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Abstract: Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants
and has been the subject of intense fundamental research that has a pronounced practical value.
The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin,
gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence dif-
ferent stages of plant development and growth. Here, we mainly focus on the information about
the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male
gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including
synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the
coordination of successive events in the developing anther, including the TAP development and cell
death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both
ET and CK take part in the regulation of pollen–pistil interaction. ET signaling accompanies adhesion,
hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues.
Thus, ET production may be implicated in the pollination signaling between organs accumulated in
the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest
that ET and CK signaling are involved in S-RNase-based SI.

Keywords: male gametophyte development; pollen–pistil interaction; self-incompatibility (SI); SI-induced
programmed cell death (PCD); ethylene (ET); cytokinin (CK)

1. Introduction

An underlying mechanism of male gametophyte interaction with sporophyte-derived
tissues is one of the current topics in developmental biology. The cell-to-cell interplay in
the pollen–pistil system largely determines the possibility of mutual gamete assimilation
under compatible pollination or its impossibility under a genetically determined barrier
to self-fertilization, which has both theoretical (the cell-to-cell interactions as a general
biological problem) and practical significance (the crop yield and quality). Interspecific
incompatibility is closely related to the applied problems of plant distant hybridization as
well as central evolutionary botany problems, such as the origin of species [1,2]. Pollen–
pistil interaction begins with the entry and germination of pollen grains (PGs) in the stigma
and subsequent pollen tube (PTs) growth in the transmitting tract (intercellular space of
transmitting tissues or open style channel) [1,3]. This process is completed by the fusion of
male and female gametes in the ovary [1–3]. Many interactions are involved in this complex
process, such as cellular recognition, extracellular and intracellular signaling, and other yet
unknown factors. In the last 20 years, significant progress has been made in underlying the
key mechanisms involved in the regulation of PTs growth, including molecular signaling
in the pollen–pistil interaction, as well as their physiological responses [1–11].
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Sexual reproduction of angiosperms is a highly selective process. Maternal tissues
of pistil are able to distinguish self and same-species non-self PGs. This selectivity is
accompanied by an enormous diversity in the cell surfaces of male and female reproductive
structures. The pistil is well organized not only for PGs acceptance and PTs growth but also
has mechanisms that blocked their growth at different stages: hydration and germination
on the stigma surface, growth inhibition in the stigma, style, or ovary [12–14].

Firstly, the role of phytohormones in the process of fertilization in plants was sug-
gested by Barendse and Linskens (1970), who found the presence of indole-3-acetic acid
(IAA) and gibberellic acid (GA3) in the pollen of Petunia hybrida L. and Lilium sp. [15]. Later,
in order to study the phytohormonal regulation of male gametophyte growth, Sondheimer
and Linskens (1974) treated in vitro germinated pollen of P. hybrida L. with exogenous
phytohormones (IAA, GA3, abscisic acid (ABA) and zeatin). IAA, GA3, and zeatin treat-
ments at 10−7–10−4 M suppressed pollen germination, whereas ABA stimulated pollen
growth. The authors suggested that phytohormones may be involved in the regulation
of pollen maturation, germination, and growth of PTs along with the transmitting tissues
of style, as well as fertilization and post-fertilization [16]. To date, the coordination at
cellular, tissue, organ, and organismal levels, as well as different physiological and mor-
phological responses by phytohormones has been clearly established [17,18]. There are
much data on the modulation in the transcription of various genes and translation by
phytohormones in plants [19]. However, the initial stages of hormonal signal transduction
pathways associated with perception and transmission to gene responses are much less
known [20–23].

Generally, despite advances in the underlying hormonal regulation in reproduction
and development processes, their regulatory role in individual stages of plant fertilization
has been poorly understood. Therefore, the purpose of this review is the least studied
hormonal aspect of intercellular interactions, which includes the possible hormone partici-
pation as a trigger for the pollination and control of male gametophyte development in the
sporophyte pistil tissues, as well as the progamic phase of fertilization.

