Plant Cover Stimulates Quicker Dry Matter Accumulation in “Early” Potato Cultivars without Affecting Nutritional or Sensory Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments and Experimental Design
2.2. Soil Properties and Agricultural Management Practice
2.3. Tuber Mineral Composition
2.4. Soluble Carbohydrates and Starch Analysis
2.5. Vitamin C
2.6. Sensory Evaluation
2.7. Data Analysis
3. Results
3.1. Yield and Dry Matter
3.2. Carbohydrates
3.3. Vitamin C
3.4. Protein Content
3.5. Mineral Content
3.6. Sensory Analysis of Oil-Fried “Early” Potatoes
3.7. PLS Analysis of Obtained Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. Available online: https://www.fao.org/faostat/en/#data (accessed on 22 February 2022).
- King, J.C.; Slavin, J.L. White Potatoes, Human Health, and Dietary Guidance. Adv. Nutr. Int. Rev. J. 2013, 4, 393S–401S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreutzmann, S.; Bassompierre, M.; Thybo, A.K.; Buch, L.; Engelsen, S.B. Exploratory Study of Potato Cultivar Differences in Sensory and Hedonistic Applicability Tests. Potato Res. 2011, 54, 13–28. [Google Scholar] [CrossRef]
- UNECE. Standard FFV-52 Concerning the Marketing and Commercial Quality Control of Early and Ware Potatoes; UNECE: Geneva, Switzerland, 2017. [Google Scholar]
- Buono, V.; Paradiso, A.; Serio, F.; Gonnella, M.; De Gara, L.; Santamaria, P. Tuber Quality and Nutritional Components of “Early” Potato Subjected to Chemical Haulm Desiccation. J. Food Compos. Anal. 2009, 22, 556–562. [Google Scholar] [CrossRef]
- Wijesinha-Bettoni, R.; Mouillé, B. The Contribution of Potatoes to Global Food Security, Nutrition and Healthy Diets. Am. J. Potato Res. 2019, 96, 139–149. [Google Scholar] [CrossRef]
- Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, Bioactive Non-Nutrients and Anti-Nutrients in Potatoes. J. Food Compos. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Navarre, D.A.; Shakya, R.; Hellmann, H. Chapter 6—Vitamins, Phytonutrients, and Minerals in Potato. In Advances in Potato Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2016; pp. 117–166. ISBN 9780128000021. [Google Scholar]
- FAO. International Year of the Potato—2008; FAO: Rome, Italy, 2008. [Google Scholar]
- Jansky, S.H. Potato Flavor. Am. J. Potato Res. 2010, 87, 209–217. [Google Scholar] [CrossRef]
- Caracciolo, F.; Cembalo, L. Traceability and Demand Sensitiveness: Evidences From Italian Fresh Potatoes Consumption. Int. J. Food Syst. Dyn. 2010, 1, 352–365. [Google Scholar] [CrossRef]
- Kim, Y.-U.; Seo, B.-S.; Choi, D.-H.; Ban, H.-Y.; Lee, B.-W. Impact of High Temperatures on the Marketable Tuber Yield and Related Traits of Potato. Eur. J. Agron. 2017, 89, 46–52. [Google Scholar] [CrossRef]
