Preharvest Elicitors Spray Improves Antioxidant Activity, Alleviates Chilling Injury, and Maintains Quality in Harvested Fruit
Abstract
:1. Introduction
2. Improvement of Antioxidant Capacity
2.1. Enhancing Phenolics, Ascorbic Acid and Carotenoids Contents
Elicitor | Manufacturer | Fruit | Cultivar | Spraying Concentration | Spraying Times | Spraying Stage | Antioxidant Compounds | Free Radical Scavenging Activity | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenols | Flavonoids | Anthocyanins | VC | Carotenoids | DPPH | ABTS+ | FRAP | ||||||||
SA | Sigma-Aldrich | Plum | Black Splendor | 0.5 mmol L−1 | 3 | 61, 76 and 94 days after full blossom | √ a | — b | √ | — | √ | — | — | — | [19,36] |
Oxford Laboratory Reagents | Apricot | Canino | 2 or 4 mM | 2 | 30 and 15 days before harvest | — | — | — | — | √ | — | — | — | [37] | |
— | Xiaobai | 1 mmol L−1 | 2 | 7 and 2 days before harvest | √ | √ | — | √ | — | √ | √ | √ | [7] | ||
— | Palm | Khesab | 3% | 3 | 5 and 15 weeks from pollination, and two weeks before harvest | √ | √ | — | — | — | — | — | — | [38] | |
ASA | Sigma-Aldrich | Plum | Black Splendor | 1 mmol L−1 | 3 | 61,76 and 94days after full blossom | √ | — | √ | — | √ | — | — | — | [19,36] |
MeSA | Sigma-Aldrich | Plum | Black Splendor | 0.5 mmol L−1 | 3 | 61,76 and 94days after full blossom | √ | — | √ | — | √ | — | — | — | [19,36] |
BTH | Novartis Crop Protection | Muskmelon | Yindi | 100 mg L−1 | 3 | flowering and 14, 28, 42 days after flowering | √ | √ | — | — | — | — | — | — | [39] |
Prohydrojasmon | — | Pear | Nanhong | 50 or 100 mg L−1 | 2 | 100 and 103 days after blooming | √ | √ | √ | — | — | — | — | — | [28] |
— | Mango | Kent, Shelly and Maya | 0.1, 0.2 or 0.4% | 2 | 4 and 2 weeks before harvest | — | √ | √ | — | — | — | — | — | [16] | |
Chitosan | — | Strawberry | Seascape | 2, 4, or 6 g L−1 | 1 | just turning red | — | — | √ | — | — | — | — | — | [40] |
— | Grape | Jingxiu | 1 g L−1 | 1 | 10 days before harvest | √ | — | — | — | — | — | — | — | [40] | |
— | Yaghouti | 2% or 3% | 3 | fruit set, 25 and 50 days after fruit set | — | — | √ | √ | — | √ | — | — | [41] | ||
WN Group of Publishers | Muskmelon | Manao | 0.001 | 4 | 14, 21, 28, 40 days after flowering | √ | √ | — | — | — | — | — | — | [31] | |
Cornell Lab | Apricot | Canino | 1.5% or 2.5% | 2 | 30 and 15 days before harvest | — | — | — | — | √ | — | — | — | [37] | |
— | Palm | Khesab | 1% | 3 | 5 and 15 weeks from pollination and two weeks before harvest | √ | √ | — | — | — | — | — | — | [38] | |
Huarun Bioengineering | Kiwifruit | guichang | 28.6% | 3 | budding phase, fruit setting phase and expanding final phase | √ | √ | — | √ | — | — | — | — | [42] | |
Chitosan oligosaccharide | Dalian GlycoBio | strawberry | qingxiang | 50 mg·L−1 | 4 | seedling stage, before flowering, fruit coloring and full bloom | √ | √ | √ | √ | — | √ | — | — | [43] |
Chitosan oligochitosan | — | Apricot | Xiaobai | 0.05% | 2 | 7 and 2 days before harvest | √ | √ | — | √ | — | √ | √ | √ | [7] |
Oligochitosan | Jinan Haidebei Marine Bioengineering | Navel orange | Osbeck | 15 g L−1 | 4 | 30, 60, and 90days after physiological fruit drop and 10 days before harvest | √ | — | — | — | — | — | — | — | [44] |
β-aminobutyric acid | Sigma-Aldrich | Blueberry | Bluecrop | 20 mM | 1 | 7 days before harvest | — | — | √ | — | — | — | — | — | [45] |
Oxalic acid | — | Peach | Anjirymaleki | 1, 3 or 5 mmol L−1 | 1 | 15 days before harvest | √ | √ | — | — | — | √ | — | √ | [46] |
— | Kiwifruit | Bruno | 5 mM | 3 | 130days after full blossom and 2 times at 7 days intervals | √ | √ | — | √ | — | — | — | — | [47] | |
Sigma-Aldrich | Sweet cherry | Sweet Heart and Sweet Late | 0.5, 1.0 or 2.0 mM | 3 | 98, 112, and 126 days after full blossom | √ | — | √ | — | — | — | — | — | [48] | |
— | Plum | Black Splendor | 1 mM | 3 | 63,77 and 98 days after fullblossom | √ | — | — | — | √ | — | √ | — | [20] | |
— | Kiwifruit | Bruno | 5 mmol L−1 | 3 | 130, 137 and 144 days after the flowering | — | — | — | √ | — | — | — | — | [49] | |
Sigma-Aldrich | Pomegranate | Mollar deElche | 1, 5 or 10 mM | 3 | 80, 110, 140, and 170 days after full blossom | √ | — | √ | — | — | — | — | — | [50] | |
— | Apricot | Red Flesh | 0.5, 1 or 2 mM | 1 | fruit set stage | √ | — | — | √ | — | — | — | — | [51] | |
Sigma-Aldrich | Lemon | Fino | 0.1, 0.5 or 1.0 mM | 5 | from physiological fruit dropto 3 days before harvest | √ | — | — | — | — | — | — | — | [52] | |
Harpin | Eden Bioscience | Muskmelon | Huanghemi | 50 mg L −1 | 3 | flowering and 14, 28, 42 days after flowering | √ | — | — | √ | — | — | — | — | [53] |
Hexanal | Sigma-Aldrich | Mango | Neelum, Bangalora, Banganapalli and Alphonso | 0.02% | 1; 1; 2 | 15 days before harvest; 30 days before harvest; 15 and 30 days before harvest | — | — | — | √ | √ | — | — | — | [21] |
— | Strawberry | Jewel, Kent, Mira and St. Pierre | 0.01 | 3 | once per week before harvest | √ | √ | √ | — | — | — | — | — | [54] | |
— | Guava | Allahabad Safeda | 0.8, 1.2 or 1.6 mM | 2 | 4 and 2 weeks before harvest | √ | — | — | √ | — | — | — | — | [23] | |
SNP | Sigma-Aldrich | Muskmelon | Manao | 0.5 mM | 4 | 14, 21, 28, 40 days after flowering | √ | √ | — | — | — | — | — | — | [55] |
Sigma-Aldrich | Manao | 0.5 mM | 4 | young fruit stage, early stage of en largement, late stage of enlargement and mature stage | √ | √ | — | — | — | — | — | — | [56] | ||
Sigma-Aldrich | Peach | G.H. Hill | 0, 25, 50 or 100 mol L−1 | 1 | 14 days before harvest | — | — | — | √ | — | — | — | — | [57] | |
Putrescine and spermidine | — | Grape | Olhoghi and Rishbaba | 1 or 2 mM/1 or 2 mM | 2 | 40 and 20 days before harvest | √ | — | √ | — | — | — | — | — | [58] |
Arginine | — | Pomegranate | MalaseSaveh | 0, 0.5, 1 or 2 mM | 3 | 20 days interval before commercial harvest | √ | √ | — | √ | — | √ | — | — | [59] |
