription factor, thereby inducing the expression of
downstream functional genes (Figure 12). These results will provide the information for
the function analysis of lettuce MAPK genes.
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5. Conclusions

In our study, 18 LsMAPK genes were identified in lettuce. The systematic analysis
and identification of LsMAPK genes were conducted by the analysis of exon–intron struc-
ture, motif compositions, collinearity analysis, phylogenetic relationships, chromosome
distribution, and expression patterns. Our study provides important information about the
evolution and diversity of the MAPK gene family in lettuce. These findings can provide a
basis for further analysis of the function of MAPK genes in plants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8111087/s1, Supplemental Tables: Table S1. Primer
sequences for qRT-PCR in the study. Table S2. The nucleotide and amino acid sequences of LsMAPK
genes. Table S3. Cis-elements identified in the promoter region of LsMAPK genes by PlantCARE.
Table S4. Cis-elements identified in the promoter region of LsMAPK genes by PlantPAN. Table S5. The
paralogs and orthologs genes of MAPK genes between lettuce and Arabidopsis. Table S6. Interaction
proteins between LsMAPK proteins and other proteins. Table S7. Expression profiles of LsMAPK
genes by transcriptome data analysis at different lettuce stem enlargement periods. with 1, 2, and 3
representing three biological repeats. Supplemental Figure S1. The amino acid sequence alignment of
LsMAPK proteins.
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