- Ban, D.; Vrtačić, M.; Goreta Ban, S.; Dumičić, G.; Oplanić, M.; Horvat, J.; Žnidarčič, D. Effect of Variety, Direct Covering and Date of Harvest on the Early Potato Growth and Yield. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2011; Pospišil, M., Ed.; University of Zagreb, Faculty of Agriculture: Zagreb, Croatia, 2011; pp. 496–500. [Google Scholar]
- Stark, J.C.; Novy, R.G.; Whitworth, J.L.; Knowles, N.R.; Pavek, M.J.; Thornton, M.; Spear, R.; Brown, C.R.; Charlton, B.A.; Sathuvalli, V.; et al. Mountain Gem Russet: A Potato Variety with High Early and Full Season Yield Potential and Excellent Fresh Market and Early Processing Characteristics. Am. J. Potato Res. 2016, 93, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Hamouz, K.; Lachman, J.; Dvořák, P.; Trnková, E. Influence of Non-Woven Fleece on the Yield Formation of Early Potatoes. Plant Soil Environ. 2011, 52, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Hirai, G. The Effect of Non-Woven Fabric Floating Row Covers on the Emergence, Growth, and Bulb Yield of Direct-Seeded Onions (Allium Cepa L.) in a Subarctic Area. Hortic. J. 2019, 88, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, R.; Srednicka-Tober, D.; Hallmann, E.; Kopczynska, K.; Zarzynska, K. The Impact of Organic vs. Conventional Agricultural Practices on Selected Quality Features of Eight Potato Cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, M.; Corrigan, V. Chapter 12—Potato Flavor. In Advances in Potato Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2016; pp. 339–368. ISBN 9780128000021. [Google Scholar]
- Pedreschi, F.; Mariotti, M.S.; Cortés, P. Chapter 15—Fried and Dehydrated Potato Products. In Advances in Potato Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2016; pp. 459–474. ISBN 9780128000021. [Google Scholar]
- Pedreschi, F. Frying of Potatoes: Physical, Chemical, and Microstructural Changes. Dry. Technol. 2012, 30, 707–725. [Google Scholar] [CrossRef]
- Štampar, F.; Usenik, V.; Dolenc-Šturm, K. Evaluating of Some Quality Parameters of Different Apricot Cultivars Using Hplc Method. Acta Aliment. 1999, 28, 297–309. [Google Scholar] [CrossRef]
- Vasanthan, T.; Bergthaller, W.; Driedger, D.; Yeung, J.; Sporns, P. Starch from Alberta Potatoes: Wet-Isolation and Some Physicochemical Properties. Food Res. Int. 1999, 32, 355–365. [Google Scholar] [CrossRef]