L-phenylalanine | HunanShaofeng | Muskmelon | Manao | 8 mM | 4 | young fruit stage, early expansion stage, late expansion stage and one week before harvest | √ | √ | — | — | — | — | — | — | [26] |
Melatonin | — | Apricot | Colorado and Mikado | 0.1 mM | 3 | pit hardening, final fruit growth, and 4 days before harvest | √ | — | — | — | — | — | — | — | [60] |
Sigma-Aldrich | Sweet cherry | Ferrovia | 0.5 mM | 2 | 2 and 1 weeks prior to harvest | √ | — | — | — | — | — | — | — | [61] | |
— | Pear | Nanhong | 50 or 200 μmol L−1 | 2 | dripping and 3 days after | √ | √ | — | — | — | — | — | — | [62] |
2.2. Promoting the Antioxidant Activity
3. Preharvest Elicitors Spray Alleviates CI in Fruit
3.1. Reducing the Occurrence of CI
3.2. Improving ROS Scavenging Ability
3.3. Decreasing Membrane Lipid Metabolism
3.4. Reducing Pulp Browning
4. Preharvest Elicitors Spray Delays Ripening and Maintains Postharvest Quality of Fruit
4.1. Retarding Ripening
Elicitor | Manufacturer | Fruit | Cultivar | Spraying Concentration | Spraying Times | Spraying Stage | Storage Temperature (°C)/Days | Postharvest Quality | References | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TSS | TA | TSS/TA | Firmness | |||||||||
SA | — | Navel orange | Lane Late | 2, 4, 6 or 8 mM | 1 | 10 days before harvest | 5/93 | √ a | √ | — c | √ | [67] |
Sigma-Aldrich | Lemon | Fino | 0.5 mmol L−1 | 4 | 21 days intervals untile 3 days before harvest | 8/35 | √ | √ | — | √ | [14] | |
Sigma-Aldrich | Mango | Zill | 150 µM | 1 | 100 days after anthesis | 25/11 | × b | √ | — | √ | [83] | |
Sigma-Aldrich | Peach | Cresthaven | 1 or 2 mM | 2 | 23 and 15 days before harvest | 20/2 | × | √ | — | √ | [89] | |
— | Flordaking | 1, 2 or 3 mM | 3 | cell division, pit hardening or lag phase and cell enlargement stage | 1/42 | × | √ | × | √ | [69] | ||
— | Apricot | Xiaobai | 1 mmol L−1 | 2 | 7 and 2 days before harvest | 2/70 | √ | √ | — | √ | [7] | |
Cornell Lab | Canino | 2 or 4 mM | 2 | 30 and 15 days before harvest | 0/28 | × | √ | × | √ | [37] | ||
— | Grape | Thompson Seedless | 100 mg L−1 | 2 | pea and veraison stage | 20/7 | — | — | — | √ | [90] | |
Sigma-Aldrich | Flame Seedless | 1.0, 1.5 or 2.0 mM | 2 | pea and veraision stage | 3–4/75 | √ | √ | √ | √ | [91] | ||
Sigma-Aldrich | Magenta and Crimson | 1 mM | 3 | 40% berries, veraison stage and 3 days before harvest | 2/45 | √ | × | — | — | [50] | ||
— | Superior Seedless | 1, 2, or 4 mM | 3 | fruit set, berry variation and 14 days before harvest | 28/44 | √ | √ | √ | √ | [92] | ||
Sigma-Aldrich | Plum | Black Splendor | 0.5 mmol L−1 | 3 | 61,76 and 94 days after full blossom | 2/50 | √ | × | √ | √ | [19] | |
— | Strawberry | Festival | 2 or 4 mmol | 3 | full flowering, green fruits and pink stage | 4/12 | √ | — | — | √ | [93] | |
— | Sweet cherry | Sweet Heart, Sweet Late and Lapins | 0.5 mmol L−1 | 3 | 98, 112 and 126 days after full blossom (SE/SL)/66, 75 and 81 days after full blossom (L) | 2/28 | √ | √ | — | √ | [94] | |
Sigma-Aldrich | Jujube | Dongzao | 2 mM | 4 | 30, 60, 90, and 110 days after full blossom | 0/60 | — | — | — | — | [95] | |
— | Wax apple | Taaptipjaan | 0.5 or 1.0 mM | 1 | 24 h before harvest | 13/9 | — | — | — | √ | [96] | |
— | Palm | Khesab | 3% | 3 | 5 and 15 weeks from pollination, and two weeks before harvest | 2/60 | × | — | — | — | [38] | |
ASA | Sigma-Aldrich | Grape | Magenta and Crimson | 1 mM | 3 | 40% berries, veraison stage and 3 days before harvest | 2/45 | √ | × | — | — | [17] |
— | Strawberry | Festival | 0.25 or 0.50 mmoL | 3 | full flowering, green fruits and pink stage | 4/12 | √ | — | — | √ | [93] | |
— | Sweet cherry | Sweet Heart, Sweet Late and Lapins | 1.0 mmol L−1 | 3 | 98, 112 and 126 days after full blossom | 2/28 | √ | √ | — | √ | [94] | |
Sigma-Aldrich | Plum | Black Splendor | 1 mmol L−1 | 3 | 61,76 and 94 days after full blossom | 2/50 | √ | × | √ | √ | [19,36] | |
MeSA | — | Apricot | Kate | 0.05, 0.1 or 0.2 mmol L−1 | 2 | 72 d and 74 days after full blossom | 2/32 | √ | √ | — | √ | [72] |
Sigma-Aldrich | Grape | Magenta and Crimson | 1 mM | 3 | 40% berries, veraison stage and 3 days before harvest | 2/45 | √ | × | — | — | [17] | |
Sigma-Aldrich | Plum | Black Splendor | 0.5 mmol L−1 | 3 | 61,76 and 94days after full blossom | 2/50 | √ | × | √ | √ | [19] | |
MeJA | Sigma-Aldrich | Lemon | Fino | 0.1 mmol L−1 | 4 | 21 days intervals untile 3 days before harvest | 8/35 | √ | √ | — | √ | [14] |
Sigma-Aldrich | Mango | Mahachanok | 20, 40, 80 or 120 μL mL−1 | 1 | 90 days after anthesis | 15/24 | — | — | √ | √ | [97] | |
— | Plum | Black Splendor and Royal Rosa | 0.5 or 1.0 mM | 3 | - | 20/9; 2/50 | × | √ | — | √ | [98] | |
— | Fortune | 1120 or 2240 mg L−1 | 1 | 115 days after full blossom | 0/28 | × | — | — | √ | [99] | ||
— | Strawberry | Chilean | 0.25 mM | 3 | 80% flowering, turning fruit and full ripe fruit stage | 22/3 | — | — | √ | √ | [100] | |
Sigma-Aldrich | Camarosa | 250 mmol L−1 | 1; 2; 3 | 100% red stage; large green andafter 7 days at 100% red receptacle stages; flowering, after 24 days at the large green, and after 7 days at 100% red receptacle stages | 25/3 | — | — | √ | √ | [22] | ||
Sigma-Aldrich | Pomegranate | Malas | 1 or 2 mM | 1 | 15 days before harvest | 4/80 | √ | √ | — | √ | [73] | |
Sigma-Aldrich | Mollar de Elche | 1, 5 or 10 mmol L−1 | 4 | 94, 64, 34 and 4 days before harvest | 10/60 | — | — | — | √ | [78] | ||
Prohydrojasmon | — | Mango | Kent, Shelly and Maya | 0.1%, 0.2% or 0.4% | 2 | 4 and 2 weeks before harvest | 12/21 | √ | × | — | × | [26] |
Chitosan | Oxford Laboratory Reagents | Apricot | Canino | 1.5% or 2.5% | 2 | 30 and 15 days before harvest | 0/28 | × | √ | × | √ | [37] |
