Opportunities for Implementing Closed Greenhouse Systems in Arid Climate Conditions
Abstract
:1. Introduction
2. Closed Greenhouse Concept
3. Effects of Microclimate on Crop Growth in a Closed Greenhouse System
3.1. Air Temperature
3.2. Relative Humidity
3.3. Light Intensity
3.4. Carbon Dioxide Concentration
3.5. Combined Effects of Climatic Factors
4. Effects of the Closed Greenhouse System on Crop Productivity and Water Use Efficiency
5. Effects of the Closed Greenhouse on Energy Use
6. Limitations Facing Closed Greenhouses in Arid Regions
7. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATES | Aquifer thermal energy storage |
BTES | Borehole thermal energy storage |
CTES | Cavern thermal energy storage |
CO2 | Carbon dioxide |
EVA | Ethylene vinyl acetate |
E-W | East–West |
GA | Gibberellic acid |
GCC | Gulf Cooperation Council |
HD | Humidification and Dehumidification |
ISGH | Integrated Solar Greenhouse |
LDPE | Low Density Polyethylene |
NIR | Near InfraRed |
N-S | North–South |
PAR | Photosynthetically active radiation |
PC Polycarbonate | |
PCM | Phase change materials storage |
PE | Polyethylene |
PMMA | PolyMethyl MethAcrylate |
PVC | Polyvinylchloride |
PVF | Polyvinyl fluoride |
RH | Relative humidity |
TES | Thermal energy storage |
UTES | Underground thermal energy storage |
UV | Ultra violet |
VGT | Vertical Gradients of Temperature |
VPD | Vapor pressure deficit |
References
- Bahadur Kc, K.; Dias, G.M.; Veeramani, A.; Swanton, C.J.; Fraser, D.; Steinke, D.; Lee, E.; Wittman, H.; Farber, J.M.; Dunfield, K.; et al. When Too Much Isn’t Enough: Does Current Food Production Meet Global Nutritional Needs? PLoS ONE 2018, 13, e0205683. [Google Scholar]
- IRENA. Renewable Energy in the Water, Energy and Food Nexus; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2015; pp. 1–125. [Google Scholar]
- United Nations Environment Program. Sustainable Consumption and Production; United Nations Environment Program: Nairobi, Kenya, 2015. [Google Scholar]
- Wulf, K. Climate Change and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; 93p. [Google Scholar]
- Sivakumar, M.V.K.; Das, H.P.; Brunini, O. Impacts of Present and Future Climate Variability and Change on Agriculture and Forestry in the Arid and Semi-Arid Tropics; Springer: Dordrecht, The Netherlands, 2005; pp. 1–44. [Google Scholar]
- Zarzo, D.; Campos, E.; Terrero, P. Spanish Experience in Desalination for Agriculture. Desalin. Water Treat. 2013, 51, 53–66. [Google Scholar] [CrossRef]
- Baeza, E.; Van Breugel, B.; Swinkels, G.J.; Hemming, S.; Stanghellini, C. The Perfectly Smart Greenhouse Cover: A Simulation Study; Wageningen University & Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Morales, D.; Rodríguez, P.; Dell’Amico, J.; Nicolás, E.; Torrecillas, A.; Sánchez-Blanco, M.J. High-Temperature Preconditioning and Thermal Shock Imposition Affects Water Relations, Gas Exchange and Root Hydraulic Conductivity in Tomato. Biol. Plant. 2003, 46, 203–208. [Google Scholar] [CrossRef]
- Alar, H.S.; Sabado, D.C. Utilizing a Greenhouse Activities Streamlining System towards Accurate VPD Monitoring for Tropical Plants. In Proceedings of the 2017 International Conference on Vision, Image and Signal Processing (ICVISP), ICVISP 2017, Osaka, Japan, 22–24 September 2017; pp. 94–97. [Google Scholar]