- Tausz, M.; Wonisch, A.; Grill, D.; Morales, D.; Soledad Jiménez, M. Measuring Antioxidants in Tree Species in the Natural Environment: From Sampling to Data Evaluation. J. Exp. Bot. 2003, 54, 1505–1510. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The Influence of Growing Environment on the Antioxidant and Mineral Content of “Early” Crop Potato. J. Food Compos. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Kooman, P.L.; Haverkort, A.J. Modelling Development and Growth of the Potato Crop Influenced by Temperature and Daylength: LINTUL-POTATO. In Potato Ecology and Modelling of Crops under Conditions Limiting Growth; Springer: Heidelberg, Germany, 1995; pp. 41–59. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The Effect on Tuber Quality of an Organic versus a Conventional Cultivation System in the Early Crop Potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Chung, H.J.; Li, X.Q.; Kalinga, D.; Lim, S.T.; Yada, R.; Liu, Q. Physicochemical Properties of Dry Matter and Isolated Starch from Potatoes Grown in Different Locations in Canada. Food Res. Int. 2014, 57, 89–94. [Google Scholar] [CrossRef]
- Simkova, D.; Lachman, J.; Hamouz, K.; Vokal, B. Effect of Cultivar, Location and Year on Total Starch, Amylose, Phosphorus Content and Starch Grain Size of High Starch Potato Cultivars for Food and Industrial Processing. Food Chem. 2013, 141, 3872–3880. [Google Scholar] [CrossRef]
- Wekesa, M.N.; Okoth, M.W.; Abong’, G.O.; Muthoni, J.; Kabira, J.N. Effect of Soil Characteristics on Potato Tuber Minerals Composition of Selected Kenyan Varieties. J. Agric. Sci. 2014, 6, 163. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The Mineral Profile in Organically and Conventionally Grown “Early” Crop Potato Tubers. Sci. Hortic. 2014, 167, 169–173. [Google Scholar] [CrossRef]
- Tamasi, G.; Cambi, M.; Gaggelli, N.; Autino, A.; Cresti, M.; Cini, R. The Content of Selected Minerals and Vitamin C for Potatoes (Solanum Tuberosum L.) from the High Tiber Valley Area, Southeast Tuscany. J. Food Compos. Anal. 2015, 41, 157–164. [Google Scholar] [CrossRef]
- Jabłońska-Ceglarek, R.; Wadas, W. Effect of Nonwoven Polypropylene Covers on Early Tuber Yield of Potato Crops. Plant Soil Environ. 2005, 51, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.S.; Jeong, H.J.; Cho, J.H.; Park, Y.E.; Hong, S.Y.; Won, H.S.; Kim, H.J. Vitamin C Content of Potato Clones from Korean Breeding Lines and Compositional Changes during Growth and after Storage. Hortic. Environ. Biotechnol. 2013, 54, 70–75. [Google Scholar] [CrossRef]
- Njoku, P.C.; Ayuk, A.A.; Okoye, C.V. Temperature Effects on Vitamin C Content in Citrus Fruits. Pak. J. Nutr. 2011, 10, 1168–1169. [Google Scholar] [CrossRef]