— | Grape | Jingxiu | 1 g L−1 | 1 | 10 days before harvest | 20/16;0/42 | × | √ | × | — | [40] | |
— | Yaghouti | 2% or 3% | 3 | fruit set, 25 and 50 days after fruit set | -/40 | √ | √ | √ | √ | [41] | ||
— | Strawberry | Alba and Romina | 0.5% or 1% | 5 | flowering and followed every 5 days | 0.5/7 | — | — | — | — | [101] | |
— | Chilean | 1.5% | 3 | 80% flowering, turning fruit stage and full ripe fruit stage | 22/3 | — | — | √ | √ | [100] | ||
Nova-Chem | Seascape | 2, 4, or 6 g L−1 | 1 | just turning red | 3/28;13/35 | × | — | √ | [102] | |||
Huarun Bioengineering | Kiwifruit | Guichang | 28.6% | 3 | budding phase, fruit setting phase and expanding final phase | 25/25 | × | × | — | √ | [42] | |
Sigma-Aldrich | Garmrok | 100 or 500 mg·L−1 | 4 | 146, 154, 161 and 170 daysafter full blossom | 0/90 | × | × | — | √ | [103] | ||
— | Palm | Khesab | 1% | 3 | 5 and 15 weeks from pollination and two weeks before harvest | 2/60 | × | — | — | — | [38] | |
Chitosan oligochitosan | — | Apricot | Xiaobai | 0.05% | 2 | 7 and 2 days before harvest | 2/70 | × | — | — | — | [7] |
Haidebei Marine Bioengineering | Jujube | Dongzao | 0.7 g L−1 2 kDa, 5 kDa or 10 kDa; 0.3, 0.7 or 1.0 g L−1 10 kDa | 4 | 30, 60, 90 and 110 days after full blossom | 0/60 | — | — | — | √ | [104] | |
β-aminobutyric acid | — | Apple | Honeycrisp | 40 mM | 2 | 4, 2 and 1 weeks before harvest | 0.5 or 3/4 months; 0.5/5 months | — | √ | — | √ | [75] |
Sigma-Aldrich | Blueberry | Bluecrop | 20 mM | 1 | 7 days before harvest | 2/20 | × | √ | — | √ | [45] | |
Oxalic acid | Sigma-Aldrich | Lemon | Fino | 0.1, 0.5 or 1.0 mM | 5 | from physiological fruit dropto 3 days before harvest | 10/35 | √ | √ | — | √ | [52] |
— | Apricot | Red Flesh | 0.5, 1 or 2 mM | 1 | fruit set stage | 25/5 | × | √ | × | √ | [51] | |
— | Peach | Anjirymaleki | 1, 3 or 5 mmol L−1 | 1 | 15 days before harvest | 1/28 | — | — | — | √ | [46] | |
— | Kiwifruit | Bruno | 5 mM | 3 | 130 days after full blossom and 2 times at 7 days intervals | 20/15 | × | × | — | √ | [47] | |
— | Bruno | 5 mmol L−1 | 3 | 130, 137 and 144 days after the flowering | 20/13 | × | × | — | — | [49] | ||
Sigma-Aldrich | Plum | Black Splendor | 1 mM | 3 | 63, 77 and 98 days after full blossom | 2/35 | × | √ | × | √ | [20] | |
Hexanal | — | Apple | Honeycrisp | 0.02% | 2 | 30 and 15 days before harvest | 2.5/120 | √ | — | — | √ | [105] |
— | Honeycrisp | 0.02% | 2 | 30 and 15 days before harvest | 2.5/120 | √ | — | — | √ | [106] | ||
— | Mango | Dashehari | 800, 1200, 1600 or 2000 µM | 2 | 15 and 30 days before harvest | 12/35 | √ | √ | — | — | [85] | |
Sigma-Aldrich | Neelum, Bangalora, Banganapalli and Alphonso | 0.02% | 1; 1; 2 | 15 days before harvest; 30 days before harvest; 15 and 30 days before harvest | 25/-;13/- | × | — | — | √ | [21] | ||
— | Alphonso and Banganapalli | 2% | 2 | 30 and 15 days before harvest | 14/21; 28/21 | √ | √ | √ | — | [107] | ||
— | Nectarines | Fantasia | 2% | 2 | 15 and 10 days before harvest | 2/45 | — | — | — | √ | [66] | |
— | Strawberry | Jewel and Wendy | 0.01% or 0.02% | 2 | 7 and 3 days before harvest | 4/9 | — | × | — | √ | [108] | |
— | Guava | Allahabad Safeda | 0.8, 1.2 or 1.6 mM | 2 | 4 and 2 weeks before harvest | 6–8/35 | √ | √ | — | √ | [23] | |
Putrescine and spermidine | Olhoghi and Rishbaba | Grape | Olhoghi and Rishbaba | 1 or 2 mM/1 or 2 mM | 2 | 40 and 20 days before harvest | 1.5/55 | × | √ | — | — | [58] |
Melatonin | — | Apricot | Colorado and Mikado | 0.1 mM | 3 | pit hardening, final fruit growth and 4 days before harvest | 1 or 8/28 | √ | × | — | √ | [60] |
4.2. Maintaining Sugarand Organic Acid
4.3. Maintaing Fruit Firmness
5. Concluding Remarks and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Fruit and vegetables-your dietary essentials. In The International Year of Fruits and Vegetables, 2021, Background Paper; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Ziv, C.; Fallik, E. Postharvest storage techniques and quality evaluation of fruits and vegetables for reducing food loss. Agronomy 2021, 11, 1133. [Google Scholar] [CrossRef]
- Thompson, A.K. Chaper 17-Postharvest chemical and physical deterioration of fruit and vegetables. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Risbo, J., Andersen, M.L., Eds.; Woodhead Publishing: London, UK, 2010; pp. 483–518. [Google Scholar]
- Aghdam, M.S.; Asghari, M.; Babalar, M.; Sarcheshmeh, M.A.A. Chapter 8-Impact of salicylic acid on postharvest physiology of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 243–268. [Google Scholar]
- Sevillano, L.; Sanchez-Ballesta, M.T.; Romojaro, F.; Flores, F.B. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J. Sci. Food Agric. 2009, 89, 555–573. [Google Scholar] [CrossRef]
- Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Guti´errez Martínez, P.; Alkan, N. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
- Cui, K.B.; Shu, C.; Zhao, H.D.; Fan, X.G.; Cao, J.K.; Jiang, W.B. Preharvest chitosan oligochitosan and salicylic acid treatments enhance phenol metabolism and maintain the postharvest quality of apricots (Prunus armeniaca L.). Sci. Hortic. 2020, 267, 109334. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, Z.; Khan, A.S.; Iqbal, Z. Pre-harvest application of salicylic acid maintain the rind textural properties and reduce fruit rot and chilling injury of sweet orange during cold storage. Pak. J Agric. Sci. 2013, 50, 559–569. [Google Scholar]
- Martínez-Camacho, J.E.; Guevara-González, R.G.; Rico-García, E.; Tovar-Pérez, E.G.; Torres-Pacheco, I. Delayed senescence and marketability index preservation of blackberry fruit by preharvest application of chitosan and salicylic acid. Front. Plant Sci. 2022, 13, 796393. [Google Scholar] [CrossRef]