2. Phytohormones in Tapetum (TAP) and Pollen Wall Development Programs

The male gametophyte development in flowering plants is a complex biological
phenomenon comprising a set of events, such as cell division, differentiation, and cell death.
It is totally dependent on the sporophytic tissues of the anther, where PG are formed and
maturate (Figure 1) [24–27]. Microsporocytes develop in the anther loculi, which consist of
four cell layers: TAP, middle layer, endothecium, and epidermis [28–30]

Normal stamen formation is essential for male gametophyte development. PGs (male
gametophytes) are formed as a result of the meiotic division of microsporocytes with the
tetrad formation. Each microspore forms a PG covered with dense ectexine, endexine,
and inner intine (Figure 1C). The microspore divides asymmetrically to form a larger
vegetative cell and a smaller generative cell by mitotic division. When the pollen has
matured, the anthers open to release the pollen [31]. Primary parietal cells of a young
pollen sac undergo a series of further periclinal divisions to form endothelial cells and
secondary parietal cells; then the secondary parietal cells divide to form the middle cell
layer and TAP (Figure 1B) [32–35].

IAA plays a decisive role in the initiation of stamen development; the auxin flow also
enhances the independent regulation of stamen filament elongation [36]. The development
and function of stamens are also modulated by the GA and JA phytohormones [37,38].

ABA and JA play a crucial role in the coordination of pollen maturation as well as
the correct timing of pollen release [36,39,40]. JA mainly controls the late stages of anther
development [41]. (Figure 1B).
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Figure 1. Scheme of microsporogenesis and anther development and the role of phytohormones at 
different stages. Stamen development (A). Anther development (B). Pollen formation (C). 
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the sporogenic tissue. The TAP plays a key role in the development of PG by contributing 
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development of microspores, and PG maturation. The TAP cells are interconnected by 
cytoplasmic bridges, allowing for the synchronization of their activities [56] (Figure 1B). 

Programmed cell death (PCD) is an essential part of the plant reproductive develop-
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plants, the TAP PCD is a typical type of cell death with characteristic cell shrinkage, DNA 

Figure 1. Scheme of microsporogenesis and anther development and the role of phytohormones at
different stages. Stamen development (A). Anther development (B). Pollen formation (C).

GA is necessary for the development and function of TAP cells [42,43]. GA is an
important player in the formation of the pollen exine [38,42].

BRs control the anther development, including the formation of microspore mother
cells, development of microspores, and TAP development [36,44,45]. BRs are also partic-
ipated in the pollen wall formation by regulating the synthesis or transport of sporopol-
lenin [45].

The CK synthesis and subsequent signal transduction actively take place at the early
stages of TAP development and decrease at later stages [36]. An enhanced CK expression
induces the impaired formation of the exine in pollen [46].

ET is included in the coordination of the successive events at all phases of male
gametophyte development, including the initiation of TAP PCD [36,47–53].

The TAP is a short-lived tissue, forming the inner layer of the anther; it directly fits
the sporogenic tissue. The TAP plays a key role in the development of PG by contributing
to enzymes, nutrients, and other inclusions [54,55]. The TAP storage substances (proteins,
lipids, and carbohydrates) are secreted to the loculi, providing the progress of meiosis,
development of microspores, and PG maturation. The TAP cells are interconnected by
cytoplasmic bridges, allowing for the synchronization of their activities [56] (Figure 1B).

Programmed cell death (PCD) is an essential part of the plant reproductive develop-
ment and the final differentiation stage of the anther TAP [57]. TAP PCD is a precisely
controlled process that takes place at the late stages of microsporogenesis. In flowering
plants, the TAP PCD is a typical type of cell death with characteristic cell shrinkage, DNA
degradation, and caspase-like proteolytic activity. The TAP is degraded with the matu-
ration of microspores to be completed by the moment when binucleate pollen grains are
formed [39,58–62].

Transcriptomic studies of Arabidopsis anther have demonstrated tight coordination of
the TAP cell death activity with pollen development [44]. The precise timing of TAP PCD
is decisive for pollen maturation. Any disturbance (delay or promotion) of the TAP PCD
often adversely influences pollen development. The factors involved in TAP PCD form an
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intricate regulated network. In model plants (Arabidopsis, rice, tomato, and rapeseed), the
TAP PCD regulatory network is generated by manifold factors [37].