- Baeza, E.J.; Kacira, M. Greenhouse Technology for Cultivation in Arid and Semi-Arid Regions. Acta Hortic. 2017, 1170, 17–29. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Ben Mohamed, M.; Saïd, M. Geothermal Energy Development in Europe. In Proceedings of the 30th Anniversary Workshop, UNU-GT, Reykjavik, Iceland, 26–27 August 2008; pp. 1–9. [Google Scholar]
- FAO. Unlocking the Potential of Protected Agriculture in the Countries of the Gulf Cooperation Council—Saving Water and Improving Nutrition; FAO: Québec, QC, Canada, 2021. [Google Scholar]
- Buchholz, M.; Jochum, P.; Zaragoza, G. Concept for Water, Heat and Food Supply from a Closed Greenhouse—The Watergy Project. Acta Hortic. 2005, 691, 509–516. [Google Scholar] [CrossRef]
- Strauch, K.H. A Closed System Greenhouse with Integrated Solar Desalination for Arid Regions. Acta Hortic. 1985, 170, 29–36. [Google Scholar] [CrossRef]
- Sonneveld, P.J.; Swinkels, G.L.A.M.; Bot, G.P.A.; Flamand, G. Feasibility Study for Combining Cooling and High Grade Energy Production in a Solar Greenhouse. Biosyst. Eng. 2010, 105, 51–58. [Google Scholar] [CrossRef]
- Armstrong, H. Shut the Roof and Save Energy. Fruit Veg. Technol. 2003, 3, 69. [Google Scholar]
- Gale, J. Controlled Environment Agriculture for Hot Desert Regions. In 21st Symposium British Ecological Society. Edinburgh, Scotland; Blackwell Scientific Publications: Oxford, UK, 1981; pp. 391–402. [Google Scholar]
- Al-Jamal, K. Greenhouse Cooling in Hot Countries. Energy 1994, 19, 1187–1192. [Google Scholar] [CrossRef]
- Zaragoza, G.; Buchholz, M. Closed Greenhouses for Semi-Arid Climates: Critical Discussion Following the Results of the Watergy Prototype. Acta Hortic. 2008, 797, 37–42. [Google Scholar] [CrossRef]
- Banakar, A.; Montazeri, M.; Ghobadian, B.; Pasdarshahri, H.; Kamrani, F. Energy Analysis and Assessing Heating and Cooling Demands of Closed Greenhouse in Iran. Therm. Sci. Eng. Prog. 2021, 25, 101042. [Google Scholar] [CrossRef]
- Heuvelink, E.; Bakker, M.; Marcelis, L.F.M.; Raaphorst, M. Climate and Yield in a Closed Greenhouse. Acta Hortic. 2008, 801 Pt 2, 1083–1092. [Google Scholar] [CrossRef] [Green Version]
- Opdam, J.J.G.; Schoonderbeek, G.G.; Heller, E.M.B.; De Gelder, A. Closed Greenhouse: A Starting Point for Sustainable Entrepreneurship in Horticulture. Acta Hortic. 2005, 691, 517–524. [Google Scholar] [CrossRef]
- Hoes, H.; Desmedt, J.; Goen, K.; Wittemans, L. The GESKAS Project, Closed Greenhouse as Energy Source and Optimal Growing Environment. Acta Hortic. 2008, 801 Pt 2, 1355–1362. [Google Scholar] [CrossRef]
- Vadiee, A.; Martin, V. Energy Management in Horticultural Applications through the Closed Greenhouse Concept, State of the Art. Renew. Sustain. Energy Rev. 2012, 16, 5087–5100. [Google Scholar] [CrossRef]
- Kittas, C.; Baille, A.; Giaglaras, P. Influence of Covering Material and Shading on the Spectral Distribution of Light in Greenhouses. J. Agric. Eng. Res. 1999, 73, 341–351. [Google Scholar] [CrossRef]
- Paksoy, H.; Beyhan, B. Thermal Energy Storage (TES) Systems for Greenhouse Technology; Woodhead Publishing Limited: Sawston, UK, 2014. [Google Scholar]
- Vadiee, A. Energy Analysis of the Closed Greenhouse Concept; KTH: Stockholm, Sweden, 2011; pp. 1–154. [Google Scholar]
- Furbo, S. Using Water for Heat Storage in Thermal Energy Storage (TES) Systems; Technical University of Denmark (DTU): Lyngby, Denmark; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- Mehling, H.; Cabeza, L.F. Heat and Cold Storage with PCM; Springer: Berlin/Heidelberg, Germany, 2008; Volume 3. [Google Scholar]