- Cantore, V.; Pace, B.; Calabrese, N.; Boari, F.; Schiattone, M.I. Effects of Non-Woven Fabric and Fertilizer on Air and Soil Temperature, Leaf Gas Exchange, Yield and Quality of Wild Rocket Grown in Organic Farming. Acta Hortic. 2013, 1005, 479–486. [Google Scholar] [CrossRef]
- Wadas, W.; Kosterna, E. Effect of Perforated Foil and Polypropylene Fibre Covers on Development of Early Potato Cultivars. Plant Soil Environ. 2007, 53, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Michalik, L. The Effect of Non-Woven PP Fabric Covers on the Yielding and the Fruit Quality of Field-Grown Sweet Peppers. Acta Sci. Pol.-Hortorum Cultus 2010, 9, 25–32. [Google Scholar]
- Luthra, S.; Gupta, V.; Kaundal, B.; Tiwari, J. Genetic Analysis of Tuber Yield, Processing and Nutritional Traits in Potato (Solanum Tuberosum). Indian J. Agric. Sci. 2018, 88, 1214–1221. [Google Scholar]
- Horvat, J.; Ban, D.; Goreta Ban, S.; Oplanić, M.; Žnidarčič, D. Fertigation and Mulching Effect Bioactive and Nutritive Compounds of Tomato Fruit (Lycopersicon Esculentum Mill.). In Proceedings of the 45th Croatian & 5th International Symposium on Agriculture, Opatija, Croatia, 15–19 February 2010; Marić, S., Lončarić, Z., Eds.; Poljoprivredi fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku: Opatija, Croatia, 2010; pp. 634–638. [Google Scholar]
- Caliman, F.; da Silva, D.; Stringheta, P.; Fontes, P.; Moreira, G.; Mattedi, A.; Naher, L.; Ismail, A. Relation between Plant Yield and Fruit Quality Characteristics of Tomato. Biosci. J. 2008, 24, 46–52. [Google Scholar]
- Wadas, W. Using Non-Woven Polypropylene Covers in Potato Production: A Review. J. Cent. Eur. Agric. 2016, 17, 734–748. [Google Scholar] [CrossRef] [Green Version]
- Wadas, W.; Jabloriska-Ceglarek, R.; Kurowska, A. Effect of Using Covers in Early Crop Potato Culture on the Content of Phosphprus and Magnesium in Tubers. J. Elem. 2008, 13, 275–280. [Google Scholar]
- USDA. National Nutrient Database for Standard Reference; USDA: Washington, DC, USA, 2018. [Google Scholar]
- Agblor, A.; Scanlon, M.G. Effect of Storage Period, Cultivar and Two Growing Locations on the Processing Quality of French Fried Potatoes. Am. J. Potato Res. 2002, 79, 167–172. [Google Scholar] [CrossRef]
Nutritional Parameters | Location | Cover † | Cultivar | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Split | Pula | p-Value | Yes | No | p-Value | Adora | Berber | Jerla | Red Scarlet | p-Value | |
Yield (t/ha) | 30.0 ± 7.8 | 33.1 ± 7.2 | ˂0.001 * | 15.3 ± 8.5 | 16.1 ± 7.3 | 0.134 | 29.6 ± 4.4 ab | 34.5 ± 8.1 b | 28.0 ± 5.0 a | 34.0 ± 9.8 b | ˂0.001 * |
