Influence of Seed and Fruit Characteristics of Lagenaria siceraria on Production and Quality of Grafted Watermelon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Materials, Culture and Experimental Design
2.3. Measurements
2.3.1. Yield Parameters
2.3.2. Fruits External Characteristics
2.3.3. Fruit Internal Characteristics
2.4. Statistical Analysis
3. Results and Discussion
3.1. Yield Parameters
3.2. Fruits External Characteristics
3.3. Fruit Internal Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-Vela, K.; Pérez-Sánchez, F.C.; Padron, J.M.; Márquez-Fernández, O. Antiproliferative activity of Cucurbitaceae species extracts from Southeast of Mexico. J. Med. Plants Stud. 2020, 8, 20–25. [Google Scholar]
- Lira, R.; Rodríguez-Jiménez, C.; Alvarado, J.L.; Rodríguez, I.; Castrejón, J.; Domínguez-Mariani, A. Diversidad e importancia de la familia Cucurbitaceae en México. Acta Bot. Mex. 1998, 42, 43–77. [Google Scholar] [CrossRef]
- Lira-Saade, R.; Rodríguez-Arévalo, I. Catálogo de la Familia Cucurbitaceae de México. Informe Final SNIB-CONABIO Proyecto DS002; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2006. [Google Scholar]
- Hutson, S.R.; Davies, G. How material culture acted on the ancient Maya of Yucatan, Mexico. Archeol. Pap. Am. Anthropol. Assoc. 2015, 26, 10–26. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T. Seed performance of selected bottle gourd (Lagenaria siceraria (Molina) Standl.). Am. J. Exp. Agric. 2013, 3, 740–766. [Google Scholar] [CrossRef] [Green Version]
- Sakata, Y.; Ohara, T.; Sugiyama, M. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hortic. 2007, 731, 159–170. [Google Scholar] [CrossRef]
- Lee, J.M. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. Hortscience 1994, 29, 235–239. [Google Scholar] [CrossRef]
- Kubota, C.; McClure, M.A.; Kokalis-Burelle, N.; Bausher, M.G.; Rosskopf, E.N. Vegetable Grafting: History, use, and current technology status in North America. Hortscience 2008, 43, 1664–1669. [Google Scholar] [CrossRef]
- Ricárdez-Salinas, M.; Huitrón-Ramírez, M.V.; Tello-Marquina, J.C.; Camacho-Ferre, F. Planting density for grafted melon as an alternative to methyl bromide use in Mexico. Sci. Hortic. 2010, 126, 236–241. [Google Scholar] [CrossRef]
- Davis, A.R.; Perkins-Veazie, P.; Sakata, Y.; López-Galarza, S.; Maroto, J.V.; Lee, S.G.; Huh, Y.C.; Sun, Z.; Miguel, A.; King, S.R.; et al. Cucurbit grafting. Crit. Rev. Plant Sci. 2008, 27, 50–74. [Google Scholar] [CrossRef]
- López-Elías, J.; Huez-López, M.A.; Jiménez-León, J.; Rodríguez, J.C.; Garza-Ortega, S.; Escoboza-García, L.F. Efecto de la densidad de plantación en sandía sin semilla injertada sobre bule. Trop. Subtrop. Agroecosystems 2011, 14, 349–355. [Google Scholar]
- Grimaldo-Juárez, O.; Suárez-Hernández, A.M.; Ceceña-Durán, C.; González-Mendoza, D. Diversidad morfológica de semilla y fruto de diez colectas mexicanas de Lagenaria siceraria. Agron. Mesoam. 2018, 29, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Hernández, A.M.; Grimaldo-Juárez, O.; García-López, A.M.; González-Mendoza, D.; Huitrón-Ramírez, M.V. Evaluación de portainjertos criollos de Lagenaria siceraria en la producción de sandía injertada. Idesia (Arica) 2017, 35, 39–44. [Google Scholar] [CrossRef]