- Segado, P.; Domínguez, E.; Heredia, A. Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiol. 2016, 170, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Seymour, G.B.; Østergaard, L.; Chapman, N.H.; Knapp, S.; Martin, C. Fruit development and ripening. Annu. Rev. Plant Biol. 2013, 64, 219. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.Y.; Liao, L.; Deng, L.J.; Jin, Z.H.; Huang, Z.H.; Sun, G.C.; Xiong, B.; Wang, Z.H. Combined transcriptome and metabolome analyses reveal candidate genes involved in Tangor (Citrus reticulata × Citrus sinensis) fruit development and quality formation. Int. J. Mol. Sci. 2022, 23, 5457. [Google Scholar] [CrossRef]
- Harasym, J.; Oledzki, R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition 2014, 30, 511–517. [Google Scholar] [CrossRef]
- Serna-Escolano, V.; Martínez-Romero, D.; Giménez, M.J.; Serrano, M.; García-Martínez, S.; Valero, D.; Valverde, J.M.; Zapata, P.J. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem. 2021, 338, 128044. [Google Scholar] [CrossRef] [PubMed]
- Fanyuk, M.; Kumar Patel, M.; Ovadia, R.; Maurer, D.; Feygenberg, O.; Oren-Shamir, M.; Alkan, N. Preharvest application of phenylalanine induces red color in mango and apple fruit’s skin. Antioxidants 2022, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Sudheeran, P.K.; Love, C.; Feygenberg, O.; Maurer, D.; Ovadia, R.; Oren-Shamir, M.; Alkan, N. Induction of red skin and improvement of fruit quality in ‘Kent’, ‘Shelly’ and ‘Maya’ mangoes by preharvest spraying of prohydrojasmon at the orchard. Postharvest Biol. Technol. 2019, 149, 18–26. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Giménez, M.J.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Preharvest application of methyl jasmonate increases crop yield, fruit quality and bioactive compounds in pomegranate ‘Mollar de Elche’ at harvest and during postharvest storage. J. Sci. Food Agric. 2020, 100, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Alrashdi, A.M.A.; Al-Qurashi, A.D.; Awad, M.A.; Mohamed, S.A.; Alrashdi, A.A. Quality, antioxidant compounds, antioxidant capacity and enzymes activity of ‘El-Bayadi’ table grapes at harvest as affected by preharvest salicylic acid and gibberellic acid spray. Sci. Hortic. 2017, 220, 243–249. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Serrano, M.; Valero, D.; Martínez-Romero, D.; Castillo, S.; Zapata, P.J. Enhancement of antioxidant systems and storability of two plum cultivars by preharvest treatments with salicylates. Int. J. Mol. Sci. 2017, 18, 1911. [Google Scholar] [CrossRef]
- Serrano, M.; Marínez-Esplá, A.; Giménez, M.J.; Valero, D.; Zapata, P.J.; Guillén, F.; Castillo, S. Preharvest application of oxalic acid improves antioxidant systems in plums. Acta Hortic. 2016, 19, 1194. [Google Scholar] [CrossRef]
- Preethi, P.; Soorianathasundaram, K.; Sadasakthi, A.; Subramanian, K.S.; Vijay Rakesh Reddy, S.; Paliyath, G.; Subramanian, J. Preharvest application of hexanal as a surface treatment improved the storage life and quality of mango fruits. Coatings 2021, 11, 1267. [Google Scholar] [CrossRef]
- Zuñiga, P.E.; Castañeda, Y.; Arrey-Salas, O.; Fuentes, L.; Aburto, F.; Figueroa, C.R. Methyl jasmonate applications from flowering to ripe fruit stages of strawberry (Fragaria × ananassa ‘Camarosa’) reinforce the fruit antioxidant response at post-harvest. Front. Plant Sci. 2020, 11, 538. [Google Scholar] [CrossRef]
- Gill, K.S.; Dhaliwal, H.S.; Mahajan, B.V.C.; Paliyath, G.; Boora, R.S. Enhancing postharvest shelf life and quality of guava (Psidium guajava L.) cv. Allahabad Safeda by pre-harvest application of hexanal containing aqueous formulation. Postharvest Biol. Technol. 2016, 112, 224–232. [Google Scholar] [CrossRef]
- Ruiz-García, Y.; Gómez-Plaza, E. Elicitors: A tool for improving fruit phenolic content. Agriculture 2013, 3, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Shen, N.; Wang, T.F.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.D.; Yang, Y.Y.; Gong, D.; Li, Z.C.; Wang, B.; Xue, S.L.; Oyom, W.; Prusky, D.; Bi, Y. Preharvest L-phenylalanine sprays accelerated wound healing of harvested muskmelons by eliciting phenylpropanoid metabolism and enzymatic browning. Postharvest Biol. Technol. 2022, 193, 112053. [Google Scholar] [CrossRef]
- Li, S.E.; Cheng, Y.; Yan, R.; Liu, Y.; Huan, C.; Zheng, X.L. Preharvest spray with melatonin improves postharvest disease resistance in cherry tomato fruit. Postharvest Biol. Technol. 2022, 193, 112055. [Google Scholar] [CrossRef]
- Wang, X.; Cao, X.; Shang, Y.; Bu, H.; Wang, T.; Lyu, D.; Du, G. Preharvest application of prohydrojasmon affects color development, phenolic metabolism, and pigment-related gene expression in red pear (Pyrus ussuriensis). J. Sci. Food Agric. 2020, 100, 4766–4775. [Google Scholar] [CrossRef]
- Flores, G.; del Castillo, M.L.R. Influence of preharvest and postharvest methyl jasmonate treatments on flavonoid content and metabolomic enzymes in red raspberry. Postharvest Biol. Technol. 2014, 97, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bi, Y.; Zhang, Z.; Zhang, H.; Ge, Y.H. Reduction of latent infection and enhancement of disease resistance in muskmelon by preharvest application of harpin. J. Agric. Food Chem. 2011, 59, 12527. [Google Scholar] [CrossRef]
- Li, Z.C.; Xu, X.Q.; Xue, S.L.; Gong, D.; Wang, B.; Zheng, X.Y.; Xie, P.D.; Bi, Y.; Prusky, D. Preharvest multiple sprays with chitosan promotes the synthesis and deposition of lignin at wounds of harvested muskmelons. Int. J. Biol. Macromol. 2022, 206, 167–174. [Google Scholar] [CrossRef]
- Li, Z.C.; Xue, S.L.; Xu, X.Q.; Wang, B.; Zheng, X.Y.; Li, B.J.; Xie, P.D.; Bi, Y.; Prusky, D. Preharvest multiple sprays with chitosan accelerate the deposition of suberin poly phenolic at wound sites of harvested muskmelons. Postharvest Biol. Technol. 2021, 179, 111565. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef]
