In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvent Extraction
2.2. Evaporation and Concentration
2.3. Quantification of Total Phenolics, Total Flavonoids, and Antioxidant Assays
2.3.1. Preparation of Stock Solutions
2.3.2. Total Phenolic Content: Folin-Ciocalteu Method
2.3.3. Total Flavonoid Content: The Aluminum Chloride Colorimetric Assay
2.3.4. The 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH) Scavenging Activity
2.3.5. Ferric (Fe3+) Reducing Antioxidant Power (FRAP) Assay
2.4. MTT Cytotoxicity Assay
2.5. Statistical Analyses
3. Results and Discussion
3.1. Quantification of Plant Extracts
3.2. Total Phenolic Content
3.3. Total Flavonoid Content
3.4. Antioxidant Activity
3.5. MTT Cytotoxicity Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munayi, R.R. Phytochemical Investigation of Bridelia micrantha and Tabernaemontana ventricosa for Cytotoxic Principles against Drug Sensitive Leukemia Cell Lines. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2016. [Google Scholar]
- Key, T.J.; Allen, N.E.; Spencer, E.A.; Travis, R.C. The effect of diet on risk of cancer. Lancet 2002, 360, 861–868. [Google Scholar] [CrossRef]
- Migliore, L.; Coppedè, F. Genetic and environmental factors in cancer and neurodegenerative diseases. Mut. Res. Rev Mut. Res. 2002, 512, 135–153. [Google Scholar] [CrossRef]
- Boffetta, P.; Nyberg, F. Contribution of environmental factors to cancer risk. Br. Med. Bull. 2003, 68, 71–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/world-health-statistics (accessed on 17 September 2018).
- Herzallah, H.K.; Antonisamy, B.R.; Shafee, M.H.; Al-Otaibi, S.T. Temporal trends in the incidence and demographics of cancers, communicable diseases, and non-communicable diseases in Saudi Arabia over the last decade. Saudi Med. J. 2019, 40, 277–286. [Google Scholar] [CrossRef]
- Rosales, P.F.; Marinho, F.F.; Gower, A.; Chiarello, M.; Canci, B.T.; Roesch-Ely, M.; Paula, F.R.; Moura, S. Bio-guided search of active indole alkaloids from Tabernaemontana catharinensis: Antitumour activity, toxicity in silico and molecular modelling studies. Bioorg. Chem. 2019, 85, 66–74. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Inter. J. Cancer Res. 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Made, F.; Wilson, K.; Jina, R.; Tlotleng, N.; Jack, S.; Ntlebi, V.; Kootbodien, T. Distribution of cancer mortality rates by province in South Africa. Cancer Epidemiol. 2017, 51, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.P.; Hofseth, L.J.; Harris, C.C. Radical causes of cancer. Nat. Rev. Cancer 2003, 3, 276–285. [Google Scholar] [CrossRef]
- Glebova, K.; Veiko, N.; Kostyuk, S.; Izhevskaya, V.; Baranova, A. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett. 2015, 356, 22–33. [Google Scholar] [CrossRef]
- Thyagarajan, A.; Sahu, R.P. Potential contributions of antioxidants to cancer therapy: Immunomodulation and radiosensitization. Integr. Cancer Ther. 2018, 17, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Majolo, F.; Delwing, L.K.D.O.B.; Marmitt, D.J.; Bustamante-Filho, I.C.; Goettert, M.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett. 2019, 31, 196–207. [Google Scholar] [CrossRef]