- Suárez-Hernández, A.M.; Grimaldo-Juárez, O.; García-López, A.M.; González-Mendoza, D.; Huitrón-Ramírez, M.V. Influence of rootstock on postharvest watermelon quality. Rev. Chapingo Ser. Hortic. 2017, 23, 49–58. [Google Scholar] [CrossRef]
- Suárez-Hernández, A.M.; Grimaldo-Juárez, O.; Cecena-Duran, C.; Bazante-Gonzalez, I.; Nuñez-Ramirez, F.; González-Mendoza, D. Plant growth and quality of cucumber grafted with Lagenaria siceraria in soil infested with nematodes. Emir. J. Food Agric. 2021, 33, 67–72. [Google Scholar] [CrossRef]
- Uygur, V.; Yetisir, H. Effects of rootstocks on some growth parameters, phosphorous and nitrogen uptake watermelon under salt stress. J. Plant Nutr. 2009, 32, 629–643. [Google Scholar] [CrossRef]
- Goreta, S.; Bucevic-Popovic, V.; Selak, G.V.; Pavela-Vrancic, M.; Perica, S. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. J. Agric. Sci. 2008, 146, 695–704. [Google Scholar] [CrossRef]
- Yetisir, H.; Uygur, V. Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant Nutr. 2010, 33, 315–327. [Google Scholar] [CrossRef]
- Pulgar, G.; Villora, G.; Moreno, D.A.; Romero, L. Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plant. 2000, 43, 607–609. [Google Scholar] [CrossRef]
- Ahn, S.J.; Im, Y.J.; Chung, G.C.; Cho, B.H.; Suh, S.R. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Sci. Hortic. 1999, 81, 397–408. [Google Scholar] [CrossRef]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, H. Hormonal signaling in rootstock-scion interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Proietti, S.; Rouphael, Y.; Colla, G.; Cardarelli, M.; De Agazio, M.; Zacchini, M.; Rea, E.; Moscatello, S.; Battistelli, A. Fruit quality of mini-watermelon as affected by grafting and irrigation regimes. J. Sci. Food Agric. 2008, 88, 1107–1114. [Google Scholar] [CrossRef]
- Pal, S.; Rao, E.S.; Hebbar, S.S.; Sriram, S.; Pitchaimuthu, M.; Rao, V.K. Assessment of Fusarium wilt resistant Citrullus sp. rootstocks for yield and quality traits of grafted watermelon. Sci. Hortic. 2020, 272, 109497. [Google Scholar] [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía–UNAM: Ciudad de México, Mexico, 1988. [Google Scholar]
- Maroto, J.V.; Borrego, I.; Miguel-Gómez, A.; Pomares-García, F. El Cultivo de la Sandía; Mundi-Prensa: Valencia, Spain, 2002. [Google Scholar]
- United State Department of Agriculture (USDA). United States Standards for Grades of Watermelons. 2006. Available online: http://www.ams.usda.gov/sites/default/files/media/Watermelon_Standard%5B1%5D.pdf (accessed on 9 December 2015).
- CIE. CIE 15: Technical Report Colorimetry, 3rd ed.; International Commission on Illumination (CIE): Vienna, Austria, 2004. [Google Scholar]
- Yetişir, H.; Sari, N. Fruit and Seed Yields of Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] Grafted onto Different Bottle Gourd (Lagenaria siceraria Molina Standl.) Rootstocks. Asian J. Res. Agric. For. 2018, 1, 1–9. [Google Scholar]
- Karaca, F.; Yetisir, H.; Solmaz, I.; Candir, E.; Kurt, S.; Sari, N.; Guler, Z. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: Plant growth, yield and quality. Turk. J. Agric. For. 2012, 36, 167–177. [Google Scholar]