- Dayan, E.; van Keulen, H.; Jones, J.W.; Zipori, I.; Shmuel, D.; Challa, H. Development, Calibration and Validation of a Greenhouse Tomato Growth Model: I. Description of the Model. Agric. Syst. 1993, 43, 145–163. [Google Scholar] [CrossRef]
- Mortensen, L.M. Effect of Relative Humidity on Growth and Flowering of Some Greenhouse Plants. Sci. Hortic. 1986, 29, 301–307. [Google Scholar] [CrossRef]
- Pontikakos, C.; Ferentinos, K.P.; Tsiligiridis, T.A.; Sideridis, A.B. Natural Ventilation Efficiency in a Twin-Span Greenhouse Using 3D Computational Fluid Dynamics. In Proceedings of the 3rd International Conference on Information and Communication Technologies in Agriculture, Berkeley, CA, USA, 25–26 May 2006. [Google Scholar]
- Swinkels, G.L.A.M.; Sonneveld, P.J.; Bot, G.P.A. Improvement of Greenhouse Insulation with Restricted Transmission Loss through Zigzag Covering Material. J. Agric. Eng. Res. 2001, 79, 91–97. [Google Scholar] [CrossRef]
- Ghani, S.; Bakochristou, F.; ElBialy, E.M.A.A.; Gamaledin, S.M.A.; Rashwan, M.M.; Abdelhalim, A.M.; Ismail, S.M. Design Challenges of Agricultural Greenhouses in Hot and Arid Environments—A Review. Eng. Agric. Environ. Food 2019, 12, 48–70. [Google Scholar] [CrossRef]
- Dannehl, D.; Josuttis, M.; Ulrichs, C.; Schmidt, U. The Potential of a Confined Closed Greenhouse in Terms of Sustainable Production, Crop Growth, Yield and Valuable Plant Compounds of Tomatoes. J. Appl. Bot. Food Qual. 2014, 87, 210–219. [Google Scholar]
- Rodríguez, F.; Berenguel, M.; Arahal, M.R. A Hierarchical Control System for Maximizing Profit in Greenhouse Crop Production. Eur. Control Conf. ECC 2003, 2003, 2753–2758. [Google Scholar]
- FAO. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013. [Google Scholar]
- Challa, H. Crop Growth Models for Greenhouse Climate Control. In Theoretical Production Ecology: Reflections and Prospects; Rabbinge, R., Goudriaan, J., van Keulen, H., de Vries, F.W.T.P., van Laar, H.H., Eds.; Pudoc: Wageningen, The Netherlands, 1990; pp. 125–145. [Google Scholar]
- Jia, Y.; Li, X. Complex Event Processing Methods for Greenhouse Control. Agriculture 2021, 11, 811. [Google Scholar] [CrossRef]
- Gruda, N. Impact of Environmental Factors on Product Quality of Greenhouse Vegetables for Fresh Consumption. CRC Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Rabbi, B.; Chen, Z.H.; Sethuvenkatraman, S. Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies 2019, 12, 2737. [Google Scholar] [CrossRef] [Green Version]
- Krumbein, A.; Schwarz, D.; Kläring, H.P. Effects of Environmental Factors on Carotenoid Content in Tomato (Lycopersicon esculentum (L.) Mill.) Grown in a Greenhouse. J. Appl. Bot. Food Qual. 2006, 80, 160–164. [Google Scholar]
- Al-Helal, I.M. Effects of ventilation rate on the environment of a fan-pad evaporatively cooled, shaded greenhouse in extreme arid climates. Appl. Eng. Agric. 2007, 23, 221–230. [Google Scholar] [CrossRef]
- Qian, T. Crop Growth and Development in Closed and Semi-Closed Greenhouses. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar]
- Poudel, M. Responses of Air Humidity and Light Quality on Growth and Stomata Function of Greenhouse. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2013; pp. 2–59. [Google Scholar]