- Kato, M.; Ikoma, Y.; Matsumoto, H.; Sugiura, M.; Hyodo, H.; Yano, M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol. 2004, 134, 824–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, L.; De Miccolis Angelini, R.M.; Pollastro, S.; Feliziani, E.; Faretra, F.; Romanazzi, G. Global transcriptome analysis and identification of differentially expressed genes in strawberry after preharvest application of benzothiadiazole and chitosan. Front. Plant Sci. 2017, 8, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Esplá, A.; Zapata, P.J.; Valero, D.; Martínez-Romero, D.; Díaz-Mula, H.M.; Serrano, M. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage. J. Sci. Food Agric. 2018, 98, 2742–2750. [Google Scholar] [CrossRef] [PubMed]
- Elmenofy, H.M.; Okba, S.K.; Salama, A.M.; Alam-Eldein, S.M. Yield, fruit quality, and storability of ‘Canino’ apricot in response to aminoethoxyvinylglycine, salicylic acid, and chitosan. Plants 2021, 10, 1838. [Google Scholar] [CrossRef]
- Ahmed, Z.F.R.; Alblooshi, S.S.N.A.; Kaur, N.; Maqsood, S.; Schmeda-Hirschmann, G. Synergistic effect of preharvest spray application of natural elicitors on storage life and bioactive compounds of date palm (Phoenix dactylifera L., cv. Khesab). Horticulturae 2021, 7, 145. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Bi, Y.; Ge, Y.H.; Wang, J.J.; Deng, J.J.; Xie, D.F.; Wang, Y. Multiple pre-harvest treatments with acibenzolar-S-methyl reduce latent infection and induce resistance in muskmelon fruit. Sci. Hortic. 2011, 130, 126–132. [Google Scholar] [CrossRef]
- Meng, X.H.; Li, B.Q.; Liu, J.; Tian, S.P. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- Nia, A.E.; Taghipour, S.; Siahmansour, S. Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances quality of table grape (Vitis vinifera L. cv. ‘Yaghouti’) during postharvest period. Food Chem. 2021, 347, 129012. [Google Scholar] [CrossRef]
- Zhang, C.; Long, Y.H.; Wang, P.Q.; Li, J.H.; An, H.M.; Wu, X.M.; Li, M. The effect of preharvest 28.6% chitosan composite film sprays for controlling the soft rot on kiwifruit and its defence responses. Hortic. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Bose, S.K.; Wang, W.; Jia, X.; Lu, H.; Yin, H. Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. Int. J. Mol. Sci. 2018, 19, 2194. [Google Scholar] [CrossRef]
- Deng, L.L.; Zhou, Y.H.; Zeng, K.F. Pre-harvest spray of oligochitosan induced the resistance of harvested navel oranges to anthracnose during ambient temperature storage. Crop. Prot. 2015, 70, 70–76. [Google Scholar] [CrossRef]
- Chea, S.; Yu, D.J.; Park, J.; Oh, H.D.; Chung, S.W.; Lee, H.J. Preharvest β-aminobutyric acid treatment alleviates postharvest deterioration of ‘Bluecrop’ highbush blueberry fruit during refrigerated storage. Sci. Hortic. 2019, 246, 95–103. [Google Scholar] [CrossRef]
- Razavi, F.; Hajilou, J. Enhancement of postharvest nutritional quality and antioxidant capacity of peach fruits by preharvest oxalic acid treatment. Sci. Hortic. 2016, 200, 95–101. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yu, J.; Brecht, J.K.; Jiang, T.J.; Zheng, X.L. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chem. 2016, 190, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Espla, A.; Zapata, P.J.; Valero, D.; Garcia-Viguera, C.; Castillo, S.; Serrano, M. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). J. Agric. Food Chem. 2014, 62, 3432–3437. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Liu, M.M.; Wang, Z.E.; Li, S.E.; Jiang, T.J.; Zheng, X.L. Pre-harvest spraying of oxalic acid improves postharvest quality associated with increase in ascorbic acid and regulation of ethanol fermentation in kiwifruit cv. Bruno during storage. J. Integr. Agric. 2019, 18, 2514–2520. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M.; Guillén, F. Preharvest salicylate treatments enhance antioxidant compounds, color and crop yield in low pigmented-table grape cultivars and preserve quality traits during storage. Antioxidants 2020, 9, 832. [Google Scholar] [CrossRef]
- Ahmed, M.; Ullah, S.; Razzaq, K.; Rajwana, I.A.; Akhtar, G.; Naz, A.; Amin, M.; Khalid, M.S.; Khalid, S. Pre-harvest oxalic acid application improves fruit size at harvest, physico-chemical and sensory attributes of ‘Red Flesh’ apricot during fruit ripening. J. Hortic. Sci. Technol. 2021, 4, 48–55. [Google Scholar] [CrossRef]
- Serna-Escolano, V.; Giménez, M.J.; Castillo, S.; Valverde, J.M.; Martínez-Romero, D.; Guillén, F.; Serrano, M.; Valero, D.; Zapata, P.J. Preharvest Treatment with Oxalic Acid Improves Postharvest Storage of Lemon Fruit by Stimulation of the Antioxidant System and Phenolic Content. Antioxidants 2021, 10, 963. [Google Scholar] [CrossRef]
- Wang, J.; Bi, Y.; Wang, Y.; Deng, J.; Zhang, H.; Zhang, Z. Multiple preharvest treatments with harpin reduce postharvest disease and maintain quality in muskmelon fruit (cv. Huanghemi). Phytoparasitica 2014, 42, 155–163. [Google Scholar] [CrossRef]
- Misran, A.; Padmanabhan, P.; Sullivan, J.A.; Khanizadeh, S.; Paliyath, G. Composition of phenolics and volatiles in strawberry cultivars and influence of preharvest hexanal treatment on their profiles. Can. J. Plant Sci. 2015, 95, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; He, X.F.; Bi, Y. Preharvest sprays with sodium nitroprusside induce resistance in harvested muskmelon against the pink rot disease. J. Food Process Preserv. 2021, 45, e15339. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, H.; Bi, Y.; He, X.F.; Wang, Y.; Li, Y.C.; Zheng, X.Y.; Prusky, D. Preharvest multiple sprays with sodium nitroprusside promote wound healing of harvested muskmelons by activation of phenylpropanoid metabolism. Postharvest Biol. Technol. 2019, 158, 110988. [Google Scholar] [CrossRef]