- Yetisir, H.; Sari, N. Effect of different rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 2003, 43, 1269–1274. [Google Scholar] [CrossRef]
- Suárez-Hernández, A.M.; Vázquez-Angulo, J.C.; Grimaldo-Juárez, O.; Cecena-Duran, C.; González-Mendoza, D.; Bazante-Gonzalez, I.; Mendoza-Gómez, A. Production and quality of grafted watermelon in saline soil. Hortic. Bras. 2019, 37, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Cardarelli, M.; Colla, G.; Rea, E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. Hortscience 2008, 43, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Bashar, H.M.K.; Howlader, M.I.A.; Sarker, J.U.; Al-Mamun, M.H. Effect of grafting on watermelon growth and yield. Khon Kaen Agric. J. 2013, 41, 284–289. [Google Scholar]
- Yamasaki, A.; Yamashita, M.; Furuya, S. Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons as affected by rootstocks and crop load. J. Jpn. Soc. Hortic. Sci. 1994, 62, 817–826. [Google Scholar] [CrossRef]
- Alan, O.; Zdemir, N.; Nen, Y. Effect of grafting on watermelon plant growth, yield and quality. J. Agron. 2007, 6, 362–365. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Olympios, C.; Ropokis, A.; Vlachou, G.; Ntatsi, G.; Paraskevopoulos, A.; Passam, H.C. Fruit volatiles, quality, and yield of watermelon as affected by grafting. J. Agric. Sci. Technol. 2014, 16, 873–885. [Google Scholar]
- Soteriou, G.A.; Kyriacou, M.C. Rootstock-mediated effects on watermelon field performance and fruit quality characteristics. Int. J. Veg. Sci. 2015, 21, 344–362. [Google Scholar] [CrossRef]
- Fredes, A.; Roselló, S.; Beltrán, J.; Cebolla-Cornejo, J.; Pérez-de-Castro, A.; Gisbert, C.; Picó, M.B. Fruit quality assessment of watermelons grafted onto citron melon rootstock. J. Sci. Food Agric. 2017, 97, 1646–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Roupahel, Y.; Cardarelli, M.; Rea, E. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hortscience 2006, 41, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, A.; Kondylis, A.; Passam, H. Fruit yield and quality of watermelon in relation to grafting. J. Food Agric. Environ. 2007, 5, 178–179. [Google Scholar]
- Turhan, A.; Ozmen, N.; Kuscu, H.; Serbeci, M.S.; Seniz, V. Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Hortic. Environ. Biotechnol. 2012, 53, 336–341. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Kong, Q.; Cheng, F.; Niu, M.; Xie, J.; Nawaz, M.A.; Zhilong, B. Comprehensive Mineral Nutrition Analysis of Watermelon Grafted onto Two Different Rootstocks. Hortic. Plant J. 2016, 2, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Schwarz, D.; Krumbein, A.; Colla, G. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 2010, 127, 172–179. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Rouphael, Y.; Siomos, A.S.; Gerasopoulos, D. Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage. J. Sci. Food Agric. 2016, 96, 2400–2409. [Google Scholar] [CrossRef]
- García-Lozano, M.; Dutta, S.K.; Natarajan, P.; Yan, R.; Tomason, Y.R.; Lopez, C.; Katam, R.; Levi, A.; Nimmakayala, P.; Reddy, U.K. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Plant Mol. Biol. 2020, 102, 213–223. [Google Scholar] [CrossRef]