- Kays, S.J. Preharvest Factors Affecting Appearance. Postharvest Biol. Technol. 1999, 15, 233–247. [Google Scholar] [CrossRef]
- Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche, Agence de Promotion des Investissements Agricoles. Etude de l’Encouragement des Investissements et de Développement de Production de Légumes Sous Serres Rapport Final de Synthèse; Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche, Agence de Promotion des Investissements Agricoles: Tunis, Tunisia, 2015; pp. 1–196. [Google Scholar]
- Rylski, I.; Aloni, B.; Karni, L.; Zaidman, Z. Flowering, Fruit Set, Fruit Development and Fruit Quality Under Different Environmental Conditions in Tomato and Pepper Crops. Acta Hortic. 1994, 366, 45–56. [Google Scholar] [CrossRef]
- Santosh, D.T.; Tiwari, K.N.; Singh, V.K.; Reddy, A.R.G. Micro Climate Control in Greenhouse. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1730–1742. [Google Scholar]
- Manrique, L.A. Greenhouse Crops: A Review. J. Plant Nutr. 1993, 16, 2411–2477. [Google Scholar] [CrossRef]
- Rubatzky, V.E.; Yamagucibi, M. Word Vegetable; Chapman & Hali: New York, NY, USA, 1997. [Google Scholar]
- Nonnecke, I.L. Vegetable Production; Springer Science & Business Media: New York, NY, USA, 1989. [Google Scholar]
- Peet, M.M. Greenhouse Crop Stress Management. Acta Hortic. 1999, 481, 643–654. [Google Scholar] [CrossRef]
- Bakker, J.C. The Effects of Air Humidity on Flowering, Fruit Set, Seed Set and Fruit Growth of Glasshouse Sweet Pepper (Capsicum annuum L.). Sci. Hortic. 1989, 40, 1–8. [Google Scholar] [CrossRef]
- Ferrante, A.; Mariani, L. Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses: High and Low Values of Temperature, Light Intensity, and Relative Humidity. Horticulturae 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Amitrano, C.; Rouphael, Y.; De Pascale, S.; De Micco, V. Modulating Vapor Pressure Deficit in the Plant Micro-Environment May Enhance the Bioactive Value of Lettuce. Horticulturae 2021, 7, 32. [Google Scholar] [CrossRef]
- Will, R.E.; Wilson, S.M.; Zou, C.B.; Hennessey, T.C. Increased Vapor Pressure Deficit Due to Higher Temperature Leads to Greater Transpiration and Faster Mortality during Drought for Tree Seedlings Common to the Forest-Grassland Ecotone. New Phytol. 2013, 200, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Lee, J. The Effect of Vapor Pressure Deficit Regulation on the Growth of Tomato Plants Grown in Different Planting Environments. Appl. Sci. 2022, 12, 3367. [Google Scholar] [CrossRef]
- Grange, R.I.; Hand, D.W. A Review of the Effects of Atmospheric Humidity on the Growth of Horticultural Crops. J. Hortic. Sci. 1987, 62, 125–134. [Google Scholar] [CrossRef]
- Bakker, J.C. Analysis of Humidity Effects on Growth and Production of Glasshouse Fruit Vegetables; Wageningen University and Research: Wageningen, The Netherlands, 1991; pp. 1–161. [Google Scholar]
- Zhang, D.; Du, Q.; Zhang, Z.; Jiao, X.; Song, X.; Li, J. Vapour Pressure Deficit Control in Relation to Water Transport and Water Productivity in Greenhouse Tomato Production during Summer. Sci. Rep. 2017, 7, 43461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardi, C.; Guichard, S.; Bertin, N. High Vapour Pressure Deficit Influences Growth, Transpiration and Quality of Tomato Fruits. Sci. Hortic. 2000, 84, 285–296. [Google Scholar] [CrossRef]