- Singh, A.; Masoodi, M.; Nabi, N.; Ashraf, I. Medicinal Plants as Combating Strategy Against Cancer: A Review. Cancer 2019, 7, 1–20. [Google Scholar]
- Silveira, D.; de Melo, A.F.; Magalhães, P.O.; Fonseca-Bazzo, Y.M. Tabernaemontana Species: Promising Sources of New Useful Drugs. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 54, pp. 227–289. [Google Scholar] [CrossRef]
- Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem. 2019, 176, 268–291. [Google Scholar] [CrossRef]
- Hamed, A.R.; Abdel-Azim, N.S.; Shams, K.A.; Hammouda, F.M. Targeting multidrug resistance in cancer by natural chemosensitizers. Bull. Natl. Res. Cent. 2019, 43, 8. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Gezici, S.; Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anti-Cancer Agents Med. Chem. 2019, 19, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Morsy, N. Anticancer agents from plants. Main Group Chem. 2019, 18, 169–191. [Google Scholar] [CrossRef]
- Priya, S.; Satheeshkumar, P.K. Natural products from plants: Recent developments in phytochemicals, phytopharmaceuticals, and plant-based neutraceuticals as anticancer agents. Funct. Preserv. Prop. Phytochem. 2020, 5, 145–163. [Google Scholar] [CrossRef]
- Wall, M.E.; Wani, C.M. Camptothecin and Taxol: From Discovery to Clinic. J. Ethnopharmacol. 1996, 51, 239–254. [Google Scholar] [CrossRef]
- Imbert, T.F. Discovery of podophyllotoxins. Biochimie 1998, 80, 207–222. [Google Scholar] [CrossRef]
- Da Rocha, A.B.; Lopes, R.M.; Schwartsmann, G. Natural Products in Anticancer Therapy. Curr. Opin. Pharmacol. 2001, 1, 364–369. [Google Scholar] [CrossRef]
- Khazir, J.; Mir, B.A.; Pilcher, L.A.; Riley, D.L. Role of plants in anticancer drug discovery. Phytochem. Lett. 2014, 7, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.J.U.; Paterna, A. Monoterpene indole alkaloids as leads for targeting multidrug resistant cancer cells from the African medicinal plant Tabernaemontana elegans. Phytochem. Rev. 2019, 18, 971–987. [Google Scholar] [CrossRef]
- Sammar, M.; Abu-Farich, B.; Rayan, I.; Falah, M.; Rayan, A. Correlation between cytotoxicity in cancer cells and free radical-scavenging activity: In vitro evaluation of 57 medicinal and edible plant extracts. Oncol. Lett. 2019, 18, 6563–6571. [Google Scholar] [CrossRef] [Green Version]
- Alfa, H.H.; Arroo, R.R. Over 3 decades of research on dietary flavonoid antioxidants and cancer prevention: What have we achieved? Phytochem. Rev. 2019, 18, 989–1004. [Google Scholar] [CrossRef]
- Shori, A.B. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015, 13, 297–305. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierăscu, I. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr. Opin. Food Sci. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Rahman, H.S. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [Green Version]
- Kam, T.S.; Pang, H.-S.; Choo, Y.M.; Komiyama, K. Biologically Active Ibogan and Vallesamine Derivatives from Tabernaemontana divaricata. Chem. Biodivers. 2004, 1, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.; Lotter, M.; McCleland, W. Trees and Shrubs of Mpumalanga and Kruger National Park; Illustrated Burrows, J., Ed.; Jacana Media: Johannesburg, South Africa, 2002; pp. 566–569. [Google Scholar]