- Soteriou, G.A.; Kyriacou, M.C.; Siomos, A.S.; Gerasopoulos, D. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem. 2014, 165, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Huitrón-Ramírez, M.V.; Ricárdez-Salinas, M.; Camacho-Ferre, F. Influence of grafted watermelon plant density on yield and quality in soil infested with melon necrotic spot virus. HortScience 2009, 44, 1838–1841. [Google Scholar] [CrossRef] [Green Version]
- Yetışır, H.; Sari, N.; Yücel, S. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica 2003, 31, 163–169. [Google Scholar] [CrossRef]
- Kader, A. Fruits in the global market. In Fruit Quality and Its Biological Basis; Knee, M., Ed.; Sheffield Academic Press, CRC: Boca Raton, FL, USA, 2002; pp. 1–15. [Google Scholar]
- Soteriou, G.A.; Siomos, A.S.; Gerasopoulos, D.; Rouphael, Y.; Georgiadou, S.; Kyriacou, M.C. Biochemical and histological contributions to textural changes in watermelon fruit modulated by grafting. Food Chem. 2017, 237, 133–140. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G. Quality and postharvest performance of watermelon fruit in response to grafting on interspecific cucurbit rootstocks. J. Food Qual. 2015, 38, 21–29. [Google Scholar] [CrossRef]
- Bekhradi, F.; Kashi, A.; Delshad, M. Effect of three cucurbits rootstocks on vegetative and yield of ‘Charleston Gray’ watermelon. Int. J. Plant Prod. 2011, 5, 105–110. [Google Scholar]
- Candir, E.; Yetisir, H.; Karaca, F.; Ustun, D. Phytochemical characteristics of grafted watermelon on different bottle gourds (Lagenaria siceraria) collected from the Mediterranean region of Turkey. Turk. J. Agric. For. 2013, 37, 443–456. [Google Scholar]
Week | Tmin 1 (°C) | Tmax (°C) | RHmin (%) | RHmax (%) | P (cm) | Rs (Cal cm−2) |
---|---|---|---|---|---|---|
1 | 10.22 | 26.38 | 27.85 | 93.41 | 0.00 | 399.47 |
2 | 4.89 | 19.26 | 29.65 | 90.82 | 1.90 | 389.90 |
3 | 8.70 | 25.70 | 22.74 | 85.10 | 0.00 | 421.59 |
4 | 9.09 | 26.84 | 18.72 | 91.61 | 0.00 | 474.51 |
5 | 11.52 | 28.17 | 15.92 | 70.28 | 0.00 | 521.36 |
6 | 12.09 | 29.47 | 16.54 | 78.66 | 0.00 | 525.40 |
7 | 10.86 | 28.56 | 18.07 | 83.21 | 0.10 | 509.47 |
8 | 12.43 | 33.66 | 13.84 | 83.95 | 0.00 | 591.53 |
9 | 12.35 | 33.61 | 13.01 | 85.33 | 0.00 | 575.57 |
10 | 14.08 | 33.45 | 17.07 | 83.69 | 0.00 | 582.49 |
11 | 15.45 | 32.07 | 24.41 | 91.55 | 0.00 | 572.40 |
12 | 11.30 | 27.67 | 19.27 | 78.05 | 0.00 | 579.21 |
13 | 12.97 | 30.11 | 16.92 | 83.61 | 0.00 | 631.49 |
14 | 15.91 | 33.49 | 18.46 | 95.87 | 0.00 | 633.17 |
15 | 18.22 | 39.34 | 11.35 | 83.43 | 0.00 | 626.37 |
16 | 17.99 | 37.90 | 13.46 | 89.10 | 0.10 | 610.46 |
Groups | Accessions | Fruit Length (cm) | Fruit Bottom Circumference (cm) | Seed Length (cm) | Arithmetic Seed Diameter (cm) |
---|---|---|---|---|---|
1 | L46 and L56 | 17.05 ± 0.37 1 | 30.26 ± 0.56 | 1.23 ± 0.02 | 0.73 ± 0.01 |
2 | L48, L50 and L54 | 27.64 ± 0.42 | 63.01 ± 0.81 | 2.13 ± 0.03 | 1.11 ± 0.01 |
Variables | Treatments | Contrast (p Value) | ||||||
---|---|---|---|---|---|---|---|---|
Ungrafted | LG1 1 | LG2 | LGg | C1 2 | C2 | C3 | C4 | |
Fruit number (# m−2) | 0.18 ± 0.04 | 0.69 ± 0.09 | 0.67 ± 0.06 | 0.68 ± 0.05 | 0.0018 | 0.0016 | 0.0009 | 0.8284 |