- Dannehl, D.; Kläring, H.P.; Schmidt, U. Light-Mediated Reduction in Photosynthesis in Closed Greenhouses Can Be Compensated for by CO2 Enrichment in Tomato Production. Plants 2021, 10, 2808. [Google Scholar] [CrossRef]
- Dorais, M.; Gosselin, A. Physiological Response of Greenhouse Vegetable Crops to Supplemental Lighting. Acta Hortic. 2002, 580, 59–67. [Google Scholar] [CrossRef]
- Arve, L.E.; Terfa, M.T.; Gislerød, H.R.; Olsen, J.E.; Torre, S. High Relative Air Humidity and Continuous Light Reduce Stomata Functionality by Affecting the ABA Regulation in Rose Leaves. Plant Cell Environ. 2013, 36, 382–392. [Google Scholar] [CrossRef] [PubMed]
- De Gelder, A.; Dieleman, J.A.; Bot, G.P.A.; Marcelis, L.F.M. An Overview of Climate and Crop Yield in Closed Greenhouses. J. Hortic. Sci. Biotechnol. 2012, 87, 193–202. [Google Scholar] [CrossRef]
- Eden, M.A.; Hill, R.A.; Stewart, A. Biological Control of Botrytis Stem Infection of Greenhouse Tomatoes. Plant Pathol. 1996, 45, 276–284. [Google Scholar] [CrossRef]
- Amani, M.; Foroushani, S.; Sultan, M.; Bahrami, M. Comprehensive Review on Dehumidification Strategies for Agricultural Greenhouse Applications. Appl. Therm. Eng. 2020, 181, 115979. [Google Scholar] [CrossRef]
- Campen, J.B.; Bot, G.P.A.; De Zwart, H.F. Dehumidification of Greenhouses at Northern Latitudes. Biosyst. Eng. 2003, 86, 487–493. [Google Scholar] [CrossRef]
- Peet, M.; Sato, S.; Clémente, C.; Pressman, E. Heat Stress Increases Sensitivity of Pollen, Fruit and Seed Production in Tomatoes (Lycopersicon esculentum Mill.) to Non-Optimal Vapor Pressure Deficits. Acta Hortic. 2003, 618, 209–215. [Google Scholar] [CrossRef]
- Choudhary, B.R.; Verma, A.K. Prospects of Protected Cultivation in Hot Arid Region; Tech. Bull. No. 69; ICAR-Central Institute for Arid Horticulture: Bikaner, India, 2018; 42p. [Google Scholar]
- Somerville, C.; Cohan, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Producción de Alimentos En a Pequeña Escala; FAO: Rome, Italy, 2014; Volume 589. [Google Scholar]
- Kang, J.H.; KrishnaKumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light Intensity and Photoperiod Influence the Growth and Development of Hydroponically Grown Leaf Lettuce in a Closed-Type Plant Factory System. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Campen, J.B.; Bot, G.P.A. Dehumidification in Greenhouses by Condensation on Finned Pipes. Biosyst. Eng. 2002, 82, 177–185. [Google Scholar] [CrossRef]
- Mortensen, L.M. The Effect of Photosynthetic Active Radiation and Temperature on Growth and Flowering of Ten Flowering Pot Plant Species. Am. J. Plant Sci. 2014, 5, 1907–1917. [Google Scholar] [CrossRef] [Green Version]
- Giacomelli, G.A.; Roberts, W.J. Greenhouse Covering Systems. HortTechnology 1993, 3, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Tazawa, S. Effects of Various Radiant Sources on Plant Growth (Part 1). Japan Agric. Res. Q. 1999, 33, 163–176. [Google Scholar]
- Hao, X.; Papadopoulos, A.P. Effects of Supplemental Lighting and Cover Materials on Growth, Photosynthesis, Biomass Partitioning, Early Yield and Quality of Greenhouse Cucumber. Sci. Hortic. 1999, 80, 1–18. [Google Scholar] [CrossRef]
- Prohens, J.; Miró, R.; Rodríguez-Burruezo, A.; Chiva, S.; Verdú, G.; Nuez, F. Temperature, Electrolyte Leakage, Ascorbic Acid Content and Sunscald in Two Cultivars of Pepino, Solanum Muricatum. J. Hortic. Sci. Biotechnol. 2004, 79, 375–379. [Google Scholar] [CrossRef]