Dry matter (%) | 20.9 ± 1.1 | 20.5 ± 1.2 | 0.281 | 21.1 ± 1.2 | 20.3 ± 1.0 | 0.102 | 20.7 ± 1.0 ab | 21.5 ± 1.1 b | 20.5 ± 1.4 ab | 20.1 ± 0.6 a | 0.003 * |
Starch (%) | 13.8 ± 1.0 | 13.3 ± 1.2 | 0.286 | 14.0 ± 1.1 | 13.2 ± 1.0 | 0.121 | 13.6 ± 1.0 ab | 14.3 ± 1.1 b | 13.4 ± 1.4 ab | 13.0 ± 0.6 a | 0.003 * |
Sucrose (g/100 g DW) | 5.3 ± 1.2 | 5.0 ± 1.6 | 0.082 | 5.9 ± 1.4 | 4.5 ± 1.2 | 0.001 * | 4.5 ± 1.4 a | 6.0 ± 1.4 b | 4.3 ± 0.9 a | 6.0 ± 1.1 b | ˂0.001 * |
Glucose (g/100 g DW) | 0.93 ± 0.13 | 0.91 ± 0.12 | 0.672 | 0.94 ± 0.15 | 0.89 ± 0.09 | 0.393 | 0.94 ± 0.10 ab | 0.97 ± 0.11 b | 0.83 ± 0.10 a | 0.93 ± 0.15 ab | 0.016 * |
Fructose (g/100 g DW) | 0.82 ± 0.07 | 0.83 ± 0.11 | 0.815 | 0.83 ± 0.08 | 0.82 ± 0.10 | 0.788 | 0.84 ± 0.10 | 0.81 ± 0.10 | 0.82 ± 0.08 | 0.82 ± 0.10 | 0.921 |
Vitamin C (mmol/kg DW) | 7.4 ± 1.6 | 7.5 ± 2.0 | 0.958 | 6.8 ± 1.5 | 8.1 ± 1.8 | 0.063 | 9.0 ± 1.4 c | 7.0 ± 1.9 ab | 7.7 ± 1.6 bc | 6.1 ± 0.8 a | ˂0.001 * |
Protein content (g/100 g DW) | 7.9 ± 2.1 | 7.5 ± 1.4 | 0.348 | 7.8 ± 1.9 | 7.6 ± 1.7 | 0.558 | 7.2 ± 2.0 | 7.2 ± 1.0 | 8.1 ± 1.1 | 8.4 ± 2.5 | 0.244 |
Ca (mg/kg DW) | 858 ± 405 | 566 ± 229 | 0.014 * | 696 ± 359 | 728 ± 362 | 0.672 | 842 ± 443 b | 773 ± 422 b | 750 ± 209 b | 485 ± 215 a | ˂0.001 * |
Mg (mg/kg DW) | 808 ± 348 | 771 ± 175 | 0.048 * | 778 ± 280 | 801 ± 272 | 0.146 | 814 ± 257 b | 855 ± 168 b | 921 ± 98 b | 567 ± 370 a | ˂0.001 * |
K (g/kg DW) | 19.9 ± 2.4 | 16.9 ± 2.2 | 0.037 * | 18.6 ± 3.3 | 18.2 ± 2.1 | 0.700 | 17.2 ± 4.0 a | 17.6 ± 1.8 ab | 19.1 ± 1.6 ab | 19.7 ± 2.1 b | 0.004 * |
P (g/kg DW) | 2.4 ± 0.3 | 1.8 ± 0.7 | 0.013 * | 2.1 ± 0.7 | 2.1 ± 0.5 | 0.876 | 1.6 ± 0.9 a | 2.0 ± 0.4 ab | 2.3 ± 0.4 b | 2.5 ± 0.4 c | ˂0.001 * |
Nutritional Parameters | Location | Cover † | Cultivar | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Split | Pula | p-Value | Yes | No | p-Value | Berber | Jerla | Red Scarlet | Vivaldi | p-Value | |
Yield (t/ha) | 11.4 ± 4.4 | 20.1 ± 7.6 | 0.040 * | 15.3 ± 8.5 | 16.1 ± 7.3 | 0.524 | 19.3 ± 8.5 b | 12.9 ± 4.5 a | 17.8 ± 6.6 b | 12.9 ± 9.4 a | ˂0.001 * |
Dry matter (%) | 21.0 ± 0.7 | 20.7 ± 0.7 | 0.032 * | 21.4 ± 0.4 | 20.3 ± 0.5 | ˂0.001 * | 21.1 ± 0.5 b | 20.8 ± 0.7 b | 20.4 ± 0.6 a | 21.0 ± 0.8 b | ˂0.001 * |
Starch (%) | 13.8 ± 0.6 | 13.6 ± 0.6 | 0.092 | 14.1 ± 0.4 | 13.2 ± 0.5 | 0.001 * | 14.0 ± 0.6 b | 13.6 ± 0.6 ab | 13.2 ± 0.5 a | 13.9 ± 0.7 b | ˂0.001 * |
Sucrose (g/100 g DW) | 5.7 ± 1.5 | 6.1 ± 1.2 | 0.217 | 6.5 ± 1.5 | 5.3 ± 0.9 | 0.011 * | 7.1 ± 1.3 b | 5.8 ± 1.2 ab | 5.8 ± 1.0 ab | 5.0 ± 1.1 a | ˂0.001 * |
Glucose (g/100 g DW) | 0.95 ± 0.10 | 0.90 ± 0.08 | ˂0.001 * | 0.96 ± 0.07 | 0.88 ± 0.10 | ˂0.001 * | 0.88 ± 0.11 a | 0.93 ± 0.09 ab | 0.99 ± 0.07 b | 0.89 ± 0.08 a | 0.008 |