- Saba, M.K.; Moradi, S. Sodium nitroprusside (SNP) spray to maintain fruit quality and alleviate postharvest chilling injury of peach fruit. Sci. Hortic. 2017, 216, 193–199. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahimi, S. Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera L.) quality during postharvest period. Food Chem. 2016, 196, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Babalar, M.; Pirzad, F.; Sarcheshmeh, M.A.A.; Talaei, A.; Lessani, H. Arginine treatment attenuates chilling injury of pomegranate fruit during cold storage by enhancing antioxidant system activity. Postharvest Biol. Technol. 2018, 137, 31–37. [Google Scholar] [CrossRef]
- Medina-Santamarina, J.; Zapata, P.J.; Valverde, J.M.; Valero, D.; Serrano, M.; Guillén, F. Melatonin treatment of apricot trees leads to maintenance of fruit quality attributes during storage at chilling and non-chilling temperatures. Agronomy 2021, 11, 917. [Google Scholar] [CrossRef]
- Michailidis, M.; Tanou, G.; Sarrou, E.; Karagiannis, E.; Ganopoulos, I.; Martens, S.; Molassiotis, A. Pre-and post-harvest melatonin application boosted phenolic compounds accumulation and altered respiratory characters in sweet cherry fruit. Front. Nutr. 2021, 8, 306. [Google Scholar] [CrossRef]
- Sun, H.L.; Wang, X.Y.; Shang, Y.; Wang, X.Q.; Du, G.D.; Lv, D.G. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis). J. Integr. Agric. 2021, 20, 2126–2137. [Google Scholar] [CrossRef]
- Andrys, D.; Kulpa, D.; Grzeszczuk, M.; Bihun, M.; Dobrowolska, A. Antioxidant and antimicrobial activities of Lavandulaangustifolia Mill. field-grown and propagated in vitro. Folia Hortic. 2017, 29, 161–180. [Google Scholar] [CrossRef]
- Gupta, M.; Karmakar, N.; Sasmal, S.; Chowdhury, S.; Biswas, S. Free radical scavenging activity of aqueous and alcoholic ex-tracts of Glycyrrhizaglabra Linn. measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical antioxidant assay. Int. J. Pharmacol. Toxicol. 2016, 4, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.L.; Jiang, H.T.; Cao, J.K.; Jiang, W.B. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends Food Sci. Technol. 2021, 113, 355–365. [Google Scholar] [CrossRef]
- Kumar, S.K.; Kayal, W.E.; Sullivan, J.A.; Paliyath, G.; Jayasankar, S. Pre-harvest application of hexanal formulation enhances shelf life and quality of ‘Fantasia’ nectarines by regulating membrane and cell wall catabolism-associated genes. Sci. Hortic. 2018, 229, 117–124. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, Z.; Iqbal, Z. Effect of preharvest sprays of salicylic acid on the shelf life and quality of ‘Lane Late’ sweet orange (Citrus sinensis L.) cold storage. Acta Hortic. 2013, 1012, 103–112. [Google Scholar] [CrossRef]
- Ahmed, W.; Ahmed, S.; Ali, L. Effect of pre-harvest spray of salicylic (SA) and methyl jasmonate (MeJA) on the phyrtochemicals and physiological changes during the storage of grapefruit cv. Ray ruby. Int. J. Biosci. 2015, 6, 269–282. [Google Scholar]
- Ali, I.; Wang, X.; Tareen, M.J.; Wattoo, F.M.; Qayyum, A.; Hassan, M.U.; Shafique, M.; Liaquat, M.; Asghar, S.; Hussain, T.; et al. Foliar application of salicylic acid at different phenological stages of peach fruit CV. ‘Flordaking’ improves harvest quality and reduces chilling injury during low temperature storage. Plants 2021, 10, 1981. [Google Scholar] [CrossRef]
- Lu, X.H.; Sun, D.Q.; Li, Y.H.; Shi, W.Q.; Sun, G.M. Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Sci. Hortic. 2011, 130, 97–101. [Google Scholar] [CrossRef]
- Al-Obeed, R.S. Jujube post-harvest fruit quality and storability in response to agro-chemicals preharvest application. Afr. J. Agric. Res. 2012, 7, 5099–5107. [Google Scholar]
- Fan, X.G.; Du, Z.L.; Cui, X.Z.; Ji, W.J.; Ma, J.T.; Li, X.L.; Wang, X.M.; Zhao, H.D.; Liu, B.D.; Guo, F.J.; et al. Preharvest methyl salicylate treatment enhance the chilling tolerance and improve the postharvest quality of apricot during low temperature storage. Postharvest Biol. Technol. 2021, 177, 111535. [Google Scholar] [CrossRef]
- Saba, K.M.; Zarei, L. Preharvest methyl jasmonate’s impact on postharvest chilling sensitivity, antioxidant activity, and pomegranate fruit quality. J. Food Biochem. 2019, 43, e12763. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Giménez, M.J.; Zapata, P.J.; Guillén, F.; Valverde, J.M.; Serrano, M.; Valero, D. Preharvest application of methyl salicylate, acetyl salicylic acid and salicylic acid alleviated disease caused by Botrytis cinerea through stimulation of antioxidant system in table grapes. Int. J. Food Microbiol. 2020, 334, 108807. [Google Scholar] [CrossRef] [PubMed]
- Shoffe, Y.A.; Nock, J.F.; Zhang, Y.Y.; Watkins, C.B. Pre- and post-harvest γ-aminobutyric acid application in relation to fruit quality and physiological disorder development in ‘Honeycrisp’ apples. Sci. Hortic. 2021, 289, 110431. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Fakhar, Z.; Babalar, M.; Askari, M.A. Effect of pre-harvest putrescine treatment on quality and postharvest life of pear cv. Spadona. Adv. Hortic. Sci. 2017, 31, 11–17. [Google Scholar]
- Zhang, L.; Cao, X.; Wang, Z.Q.; Zhang, Z.K.; Li, J.K.; Wang, Q.; Xu, X.B. Brassinolide alleviated chilling injury of banana fruit by regulating unsaturated fatty acids and phenolic compounds. Sci. Hortic. 2022, 297, 110922. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Zapata, P.J.; Valero, D. Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids, and increased aril colour and phenolics content in pomegranate. Postharvest Biol. Technol. 2020, 167, 111226. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Zhu, S.; Wang, D.; Sun, S.; Xin, L. Short-term hypobaric treatment alleviates chilling injury by regulating membrane fatty acids metabolism in peach fruit. J. Food Biochem. 2022, 64, e14113. [Google Scholar] [CrossRef]