The pollen wall is a complex multilayer outer coat. The mature pollen grains generally
contain ectexine, endexine, and inner intine (Figure 1C). The exine is the most complicated
and vital outer layer of the pollen wall [37,63–66]. Microspores synthesize the pectin–
cellulose primexine, acting as a basis for the deposition of sporopollenin precursors [67].
The TAP is the major tissue for synthesizing sporopollenin precursors [54]. Various fatty
acids and phenolic compounds are the major components of sporopollenin [68]. Ariizumi
and Toriyama [69] have analyzed the Arabidopsis genes associated with the biosynthesis
and transport of the lipidic and phenolic precursors for exine formation. Genome-wide
coexpression analysis has detected 98 specific candidate Arabidopsis genes expressed in the
anther likely to be involved in phenolic and lipidic metabolism as well as transport [70].
The pollen coat formation is completed in the later microgametogenesis stages when
degenerating TAP are deposited on the surface of PGs [71]. The final stage in PG maturation
is dehydration [64,65].

In the flowering plants, a mature PG contains two (vegetative and generative cells) or
three (two small sperm and one vegetative) cells (Figure 1C); the vegetative cell generated
the PT; in the former case, the generative cell divides in the growing PT to give two sperm
cells, and the PT delivers two sperm cells for fertilization [28,29,72]. The PT germinates
through the transmitting tract, enters the ovule through the micropyle, and ruptures. One
of the sperm cells fertilizes the ovule, while the other sperm cell fuses with the central
cell to produce the embryo and the endosperm (double fertilization, discovered by S.G.
Navashin) [72,73].

The effects of phytohormones are quite complex and each of them performs not one,
but several functions, depending on the target site exposure and type of plant tissue, as
well as external conditions. Therefore, we limited ourselves to a brief overview of the most
important aspects of the participation of all phytohormones and focused mainly on the role
of cytokinin (CK) and ethylene (ET) in the progamic phase of fertilization, since they play
an essential role in the male gametophyte development, pollination, pollen recognition
during the arrest of self-incompatible (SI) PTs, including SI-induced PCD.

Hirano et al. [36] investigated the global gene expression in rice related to phytohor-
mones in the TAP and showed that auxin, GA, CK, brassinosteroids (BRs), ET, ABA, and
jasmonic acid (JA), affect the pollen wall development. So far, 102 gene encoding transcrip-
tion factors, 57 signaling-related genes, 48 and 111 genes related to protein modification
and degradation, subsequently, as well as 18 genes associated with hormone metabolism
have been detected in the developing rice anther. The expression profile of the genes related
to the regulation of hormone metabolism comprises four genes associated with IAA; two,
with ABA; nine, with ET; one, with CK; one, with JA, and two, with GA [74].

2.1. Auxin (IAA)

Auxin is a key regulator of plant growth and development during ontogenesis. The
cell-to-cell differences in auxin concentration coordinate innumerable certain developmental
responses [75–77]. Expression of biosynthetic, signaling and transport auxin-mediated genes
occurs during pollen development [78,79]. It has been clearly demonstrated that auxins are
essential for the anther development and pollen production [80–84]. IAA accumulates in PGs,
endothecium, epidermis, and TAP cells [79]. Alani et al. postulate that auxins produced by the
TAP are essential for pollen development in Arabidopsis [79]. However, Yao et al. showed that the
TAP provides cells with nutrients, but the auxin produced by the TAP is not sufficient to support
Arabidopsis pollen development at early stages. The early stages of microspore development
require auxin produced by diploid sporophyte microsporocytes, which is sufficient for male
gametophyte development [84] (Figure 1A).

Additionally, the local biosynthesis, transport, and signaling of auxin are critical for
stamen initiation [36] (Figure 1A). The auxin synthesized in anthers plays an essential
role in anther dehiscence and pollen maturation, while the auxin transport independently
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contributes to the regulation of filament elongation [84,85]. Auxin acts through JA to
regulate the anther dehiscence and pollen maturation, whereas the auxin-regulated stamen
initiation and filament elongation may be attributed to other signals. The auxin response
factor17 (ARF17) controls the primexine deposition and callose biosynthesis by directly
modulating the expression of the CalS5 gene [86].

2.2. GA and JA Are Indispensable for Stamen Development

The development and function of stamen are modulated by various phytohormones,
with a key role of GAs and JAs [87,88] (Figure 1A). The deficiencies in the signal trans-
duction pathways of GAs and JAs retard stamen development, pollen maturation, or
anther dehiscence.