Fructose (g/100 g DW) | 0.88 ± 0.13 | 0.90 ± 0.07 | 0.220 | 0.93 ± 0.09 | 0.85 ± 0.10 | 0.003 * | 0.86 ± 0.11 a | 0.87 ± 0.09 ab | 0.96 ± 0.10 b | 0.88 ± 0.08 ab | 0.044 |
Vitamin C (mmol/kg DW) | 7.0 ± 1.6 | 7.5 ± 1.7 | 0.202 | 6.5 ± 1.3 | 8.1 ± 1.5 | 0.009 * | 7.7 ± 2.0 b | 7.4 ± 1.5 ab | 6.2 ± 1.1 a | 7.8 ± 1.6 b | 0.044 * |
Protein content (g/100 g DW) | 5.9 ± 1.2 | 8.0 ± 1.9 | 0.007 * | 7.1 ± 2.1 | 6.8 ± 1.6 | 0.561 | 6.0 ± 1.7 a | 8.0 ± 2.5 b | 7.3 ± 1.0 ab | 6.4 ± 1.4 ab | 0.009 * |
Ca (mg/kg DW) | 1021 ± 588 | 952 ± 681 | 0.783 | 1100 ± 746 | 873 ± 479 | 0.383 | 1035 ± 784 | 1202 ± 727 | 884 ± 325 | 825 ± 596 | 0.282 |
Mg (mg/kg DW) | 838 ± 125 | 955 ± 136 | 0.041 * | 907 ± 143 | 886 ± 144 | 0.629 | 877 ± 116 a | 888 ± 180 ab | 1012 ± 124 b | 810 ± 44 a | 0.002 * |
K (g/kg DW) | 12.4 ± 4.9 | 17.0 ± 2.8 | 0.046 * | 16.0 ± 3.5 | 13.4 ± 5.2 | 0.180 | 14.7 ± 3.9 a | 13.3 ± 5.0 a | 16.6 ± 5.3 b | 14.0 ± 3.8 a | 0.017 * |
P (g/kg DW) | 2.3 ± 0.4 | 2.7 ± 0.4 | 0.018 * | 2.6 ± 0.4 | 2.4 ± 0.5 | 0.102 | 2.3 ± 0.4 a | 2.6 ± 0.5 ab | 2.7 ± 0.4 b | 2.4 ± 0.4 ab | 0.021 * |
Year | Interaction | Nutritional Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca (mg/kg DW) | Mg (mg/kg DW) | K (g/100 g DW) | P (g/100 g DW) | Glucose (g/100 g DW) | Fructose (g/100 g DW) | Sucrose (g/100 g DW) | Vitamin C (mmol/kg DW) | Dry Matter (%) | Starch (%) | Protein Content (g/100 g DW) | Yield (t/ha) | ||
First | Location × Cover | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Cover × Cultivar | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | |
Location × Cultivar | *** | *** | * | *** | ns | ns | *** | * | ns | ns | ns | ns | |
Location × Cover × Cultivar | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Second | Location × Cover | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Cover × Cultivar | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Location × Cultivar | * | ns | ns | ns | ns | ns | ns | ns | * | * | ns | ns | |
Location × Cover × Cultivar | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Year | Location | Cultivar | Ca (mg/kg DW) | Mg (mg/kg DW) | K (g/kg DW) | P (g/kg DW) | Sucrose (g/100 g DW) | Vitamin C (mmol/kg DW) | Dry matter (%) | Starch (%) |
---|---|---|---|---|---|---|---|---|---|---|
First | Split | Adora | 1184 ± 258 c | 1028 ± 70 d | 20.0 ± 3.5 bc | 2.3 ± 0.2 bc | 5.6 ± 0.8 bc | 8.5 ± 1.5 bc | 21.1 ± 0.5 | 13.9 ± 0.4 |
Berber | 1132 ± 205 c | 1000 ± 57 d | 18.3 ± 2.2 bc | 2.3 ± 0.2 bc | 5.6 ± 0.7 bc | 6.8 ± 1.3 ab | 21.6 ± 1.5 | 14.5 ± 1.4 | ||