- Chen, G.F.; Hou, Y.Y.; Zheng, Y.H.; Jin, P. 2,4-Epibrassinolide enhance chilling tolerance of loquat fruit by regulating cell wall and membrane fatty acid metabolism. Sci. Hortic. 2022, 295, 110813. [Google Scholar] [CrossRef]
- Gong, D.; Bi, Y.; Zhang, X.M.; Han, Z.H.; Zong, Y.Y.; Li, Y.C.; Sionov, E.; Prusky, D. Benzothiadiazole treatment inhibits membrane lipid metabolism and straight-chain volatile compound release in Penicillium expansum-inoculated apple fruit. Postharvest Biol. Technol. 2021, 181, 111671. [Google Scholar] [CrossRef]
- Song, C.B.; Wang, K.; Xiao, X.; Liu, Q.L.; Yang, M.J.; Li, X.; Feng, Y.B.; Li, S.S.; Shi, L.Y.; Chen, W.; et al. Membrane lipid metabolism influences chilling injury during cold storage of peach fruit. Food Res. Int. 2022, 157, 111249. [Google Scholar] [CrossRef]
- Hong, K.; Gong, D.; Xu, H.; Wang, S.; Jia, Z.; Chen, J.; Zhang, L. Effects of salicylic acid and nitric oxide pretreatment on the expression of genes involved in the ethylene signaling pathway and the quality of postharvest mango fruit. N. Z. J. Crop. Hortic. Sci. 2014, 42, 205–216. [Google Scholar] [CrossRef]
- Asghari, M.; Aghdam, M.S. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Sci. Technol. 2010, 21, 502–509. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, G.; Brar, J.S. Pre-harvest application of hexanal formulations for improving post-harvest life and quality of mango (Mangifera indica L.) cv. Dashehari. J. Food Sci. Technol. 2020, 57, 4257–4264. [Google Scholar] [CrossRef] [PubMed]
- Alkan, N.; Fortes, A.M. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 2015, 6, 889. [Google Scholar] [CrossRef] [PubMed]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, K.B.; Trainotti, L.; Bonghi, C.; Ziosi, V.; Costa, G.; Torrigiani, P. Early methyl jasmonate application to peach delays fruit/seed development by altering the expression of multiple hormone-related genes. J. Plant Growth Regul. 2013, 32, 852–864. [Google Scholar] [CrossRef]
- Erogul, D.; Özsoydan, İ. Effect of pre-harvest salicylic acid treatments on the quality and shelf life of the ‘Cresthaven’ peach cultivar. Folia Hortic. 2020, 32, 221–227. [Google Scholar] [CrossRef]
- Marzouk, H.A.; Kassem, H.A. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci. Hortic. 2011, 130, 425–430. [Google Scholar] [CrossRef]
- Champa, W.A.H.; Gill, M.I.S.; Mahajan, B.V.C.; Arora, N.K. Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitisvinífera L.) cv. Flame Seedless. J. Food Sci. Technol. 2015, 52, 3607–3616. [Google Scholar] [CrossRef]
- Lo’ay, A.A. Preharvest salicylic acid and delay ripening of ‘superior seedless’ grapes. Egypt J. Basic Appl. Sci. 2017, 4, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Darwish, O.S.; Ali, M.R.; Khojah, E.; Samra, B.N.; Ramadan, K.M.; El-Mogy, M.M. Pre-harvest application of salicylic acid, abscisic acid, and methyl jasmonate conserve bioactive compounds of strawberry fruits during refrigerated storage. Horticulturae 2021, 7, 568. [Google Scholar] [CrossRef]
- Giménez, M.J.; Serrano, M.; Valverde, J.M.; Martínez-Romero, D.; Castillo, S.; Valero, D.; Guillén, F. Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. J. Sci. Food Agric. 2017, 97, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.K.; Yan, J.Q.; Zhao, Y.M.; Jiang, W.B. Effects of fourpre-harvest foliar sprays with β-aminobutyric acid or salicylic acid on the incidence of postharvest disease and induced defence responses in jujube (Zizyphus jujuba Mill.) fruit after storage. J. Hortic. Sci. Biotechnol. 2013, 88, 338–344. [Google Scholar] [CrossRef]
- Supapvanich, S.; Mitsang, P.; Youryon, P. Preharvest salicylic acid application maintains physicochemical quality of ‘Taaptimjaan’ wax apple fruit (Syzygium samarangenese) during short-term storage. Sci. Hortic. 2017, 215, 178–183. [Google Scholar] [CrossRef]
- Muengkaew, R.; Chaiprasart, P.; Warrington, I. Changing of physiochemical properties and color development of mango fruit sprayed methyl jasmonate. Sci. Hortic. 2016, 198, 70–77. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Guillén, F.; Díaz-Mula, H.M.; Martínez-Romero, D.; Serrano, M.; Valero, D. Preharvest application of methyl jasmonate (MeJA) in two plum cultivars. 2. Improvement of fruit quality and antioxidant systems during postharvest storage. Postharvest Biol. Technol. 2014, 98, 115–122. [Google Scholar] [CrossRef]
- Karaman, S.; Ozturk, B.; Genc, N.; Celik, S.M. Effect of preharvest application of methyl jasmonate on fruit quality of plum (Prunus Salicina L indell cv.“Fortune”) at harvest and during cold storage. J. Food Process. Preserv. 2012, 37, 1049–1059. [Google Scholar] [CrossRef]
- Saavedra, G.M.; Figueroa, N.E.; Poblete, L.A.; Cherian, S.; Figueroa, C.R. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chem. 2016, 190, 448–453. [Google Scholar] [CrossRef]
- Feliziani, E.; Landi, L.; Romanazzi, G. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydr. Polym. 2015, 5, 111–117. [Google Scholar] [CrossRef]
- Bhaskara-Reddy, M.V.; Belkacemi, K.; Corcuff, R.; Castaigne, F.; Arul, J. Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol. Technol. 2000, 20, 39–51. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Kim, J.G.; Kim, Y.H.; Lee, M.; Lee, Y.S.; Kwack, Y.B.; Kim, J. Preharvest application of chitosan improves the postharvest life of ‘Garmrok’ kiwifruit through the modulation of genes related to ethylene biosynthesis, cell wall modification and lignin metabolism. Foods 2021, 10, 373. [Google Scholar] [CrossRef]