- Schmelzer, G.B.; Gurib-Fakim, A. Plant Resources of Tropical Africa (PROTA). In Medicinal Plants, 1st ed.; Backhuys Publishers: Wageningen, The Netherlands, 2008; Volume 1, pp. 597–598. [Google Scholar]
- Beentje, H.; Adamson, J.; Bhanderi, D. Kenya Trees, Shrubs, and Lianas; National Museums of Kenya: Nairobi, Kenya, 1994. [Google Scholar]
- Schripsema, J.; Hermans-Lokkerbol, A.; Van der Heijden, R.; Verpoorte, R.; Svendsen, A.B.; Van Beek, T.A. Alkaloids of Tabernaemontana ventricosa. J. Nat. Prod. 1986, 49, 733–735. [Google Scholar] [CrossRef]
- Mehrbod, P.; Abdalla, M.A.; Njoya, E.M.; Ahmed, A.S.; Fotouhi, F.; Farahmand, B.; Gado, D.A.; Tabatabaian, M.; Fasanmi, O.G.; Eloff, J.N. South African medicinal plant extracts active against influenza A virus. BMC Complement. Altern. Med. 2018, 18, 112. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, T.; Verpoorte, R.; Svendsen, A.; Leeuwenberg, A.; Bisset, N. Tabernaemontana L. (Apocynaceae): A review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J. Ethnopharmacol. 1984, 10, 1–156. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, H. Antioxidant activities of barley seeds extracts. Food Chem. 2007, 102, 732–737. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef]
- Akwu, N.A.; Naidoo, Y.; Singh, M. Cytogenotoxic and biological evaluation of the aqueous extracts of Grewia lasiocarpa: An Allium cepa assay. S. Afr. J. Bot. 2019, 125, 371–380. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Daniels, A.N.; Singh, M. Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine 2019, 14, 1387–1401. [Google Scholar] [CrossRef] [PubMed]
- Thombre, R.; Jagtap, R.; Patil, N. Evaluation of phytoconstituents, antibacterial, antioxidant and cytotoxic activity of Vitex negundo L. and Tabernaemontana divaricata L. Int. J. Pharm. Bio. Sci. 2013, 4, 389–396. [Google Scholar]
- Dutta, S.; Ray, S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. J. King Saud Uni. Sci. 2020, 32, 643–647. [Google Scholar] [CrossRef]
- Banik, S. Evaluation of thrombolytic, membrane stabilizing, and antioxidant activities of methanolic extract of Tabernaemontana recurva Roxb. Discov. Phytomed. 2017, 4, 17. [Google Scholar] [CrossRef]
- Sari, R.; Conterno, P.; Da Silva, L.D.; De Lima, V.A.; Oldoni, T.L.C.; Thomé, G.R.; Carpes, S. Extraction of Phenolic Compounds from Tabernaemontana catharinensis Leaves and Their Effect on Oxidative Stress Markers in Diabetic Rats. Molecules 2020, 25, 2391. [Google Scholar] [CrossRef] [PubMed]
- Boligon, A.A.; Piana, M.; Schawnz, T.G.; Pereira, R.P.; Rocha, J.B.T.; Athayde, M.L. Chromatographic Analysis and Antioxidant Capacity of Tabernaemontana catharinensis. Nat. Prod. Commun. 2014, 9, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raju, M.; Rao, Y.V. Study of Catalase, Protease, Antioxidant and Antimicrobial Activities of Tabernaemontana divaricata Latex. J. Med. Plants By-Prod. 2021, 10, 61–68. [Google Scholar]
- Sathishkumar, T.; Baskar, R. Evaluation of antioxidant properties of Tabernaemontana heyneana Wall. leaves. Indian J. Nat. Prod. Resour. 2012, 3, 197–207. [Google Scholar]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014, 77, 367–379. [Google Scholar] [CrossRef]