Jerla | 801 ± 219 bc | 977 ± 80 d | 20.3 ± 0.9 bc | 2.5 ± 0.4 c | 4.0 ± 1.0 a | 8.5 ± 1.2 bc | 20.7 ± 1.3 | 13.6 ± 1.2 | ||
Red Scarlet | 315 ± 145 a | 226 ± 11 a | 20.8 ± 2.1 c | 2.5 ± 0.5 c | 6.2 ± 1.3 c | 6.0 ± 0.5 a | 20.4 ± 0.5 | 13.3 ± 0.4 | ||
Pula | Adora | 499 ± 290 ab | 601 ± 174 b | 14.3 ± 1.9 a | 0.8 ± 0.7 a | 3.3 ± 0.7 a | 9.5 ± 1.3 c | 20.4 ± 1.3 | 13.3 ± 1.2 | |
Berber | 413 ± 200 ab | 710 ± 93 bc | 16.9 ± 0.9 ab | 1.7 ± 0.2 b | 6.4 ± 1.9 c | 7.1 ± 2.5 ab | 21.4 ± 0.5 | 14.1 ± 0.7 | ||
Jerla | 698 ± 203 ab | 866 ± 85 cd | 17.9 ± 1.1 abc | 2.1 ± 0.1 bc | 4.6 ± 0.7 ab | 6.9 ± 1.7 ab | 20.3 ± 1.6 | 13.2 ± 1.6 | ||
Red Scarlet | 654 ± 108 ab | 908 ± 150 d | 18.6 ± 1.6 bc | 2.4 ± 0.2 c | 5.8 ± 1.0 bc | 6.3 ± 1.0 ab | 19.8 ± 0.6 | 12.7 ± 0.6 | ||
Second | Split | Berber | 651 ± 350 a | 799 ± 67 | 12.6 ± 4.4 | 2.0 ± 0.4 | 7.0 ± 1.7 | 6.9 ± 1.8 | 21.2 ± 0.6 cd | 14.1 ± 0.6 cd |
Jerla | 1442 ± 866 a | 770 ± 89 | 10.7 ± 5.3 | 2.4 ± 0.3 | 6.1 ± 0.9 | 7.8 ± 1.3 | 20.8 ± 0.7 abcd | 13.6 ± 0.6 abcd | ||
Red Scarlet | 1060 ± 353 a | 981 ± 154 | 13.6 ± 6.2 | 2.4 ± 0.3 | 5.5 ± 1.0 | 6.1 ± 1.2 | 20.5 ± 0.5 ab | 13.3 ± 0.4 ab | ||
Vivaldi | 928 ± 450 a | 801 ± 52 | 12.6 ± 4.3 | 2.4 ± 0.4 | 4.3 ± 0.6 | 7.3 ± 1.7 | 21.5 ± 0.7 d | 14.2 ± 0.6 d | ||
Pula | Berber | 1419 ± 936 a | 955 ± 103 | 16.9 ± 1.5 | 2.5 ± 0.3 | 7.1 ± 0.9 | 8.6 ± 1.8 | 21.1 ± 0.5 bcd | 13.9 ± 0.7 bcd | |
Jerla | 961 ± 523 a | 1005 ± 173 | 16.0 ± 3.2 | 2.8 ± 0.6 | 5.6 ± 1.4 | 6.9 ± 1.7 | 20.8 ± 0.7 abc | 13.7 ± 0.6 abcd | ||
Red Scarlet | 707 ± 183 a | 1043 ± 88 | 19.6 ± 1.4 | 3.0 ± 0.3 | 6.1 ± 1.0 | 6.3 ± 1.0 | 20.3 ± 0.6 a | 13.2 ± 0.7 a | ||
Vivaldi | 722 ± 743 a | 818 ± 36 | 15.5 ± 3.0 | 2.4 ± 0.4 | 5.6 ± 1.2 | 8.3 ± 1.5 | 20.6 ± 0.8 abc | 13.5 ± 0.6 abc |
Sensory Characteristics | Location | Cover † | Cultivar | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Split | Pula | p-Value | Yes | No | p-Value | Adora | Berber | Jerla | Red Scarlet | p-Value | |
Overall appearance | 3.8 ± 0.8 | 3.3 ± 0.9 | ˂0.001 * | 3.5 ± 0.9 | 3.6 ± 0.9 | 0.496 | 3.4 ± 0.9 a | 3.8 ± 1.0 b | 3.5 ± 0.9 ab | 3.6 ± 0.9 ab | 0.050 * |
Odor intensity | 3.4 ± 0.8 | 3.1 ± 0.9 | 0.047 * | 3.2 ± 0.8 | 3.3 ± 0.9 | 0.458 | 3.1 ± 1.0 | 3.3 ± 0.9 | 3.3 ± 0.7 | 3.2 ± 0.8 | 0.468 |
Overall taste | 3.5 ± 0.9 | 3.0 ± 0.9 | 0.003 * | 3.2 ± 0.9 | 3.3 ± 1.0 | 0.086 | 3.1 ± 1.0 a | 3.6 ± 0.9 b | 3.1 ± 0.8 a | 3.3 ± 0.8 ab | 0.003 * |
Crispness | 3.3 ± 0.9 | 2.8 ± 1.0 | ˂0.001 * | 3.1 ± 1.0 | 3.0 ± 1.0 | 0.938 | 3.1 ± 1.1 ab | 3.4 ± 1.0 b | 3.0 ± 0.8 ab | 2.7 ± 0.9 a | 0.002 * |
Texture | 3.7 ± 0.8 | 3.0 ± 0.9 | ˂0.001 * | 3.4 ± 0.8 | 3.4 ± 1.0 | 0.877 | 3.4 ± 1.0 | 3.6 ± 1.0 | 3.3 ± 0.8 | 3.2 ± 0.8 | 0.057 |