- Bailey, B.J.; Chalabi, Z.S. Improving the Cost Effectiveness of Greenhouse Climate Control. Comput. Electron. Agric. 1994, 10, 203–214. [Google Scholar] [CrossRef]
- Enoch, H.Z. CO2 Enrichement of Strawberry and Cucumber Plants Grown on Unheated Greenhouses in Israel. Sci. Hortic. 1976, 5, 33–41. [Google Scholar] [CrossRef]
- Peet, M.M.; Huber, S.C.; Patterson, D.T. Acclimation to High CO2 in Monoecious Cucumbers. Plant Physiol. 1986, 80, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Dannehl, D.; Schuch, I.; Schmidt, U. Plant Production in Solar Collector Greenhouses—Influence on Yield, Energy Use Efficiency and Reduction in CO2 Emissions. J. Agric. Sci. 2013, 5, 34–45. [Google Scholar] [CrossRef]
- Kabeel, A.E.; El-Said, E.M.S. Water Production for Irrigation and Drinking Needs in Remote Arid Communities Using Closed-System Greenhouse: A Review. Eng. Sci. Technol. Int. J. 2015, 18, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, H.; Spahis, N.; Abdul-Wahab, S.A.; Sablani, S.S.; Goosen, M.F.A. Improving the Performance of a Seawater Greenhouse Desalination System by Assessment of Simulation Models for Different Condensers. Renew. Sustain. Energy Rev. 2010, 14, 2182–2188. [Google Scholar] [CrossRef]
- Chaibi, M.T.; Jilar, T. System Design, Operation and Performance of Roof-Integrated Desalination in Greenhouses. Sol. Energy 2004, 76, 545–561. [Google Scholar] [CrossRef]
- Chaibi, M.T. Analysis by Simulation of a Solar Still Integrated in a Greenhouse Roof. Desalination 2000, 128, 123–138. [Google Scholar] [CrossRef]
- El-Awady, M.H.; El-Ghetany, H.H.; Abdel Latif, M. Experimental Investigation of an Integrated Solar Green House for Water Desalination, Plantation and Wastewater Treatment in Remote Arid Egyptian Communities. Energy Procedia 2014, 50, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Tantau, H.J.; Schmidt, U.; Meyer, J.; Bessler, B. Low Energy Greenhouse—A System Approach. Acta Hortic. 2011, 893, 75–84. [Google Scholar] [CrossRef]
- Stanghellini, C.; Dai, J.; Kempkes, F. Effect of Near-Infrared-Radiation Reflective Screen Materials on Ventilation Requirement, Crop Transpiration and Water Use Efficiency of a Greenhouse Rose Crop. Biosyst. Eng. 2011, 110, 261–271. [Google Scholar] [CrossRef]
- Maslak, K.; Nimmermark, S. Thermal Energy Use for Dehumidification of a Tomato Greenhouse by Natural Ventilation and a System with an Air-to-Air Heat Exchanger. Agric. Food Sci. 2017, 26, 56–66. [Google Scholar] [CrossRef]
- von Christian, Z. Integrated Greenhouse Systems for Mild Climates; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of Climate Change on Protected Cultivation: Impacts and Sustainable Adaptation Strategies—A Review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Bailie, A. Greenhouse Structure and Equipment for Improving Crop Production in Mild Winter Climates. Acta Hortic. 1999, 491, 37–47. [Google Scholar] [CrossRef]
- Castilla, N. Current Situation and Future Prospects of Protected Crops in the Mediterranean Region. Acta Hortic. 2002, 582, 135–147. [Google Scholar] [CrossRef]
- Qiana, T.; Dieleman, J.A.; Elings, A.; De Gelder, A.; Marcelis, L.F.M.; Van KootenA, O. Comparison of Climate and Production in Closed, Semi-Closed and Open Greenhouses. Acta Hortic. 2011, 893, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Griseya, A.; Grasselly, D.; Rosso, L.; D’Amaral, F.; Melamedoff, S. Using Heat Exchangers to Cool and Heat a Closed Tomato Greenhouse: Application in the South of France. Acta Hortic. 2011, 893, 405–412. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.C.; Lorenzo, P.; Medrano, E.; Baille, A.; Castilla, N. Effects of EC-Based Irrigation Scheduling and CO2 Enrichment on Water Use Efficiency of a Greenhouse Cucumber Crop. Agric. Water Manag. 2009, 96, 429–436. [Google Scholar] [CrossRef]