- Yan, J.Q.; Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Effects of preharvest oligochitosan sprays on postharvest fungal diseases, storage quality, and defense responses in jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit. Sci. Hortic. 2012, 142, 196–204. [Google Scholar] [CrossRef]
- DeBrouwer, E.J.; Sriskantharajah, K.; Kayal, W.E.; Sullivan, J.A.; Paliyath, G.; Subramanian, J. Pre-harvest hexanal spray reduces bitter pit and enhances post-harvest quality in ‘Honeycrisp’ apples (Malus domestica Borkh.). Sci. Hortic. 2020, 273, 109610. [Google Scholar] [CrossRef]
- Sriskantharajah, K.; El Kayal, W.; Torkamaneh, D.; Ayyanath, M.M.; Saxena, P.K.; Sullivan, A.J.; Paliyath, G.; Subramanian, J. Transcriptomics of improved fruit retention by hexanal in ‘Honeycrisp’ reveals hormonal crosstalk and reduced cell wall degradation in the fruit abscission zone. Int. J. Mol. Sci. 2021, 22, 8830. [Google Scholar] [CrossRef] [PubMed]
- Anusuya, P.; Nagaraj, R.; Janavi, G.J.; Subramanian, K.S.; Paliyath, G.; Subramanian, J. Pre-harvest sprays of hexanal formulation for extending retention and shelf-life of mango (Mangifera indica L.) fruits. Sci. Hortic. 2016, 211, 231–240. [Google Scholar] [CrossRef]
- El Kayal, W.; El-Sharkawy, I.; Dowling, C.; Paliyath, G.; Sullivan, J.A.; Subramanian, J. Effect of preharvest application of hexanal and growth regulators in enhancing shelf life and regulation of membrane-associated genes in strawberry. Can. J. Plant Sci. 2017, 97, 1109–1120. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar signaling during fruit ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Nascimento, V.L.; Medeiros, D.B.; Nunes-Nesi, A.; Ribeiro, D.M.; Zsögön, A.; Araújo, W.L. Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef]
- Liu, S.M.; Huang, H.; Huber, D.J.; Pan, Y.G.; Shi, X.Q.; Zhang, Z.K. Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin. Postharvest Biol. Technol. 2020, 163, 111136. [Google Scholar] [CrossRef]
- Fekry, W.M.E.; Rashad, Y.M.; Alaraidh, I.A.; Mehany, T. Exogenous application of melatonin and methyl jasmonate as a pre-harvest treatment enhances growth of Barhi date palm trees, prolongs storability, and maintains quality of their fruits under storage conditions. Plants 2022, 11, 96. [Google Scholar] [CrossRef]
- Liu, Y.N.; Wang, Y.; Bi, Y.; Li, S.E.; Jiang, H.; Zhu, Y.; Wang, B. Effect of preharvest acetylsalicylic acid treatments on ripening and softening of harvested muskmelon fruit. Sci. Agric. Sin. 2017, 50, 1862–1872, (English abstract). [Google Scholar]
Elicitor | Manufacturer | Fruit | Cultivar | Spraying Concentration | Spraying Times | Spraying Stage | Storage Temperature (°C)/Days | References |
---|---|---|---|---|---|---|---|---|
SA | — | Navel orange | Lane Late | 2, 4, 6 or 8 mM | 1 | 10 days before harvest | 3/93 | [67] |
— | Sweet orange | Lane Late and Valencia Late | 2, 3, 4, 6, 8 or 9 mM | 1 | 10 days before harvest | 3/93 | [8] | |
Sigma-Aldrich | Grapefruit | Ray Ruby | 6, 8 or 12 mM | — a | 20 days intervals before harvest | 8/90 | [68] | |
— | Peach | Flordaking | 1, 2 or 3 mM | 3 | the cell division, cell enlargement and pit-hardening stages | 1/42 | [69] | |
— | Apricots | Xiaobai | 1 mmol L−1 | 2 | 7 and 2 days before harvest | 2/70 | [7] | |
— | Pineapple | Comte de Paris | 2.0 mM | 4 | 15-day intervals before harvest | 10/20 | [70] | |
— | Jujube | Peyuan | 150 mg L−1 | 1 | 3 weeks before harvest | —/35 | [71] | |
MeSA | Aladdin | Apricots | Kate | 0.05, 0.1 or 0.2 mmol L−1 | 2 | 72 d and 74 d after full blossom | 2/32 | [72] |
MeJA | Sigma-Aldrich | Grapefruit | Ray Ruby | 3, 4 or 5 mM | — | 20 days intervals before harvest | 8/90 | [68] |
Sigma-Aldrich | Pomegranates | Malas | 1 or 2 mM | 1 | 15 days before harvest | 4/28 | [73] | |
Sigma-Aldrich | Pomegranate | Mollar de Elche | 5 mM | 5 | 80, 110, 140 and 170 days after full blossom, and 4 d before harvest | 2/90 | [74] | |
Chitosan oligochitosan | — | Apricots | Xiaobai | 0.05% | 2 | 7 and 2 days before harvest | 2/70 | [7] |
β-aminobutyric acid | — | Apple | Honeycrisp | 40 mM | 2 | 2 and 4 weeks before harvest; 1 and 2 weeks before harvest | 0.5 or 3/4 months; 0.5/5 months | [75] |
Arginine | — | Pomegranate | MalaseSaveh | 0, 0.5, 1 or 2 mM | 3 | 20 days interval before commercial harvest | 4/120 | [59] |
SNP | Sigma-Aldrich | Peach | G.H. Hill | 0, 25, 50 or 100 mol L−1 | 1 | 14 days before harvest | 4/28 | [57] |
Melatonin | — | Apricot | Colorado and Mikado | 0.1 mM | 3 | pit hardening, final fruit growth, and 4 days before harvest | 1 and 8 /21 and 28 | [60] |
Hexanal | — | Nectarine | Fantasia | 0.02% | 2 | 15 and 10days before harvest | 2/45 | [66] |
Putrescine | — | Pear | Spadona | 0.5, 1 or 2 mM | 3 | — | 0/21 | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, D.; Bi, Y.; Li, Y.; Wang, Y.; Prusky, D.; Alkan, N. Preharvest Elicitors Spray Improves Antioxidant Activity, Alleviates Chilling Injury, and Maintains Quality in Harvested Fruit. Horticulturae 2022, 8, 1208. https://doi.org/10.3390/horticulturae8121208
Gong D, Bi Y, Li Y, Wang Y, Prusky D, Alkan N. Preharvest Elicitors Spray Improves Antioxidant Activity, Alleviates Chilling Injury, and Maintains Quality in Harvested Fruit. Horticulturae. 2022; 8(12):1208. https://doi.org/10.3390/horticulturae8121208
Chicago/Turabian StyleGong, Di, Yang Bi, Yongcai Li, Yi Wang, Dov Prusky, and Noam Alkan. 2022. "Preharvest Elicitors Spray Improves Antioxidant Activity, Alleviates Chilling Injury, and Maintains Quality in Harvested Fruit" Horticulturae 8, no. 12: 1208. https://doi.org/10.3390/horticulturae8121208
APA StyleGong, D., Bi, Y., Li, Y., Wang, Y., Prusky, D., & Alkan, N. (2022). Preharvest Elicitors Spray Improves Antioxidant Activity, Alleviates Chilling Injury, and Maintains Quality in Harvested Fruit. Horticulturae, 8(12), 1208. https://doi.org/10.3390/horticulturae8121208