Overall impression | 6.4 ± 1.6 | 5.3 ± 1.6 | ˂0.001 * | 5.8 ± 1.6 | 5.9 ± 1.8 | 0.059 | 5.7 ± 1.8 | 6.3 ± 1.9 | 5.7 ± 1.6 | 5.8 ± 1.5 | 0.793 |
Sensory Characteristics | Location | Cover † | Cultivar | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Split | Pula | p-Value | Yes | No | p-Value | Berber | Jerla | Red Scarlet | Vivaldi | p-Value | |
Overall appearance | 3.5 ± 0.9 | 3.6 ± 0.8 | 0.293 | 3.5 ± 0.9 | 3.6 ± 0.8 | 0.451 | 3.6 ± 0.8 | 3.7 ± 0.8 | 3.7 ± 0.9 | 3.3 ± 0.9 | 0.080 |
Odor intensity | 3.2 ± 0.8 | 3.2 ± 0.8 | 0.779 | 3.1 ± 0.9 | 3.2 ± 0.8 | 0.352 | 3.1 ± 0.8 | 3.3 ± 0.8 | 3.2 ± 0.8 | 3.2 ± 0.9 | 0.461 |
Overall taste | 3.3 ± 0.9 | 3.2 ± 0.9 | 0.663 | 3.2 ± 0.9 | 3.3 ± 0.9 | 0.220 | 3.3 ± 0.9 | 3.3 ± 0.8 | 3.4 ± 0.9 | 3.0 ± 0.8 | 0.161 |
Crispness | 3.2 ± 0.9 | 3.2 ± 0.9 | 0.937 | 3.2 ± 0.9 | 3.3 ± 1.0 | 0.212 | 3.6 ± 0.8 b | 3.1 ± 0.9 a | 3.3 ± 0.9 ab | 2.9 ± 0.9 a | ˂0.001 * |
Texture | 3.4 ± 0.9 | 3.4 ± 0.9 | 0.920 | 3.4 ± 0.8 | 3.5 ± 0.9 | 0.256 | 3.6 ± 0.8 | 3.4 ± 0.9 | 3.5 ± 0.9 | 3.3 ± 0.8 | 0.392 |
Overall impression | 5.5 ± 1.9 | 5.5 ± 1.7 | 0.683 | 5.3 ± 1.8 | 5.7 ± 1.7 | 0.083 | 5.8 ± 1.7 b | 5.6 ± 1.7 ab | 5.8 ± 1.7 b | 4.8 ± 1.8 a | 0.011 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Major, N.; Goreta Ban, S.; Perković, J.; Žnidarčič, D.; Peršurić, A.S.I.; Oplanić, M.; Dumičić, G.; Urlić, B.; Ban, D. Plant Cover Stimulates Quicker Dry Matter Accumulation in “Early” Potato Cultivars without Affecting Nutritional or Sensory Quality. Horticulturae 2022, 8, 364. https://doi.org/10.3390/horticulturae8050364
Major N, Goreta Ban S, Perković J, Žnidarčič D, Peršurić ASI, Oplanić M, Dumičić G, Urlić B, Ban D. Plant Cover Stimulates Quicker Dry Matter Accumulation in “Early” Potato Cultivars without Affecting Nutritional or Sensory Quality. Horticulturae. 2022; 8(5):364. https://doi.org/10.3390/horticulturae8050364
Chicago/Turabian StyleMajor, Nikola, Smiljana Goreta Ban, Josipa Perković, Dragan Žnidarčič, Anita Silvana Ilak Peršurić, Milan Oplanić, Gvozden Dumičić, Branimir Urlić, and Dean Ban. 2022. "Plant Cover Stimulates Quicker Dry Matter Accumulation in “Early” Potato Cultivars without Affecting Nutritional or Sensory Quality" Horticulturae 8, no. 5: 364. https://doi.org/10.3390/horticulturae8050364
APA StyleMajor, N., Goreta Ban, S., Perković, J., Žnidarčič, D., Peršurić, A. S. I., Oplanić, M., Dumičić, G., Urlić, B., & Ban, D. (2022). Plant Cover Stimulates Quicker Dry Matter Accumulation in “Early” Potato Cultivars without Affecting Nutritional or Sensory Quality. Horticulturae, 8(5), 364. https://doi.org/10.3390/horticulturae8050364