- De Gelder, A.; Nederhoff, E.; Janse, J.; De Kok, L.; Nieboer, S.; Keijzer, M.; Raaphorst, M.; Visser, P. Totaalconcept Komkommerteelt 2008–2010: Teeltproef 2009 aan Innokom + Teeltsysteem Met Belichting en Geconditioneerd Telen; Report 264; Wageningen UR Greenhouse Horticulture: Wageningen, The Netherlands, 2009; p. 56. [Google Scholar]
Thermal Energy Storage Technologies | Seasonal Storage | Short-Term Storage | Heating | Cooling | |
---|---|---|---|---|---|
Water storage | × | × | |||
Underground thermal energy storage (UTES) | |||||
Aquifer thermal energy storage (ATES) | × | × | × | ||
Borehole thermal energy storage (BTES) | × | × | × | ||
Cavern thermal energy storage (CTES) | × | ||||
Phase change materials storage (PCM) | × | × |
Crop | Optimal Day Temperature (°C) | Optimal Night Temperature (°C) | References |
---|---|---|---|
Tomato | 25–30 | 16–20 | [51] |
Pepper | 21–30 | 16 | [52] |
Melon | 32 | 13–18 | [51,53] |
Green Bean | 16–30 | - | [51] |
Eggplant | 22–30 | 18–24 | [51,52] |
Cucumber | 25–30 | 17–20 | [51] |
Cabbage | 15–16 | 2 | [51,52,54] |
Lettuce | 18–23 | 7–11 | [51,52,54] |
Crop | PPFD (µmol m−2s−1) | References |
---|---|---|
Tomato | 400 | [78] |
Pepper | 504 | [72,78] |
Cucumber | 400 | [72,78] |
Eggplant | 504 | [78] |
Lettuce | 260–290 | [74,78] |
Bean | 336–420 | [78] |
Conventional Greenhouse | Closed Greenhouse | References | ||
---|---|---|---|---|
Water effeciency | Water desalination production (kg day−1 m2) | - | 1–6 | [86,89] |
Reduction in water consumption (%) | - | 50–75 | [14,23,35,64] | |
Energy efficiency | Energy savings (%) | - | 20–50 | [7,22,23,67] |
Annual heating demand (KWh m−2) | 223–300 | 60–115 | [21,28] | |
Annual cooling demand (KWh m−2) | 84–104 | 165–308 | [21,28] | |
Crop production yield (kg m−2) (At specific everage CO2 concentration, type of crop) | 55 (600 ppm, tomato) 24.4 (600 ppm, tomato) 11.5 (300 ppm, cucumber) 74 (600 ppm, cucumber) | 60 (1000 ppm, tomato) 32.6 (800 ppm, tomato) 13.7 (650 ppm, cucumber) 148 (1100 ppm, cucumber) | [98,99,100,101] | |
Economic aspect | Total investment (EUR m−2) | 40 | 70 | [13] |
Annual profit (EUR m−2) | 5 | 10 | [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jemai, N.; Soussi, M.; Chaibi, M.T. Opportunities for Implementing Closed Greenhouse Systems in Arid Climate Conditions. Horticulturae 2022, 8, 1102. https://doi.org/10.3390/horticulturae8121102
Jemai N, Soussi M, Chaibi MT. Opportunities for Implementing Closed Greenhouse Systems in Arid Climate Conditions. Horticulturae. 2022; 8(12):1102. https://doi.org/10.3390/horticulturae8121102
Chicago/Turabian StyleJemai, Noura, Meriem Soussi, and Mohamed Thameur Chaibi. 2022. "Opportunities for Implementing Closed Greenhouse Systems in Arid Climate Conditions" Horticulturae 8, no. 12: 1102. https://doi.org/10.3390/horticulturae8121102
APA StyleJemai, N., Soussi, M., & Chaibi, M. T. (2022). Opportunities for Implementing Closed Greenhouse Systems in Arid Climate Conditions. Horticulturae, 8(12), 1102. https://doi.org/10.3390/horticulturae8121102