Fruit weight (kg) | 5.14 ± 0.71 | 5.98 ± 0.25 | 6.22 ± 0.38 | 6.12 ± 0.33 | 0.1183 | 0.1409 | 0.1480 | 0.5338 |
commercial production (t ha−1) | 9.53 ± 2.98 | 40.79 ± 5.07 | 41.17 ± 3.30 | 41.00 ± 2.85 | 0.0010 | 0.0006 | 0.0004 | 0.9446 |
Variables | Treatments | Contrast (p Value) | ||||||
---|---|---|---|---|---|---|---|---|
Ungrafted | LG1 1 | LG2 | LGg | C1 2 | C2 | C3 | C4 | |
Shape index | 0.87 ± 0.01 | 0.87 ± 0.01 | 0.88 ± 0.02 | 0.88 ± 0.01 | 0.8003 | 0.7315 | 0.9169 | 0.4441 |
Pulp percentage | 76.26 ± 1.45 | 65.94 ± 0.90 | 65.62 ± 1.73 | 65.76 ± 1.08 | 0.0005 | 0.0002 | 0.0002 | 0.8479 |
Rind thickness (cm) | 0.97 ± 0.51 | 1.50 ± 0.06 | 1.50 ± 0.07 | 1.50 ± 0.05 | 0.0019 | 0.0011 | 0.0008 | 0.9567 |
External firmness (N) | 164.79 ± 21.21 | 294.61 ± 19.83 | 313.50 ± 13.16 | 305.24 ± 11.53 | 0.0007 | 0.0001 | 0.0001 | 0.3938 |
Variables | Treatments | Contrast (p Value) | ||||||
---|---|---|---|---|---|---|---|---|
Ungrafted | LG1 1 | LG2 | LGg | C1 2 | C2 | C3 | C4 | |
Pulp firmness (N) | 11.26 ± 0.71 | 15.93 ± 0.97 | 12.19 ± 1.13 | 13.82 ± 0.92 | 0.0568 | 0.6644 | 0.2445 | 0.0428 |
Luminosity (L*) | 49.29 ± 0.48 | 52.36 ± 0.96 | 49.86 ± 1.02 | 50.95 ± 0.79 | 0.0625 | 0.6916 | 0.2627 | 0.0448 |
Chroma (C*) | 25.88 ± 0.57 | 34.23 ± 0.93 | 36.09 ± 0.65 | 35.27 ± 0.59 | 0.0001 | <0.0001 | <0.0001 | 0.1199 |
Hue (°h) | 46.13 ± 1.08 | 38.84 ± 0.48 | 39.07 ± 0.63 | 38.97 ± 0.42 | <0.0001 | <0.0001 | <0.0001 | 0.8085 |
Soluble solid (°Brix) | 11.70 ± 0.44 | 11.83 ± 0.32 | 12.40 ± 0.30 | 12.15 ± 0.23 | 0.7994 | 0.1601 | 0.3086 | 0.1481 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Hernández, A.M.; Grimaldo-Juárez, O.; Ceceña-Durán, C.; Vázquez-Angulo, J.C.; Carrazco-Peña, L.D.; Avendaño-Reyes, L.; Ail-Catzim, C.E.; Basilio-Cortes, U.A.; Angulo-Castro, A. Influence of Seed and Fruit Characteristics of Lagenaria siceraria on Production and Quality of Grafted Watermelon. Horticulturae 2022, 8, 242. https://doi.org/10.3390/horticulturae8030242
Suárez-Hernández AM, Grimaldo-Juárez O, Ceceña-Durán C, Vázquez-Angulo JC, Carrazco-Peña LD, Avendaño-Reyes L, Ail-Catzim CE, Basilio-Cortes UA, Angulo-Castro A. Influence of Seed and Fruit Characteristics of Lagenaria siceraria on Production and Quality of Grafted Watermelon. Horticulturae. 2022; 8(3):242. https://doi.org/10.3390/horticulturae8030242
Chicago/Turabian StyleSuárez-Hernández, Angel Manuel, Onecimo Grimaldo-Juárez, Carlos Ceceña-Durán, Juan Carlos Vázquez-Angulo, Laura Dennisse Carrazco-Peña, Leonel Avendaño-Reyes, Carlos Enrique Ail-Catzim, Ulin Antobelli Basilio-Cortes, and Azareel Angulo-Castro. 2022. "Influence of Seed and Fruit Characteristics of Lagenaria siceraria on Production and Quality of Grafted Watermelon" Horticulturae 8, no. 3: 242. https://doi.org/10.3390/horticulturae8030242
APA StyleSuárez-Hernández, A. M., Grimaldo-Juárez, O., Ceceña-Durán, C., Vázquez-Angulo, J. C., Carrazco-Peña, L. D., Avendaño-Reyes, L., Ail-Catzim, C. E., Basilio-Cortes, U. A., & Angulo-Castro, A. (2022). Influence of Seed and Fruit Characteristics of Lagenaria siceraria on Production and Quality of Grafted Watermelon. Horticulturae, 8(3), 242. https://doi.org/10.3390/horticulturae8030242