- Boligon, A.A.; De Freitas, R.B.; De Brum, T.F.; Piana, M.; Belke, B.V.; Rocha, J.B.T.; Athayde, M.L. Phytochemical constituents and in vitro antioxidant capacity of Tabernaemontana catharinensis A. DC. Free Radic. Antioxid. 2013, 3, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Nicola, C.; Salvador, M.; Gower, A.E.; Moura, S.; Echeverrigaray, S. Chemical Constituents Antioxidant and Anticholinesterasic Activity of Tabernaemontana catharinensis. Sci. World J. 2013, 2013, 519858. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, C.M.; Naidoo, Y.; Dewir, Y.H.; Murthy, H.N.; El-Hendawy, S.; Al-Suhaibani, N. Major Bioactive Alkaloids and Biological Activities of Tabernaemontana Species (Apocynaceae). Plants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.K.; Magalhaes, T.S.; Monte, F.J.; Mattos, M.C.; Oliveira, M.C.; Almeida, M.M.; Lemos, T.L.; Braz-Filho, R. Iboga alkaloids from Peschier aaffinis (Apocynaceae)-unequivocal 1H and 13C chemical shift assignments: Antioxidant activity. Quím. Nova 2009, 32, 1834–1838. [Google Scholar] [CrossRef]
- Mueller, M.O.; Janngeon, K.; Puttipan, R.I.; Unger, F.M.; Viernstein, H.; Okonogi, S.I. Anti-inflammatory, antibacterial and antioxidant activities of Thai medicinal plants. Int. J. Pharm. Pharm. Sci. 2015, 7, 123–128. [Google Scholar]
- Gonzalez-Guevara, J.L.; Gonzalez-Lavaut, J.A.; Pino-Rodriguez, S.; Garcia-Torres, M.; Carballo-Gonzalez, M.T.; Echemendia-Arana, O.A.; Molina-Torres, J.; Prieto-Gonzalez, S. Phytochemical screening and in vitro antiherpetic activity of four Erythtroxylum species. Acta Farm. Bonaer. 2004, 23, 506–509. [Google Scholar]
- Pergher, D.; Picolotto, A.; Rosales, P.F.; Machado, K.G.; Cerbaro, A.F.; França, R.T.; Salvador, M.; Roesch-Ely, M.; Tasso, L.; Figueiredo, J.G. Antinociceptive and antioxidant effects of extract enriched with active indole alkaloids from leaves of Tabernaemontana catharinensis A. DC. J. Ethnopharmacol. 2019, 239, 111863. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, S.M.; Bao, M.F.; Cai, X.H. An Aspidosperma-type alkaloid dimer from Tabernaemontana bovina as a candidate for the inhibition of microglial activation. Org. Chem. Front. 2020, 7, 1365–1373. [Google Scholar] [CrossRef]
- Thind, T.S.; Agrawal, S.K.; Saxena, A.; Arora, S. Studies on cytotoxic, hydroxyl radical scavenging and topoisomerase inhibitory activities of extracts of Tabernaemontana divaricata (L.) R.Br. ex Roem. and Schult. Food Chem. Toxicol. 2008, 46, 2922–2927. [Google Scholar] [CrossRef] [PubMed]
- Pallant, C.; Cromarty, A.D.; Steenkamp, V. Effect of an alkaloidal fraction of Tabernaemontana elegans (Stapf.) on selected micro-organisms. J. Ethnopharmacol. 2012, 140, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Kingston, D.G.; Gerhart, B.B.; Ionescu, F.; Mangino, M.M.; Sami, S.M. Plant anticancer agents V: New bisindole alkaloids from Tabernaemontana johnstonii stem bark. J. Pharm. Sci. 1978, 67, 249–251. [Google Scholar] [CrossRef]
- Andima, M.; Ndakala, A.; Derese, S.; Biswajyoti, S.; Hussain, A.; Yang, L.J.; Akoth, O.E.; Coghi, P.; Pal, C.; Heydenreich, M.; et al. Antileishmanial and cytotoxic activity of secondary metabolites from Taberneamontana ventricosa and two aloe species. Nat. Prod. Res. 2021, 1–5. [Google Scholar] [CrossRef]