GA plays a critical role in the development and function of the TAP and pollen
Arabidopsis [42,43]. The genes involved in the GA signaling are preferentially expressed
throughout the TAP development, i.e., anthers may be the main organ of GA biosynthesis
in flowers [36]. The GAMYB MYB transcription factor (TF) is a main TF in the GA signaling
pathway, being essential for pollen exine formation [42].

The JA synthesis and signaling are active in the TAP at all developmental stages [36].
JA mainly controls the late stages of anther development. JAs are important for pollen
development and stamen elongation, as well as regulated the correct timing of pollen
release [41]. The JA mutants of Arabidopsis are sterile due to the arrest of stamen develop-
ment [89]. An excess level of JAs induces expression genes encoding TFs crucial for normal
stamen development [88].

2.3. ABA

Although ABA is associated with pollen wall development [36,45,74], their roles in
male gametophyte development remain poorly understood. Exogenous ABA suppressed
anther development and caused pollen abortion in tomatoes [90]. During the early anther
development, ABA is localized mainly in microsporocytes and the TAP, but later it is
bordered by the TAP [91]. Until now, the function of ABA at the early stage of anther
development remains poorly understood. ABA might control the gene expression involved
in cell separation during the early stage of anther development [92]. The authors also
suggested that ABA may regulate the TAP separation from microsporocytes during early
anther development in Brassica napus L. Since ABA is known to suppress the PCD of
aleurone cells, induction of its deactivation enzymes at the late stages of TAP development
may play a critical role in PCD induction in TAP cells [36]. The ABA distribution in
developing anthers of fertile and male sterile lines of petunia (P. hybrida L.) was analyzed
by the immunohistochemical method [40]. It has been established that the fertile male
gametophyte development is accompanied by a gradual increase in the ABA level in
reproductive cells and, on the contrary, a gradual decrease in the TAP cells and middle
layers. Abortion of sterile microsporocytes in the prophase I of meiosis caused by premature
TAP degeneration with complete preservation of the middle layers was accompanied by a
sharp, two-fold increase in ABA level in the reproductive cells. These data indicate that
ABA is involved in the PCD of microsporocytes at the meiosis stage [40].

2.4. ET Signaling in Male Gametophyte Development

ET is involved in the coordination of successive responses in the anther [47–50] (Figure 1).
The correct formation of stamens is important for the male gametophyte development, and
hence for the successful fruit setting. Dynamics of gene expression encoding various compo-
nents of signal transduction and ethylene responses in male reproductive organs were revealed,
suggesting an active role of ET in pollen development [50–53]. In 44K LM (laser microdis-
section) microarray, the gene expression profile of developing rice anther shows the presence
of ET signaling in pollen development at the late stages and in TAP throughout the anther
development [36].
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Transgenic tobacco plants expressing the anther-specific mutated melon ET receptor
Cm-ERS1/H70A gene from melon were characterized by reduced level of ET and abnormal
stamen development, altered floral architecture, as well as decreased pollen production
due to late TAP degeneration [93].

In P. hybrida L., ET is involved in the coordination of the sequence of responses in the
developing anther, including the initiation of TAP PCD [50]. The fertile male gametophyte
formation has two maximums of ET production. The first peak coincides with the TAP
degeneration during microspore development. A putative factor that causes the TAP
destruction is a threefold increase in the ET content at the tetrad stage. The second peak
accompanies PG maturation and dehydration. The application of 2,5-norbornadiene (NBD)
to flower buds arrests the anther development, whereas exogenous ET (10–100 µL/L) leads
to TAP PCD and degradation of male reproductive cells.

The death of petunia sterile male gametophyte takes place in the meiotic prophase
because of the TAP premature destruction and is accompanied by an upsurge in ET pro-
duction [50]. In this process, the ET level is tenfold higher as compared with the ET level of
fertile anthers during TAP PCD; this correlates with both microsporocyte and TAP tissue
degeneration. In addition, the microsporocyte abortion in the meiotic prophase is also
accompanied by a twofold elevation in the ABA content in reproductive cells [69]. The
ABA signaling in the rice anthers acts at the tetrad and tricellular stages [74]. ABA can be
a potential inductor of the stress-induced male sterility (MS) and the regulation of sugar
transport from the TAP to anther apoplast [94]. ET-IAA interactions are also observed [49].
Additionally, ET has promoted the anther opening [95].