- Pereira, C.G.; Marques, M.O.M.; Barreto, A.S.; Siani, A.C.; Fernandes, E.C.; Meireles, M.A.A. Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2+ethanol: An evaluation of the process variables and the raw material origin. J. Supercrit. Fluids 2004, 30, 51–61. [Google Scholar] [CrossRef]
- Mathivanan, T.; Govindarajan, M.; Elumalai, K.; Krishnappa, K.; Ananthan, A. Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stapf. (Family: Apocynaceae). J. Vector Borne Dis. 2010, 47, 178–180. [Google Scholar]
- Rumzhum, N.N.; Rahman, M.; Kazal, K. Antioxidant and cytotoxic potential of methanol extract of Tabernaemontana divaricata leaves. Int. Curr. Pharm. J. 2012, 1, 27–31. [Google Scholar] [CrossRef] [Green Version]
Crude Extracts | Leaves | Stems | Latex | Leaves | Stems | Latex |
---|---|---|---|---|---|---|
Dried Extract Yield (mg) | Yield (%) | |||||
Hexane | 50.00 | 40.00 | 0.15 | 5.28 | 4.36 | 15.00 |
Chloroform | 80.00 | 70.00 | 8.78 | 7.28 | ||
Methanol | 200.00 | 180.00 | 20.17 | 18.64 |
Crude Extracts | Total Phenols (mg GAE/g) | ||
---|---|---|---|
Leaves | Stems | Latex (Only) | |
Hexane | 1.01 ± 0.82 | 21.33 ± 0.42 | 115.36 ± 2.89 |
Chloroform | 7.89 ± 0.87 | 4.69 ± 0.21 | |
Methanol | 1.75 ± 0.13 | 0.99 ± 0.16 |
Crude Extracts | Total Flavonoids (mg QE/g) | ||
---|---|---|---|
Leaves | Stems | Latex (Only) | |
Hexane | 662.20 ± 1.00 | 946.92 ± 6.29 | 768.96 ± 5.43 |
Chloroform | 332.83 ± 0.96 | 693.24 ± 4.12 | |
Methanol | 152.22 ± 0.76 | 262.19 ± 2.36 |
Crude Extract | DPPH (µg/mL) | FRAP (µg/mL) |
---|---|---|
Leaf hexane | 538.66 | >1000 |
Leaf chloroform | >1000 | >1000 |
Leaf methanol | >1000 | >1000 |
Stem hexane | 19.26 | >1000 |
Stem chloroform | 22.56 | >1000 |
Stem methanol | 6.19 | >1000 |
Latex | ND | 42.22 |
Ascorbic acid | 3.11 | NA |
Gallic acid | NA | 29.44 |
Crude Extracts | Cell Lines | ||
---|---|---|---|
HEK293 | MCF-7 | HeLa | |
Concentration µg/mL | |||
Leaf hexane | 156.90 ± 3.41 | 232.13 ± 1.97 | 54.81 ± 0.71 |
Leaf chloroform | 129.39 ± 1.22 | 208.54 ± 2.73 | 97.60 ± 2.16 |
Leaf methanol | 86.23 ± 1.76 | 168.24 ± 2.23 | 101.82 ± 1.12 |
Stem hexane | 83.33 ± 1.49 | 73.20 ± 3.08 | 67.63 ± 0.76 |
Stem chloroform | 150.75 ± 2.13 | 1402.88 ± 3.44 | 115.86 ± 1.40 |
Stem methanol | 161.01 ± 7.46 | 260.70 ± 5.64 | 164.66 ± 1.49 |
Latex | 231.1 ± 11.71 | 17.20 ± 1.63 | 63.50 ± 1.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidoo, C.M.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Daniels, A.N.; El-Ramady, H. In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. Horticulturae 2022, 8, 91. https://doi.org/10.3390/horticulturae8020091
Naidoo CM, Naidoo Y, Dewir YH, Singh M, Daniels AN, El-Ramady H. In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. Horticulturae. 2022; 8(2):91. https://doi.org/10.3390/horticulturae8020091
Chicago/Turabian StyleNaidoo, Clarissa Marcelle, Yougasphree Naidoo, Yaser Hassan Dewir, Moganavelli Singh, Aliscia Nicole Daniels, and Hassan El-Ramady. 2022. "In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts" Horticulturae 8, no. 2: 91. https://doi.org/10.3390/horticulturae8020091
APA StyleNaidoo, C. M., Naidoo, Y., Dewir, Y. H., Singh, M., Daniels, A. N., & El-Ramady, H. (2022). In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. Horticulturae, 8(2), 91. https://doi.org/10.3390/horticulturae8020091