2.5. CK Signaling Is Involved in TAP and Pollen Development

CKs are involved in the regulation of several developmental processes (including
stimulation of cell division and cell differentiation, as well as morphogenesis) [46,96–101].
At high concentrations, CKs have a growth-inhibitory and even an apoptotic effect [101].
However, their functions in the formation of reproductive organs have not yet been studied
in any detail. The CK synthesis and subsequent signaling actively occur during the early
TAP developmental stages and significantly decrease in the later stages in rice [36]. There
is some evidence that CKs are involved in male gametophyte development [46].

The stamenless-2 (sl-2) mutant of S. lycopersicum L. [102] and a genetic MS line of
rapeseed (Brassica napus L.) [103] characterized lower endogenous CK content. Accumula-
tion of cytokinin oxidase/dehydrogenase in the male reproductive tissues of transgenic
maize (Zea mays L.) resulted in MS plants [104]. The CK synthesis and subsequent signaling
actively occur during the early TAP developmental stages and significantly decrease at the
later stages [36]. The loss of ROCK1 (repressor of cytokinin deficiency 1) function enhances
the CK response and induces defective exine formation in Arabidopsis pollen [105].

In Arabidopsis, the CK receptor genes in the sporophyte are required for male and
female functions [106]. In a model of the triple Arabidopsis mutant (cre1-12 ahk2-2tk ahk3-3),
it was shown that CK receptors in the sporophyte are required for anther opening, pollen
maturation, induction of PG germination on the pistil stigma, and maturation of the female
gametophyte [107].

3. Pollen–Pistil Interactions in the Progamic Phase of Fertilization
3.1. Growth

Once a PG has reached the papilla cells of the stigma, it is rehydrated and acti-
vated [104]. The lipids in the stigma exudate mediate pollen hydration [108]. The polar
(tip) growth of PT is provided by a fine-tuned network of cellular responses, including
a dynamic organization of the actin cytoskeleton (AC), vesicle, and protein trafficking,
establishing intracellular tip-localized Ca2+ and pH gradients and signal transduction
pathways [109–120].

pH and Ca2+ concentration control the actin polymerization together with actin-
binding proteins [118,119]. Winship et al. [119] believe that the pH gradient regulates the
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PT growth rather than the tip-focused Ca2+ gradient. Ca2+ as a central second messenger
in plants coordinates varying physiological responses. The PT tip-focused Ca2+ gradient
serves as a signal for Ca2+/calmodulin protein kinases and is key for the regulation of
AC dynamics. The Ca2+/CPK (calcium-dependent PK) signaling pathway may regulate
the PT growth by maintaining the intracellular ion concentrations at the apex via ion
channels [120]. The ROP (Rho of plants) signaling network, depending on Rho GTPase
(ROP1), provides a molecular linkage between the AC, vesicular trafficking, and polarity
formation [121]. The Ca2+/CPK signaling pathway may crosstalk with reactive oxygen
species (ROS) [122].

3.2. Pollen–Pistil Interaction

PT growth is provided for by an elaborate mechanism, requiring the integration and
coordination with other signaling systems and numerous pistil factors [123]. Currently, the
molecular mechanisms underlying these interactions are actively studied [29,118,120,124–126].
The interaction of the pollen tube with the pistil tissues activates a specific range of 1254 genes
that have not been detected in in vitro cultured pollen tubes. Transcriptomic studies have relived
the peptides involved in the pollen–pistil interactions. Among them, there are arabinogalactan
proteins (AGPs), cysteine-rich polypeptides (CRPs), defensin-like proteins (DEFL), S-RNases,
transmitting tissue-specific (TTS) proteins, extensin-like proteins (PELPIII), and lipid transfer
proteins (LTPs) [124]. Female gametophyte plays a valuable role in the PT attraction towards
the ovule by secretion of ovular attractants, including LURE and ZmEA1 proteins, belonging to
the protective defensin-like subfamily of CRPs [125]. As has been shown, all LURE genes are
expressed by the synergid cells. Tip-localized pollen-specific receptor-like kinase 6 (PRK6) acts
as a major membrane receptor for external AtLURE 1 attractants in A. thaliana L. [127].

3.3. BRs Are Essential for Male Fertility

The BRs act in the pollen wall formation through the regulation of sporopollenin synthesis
or transport [36] (Figure 1B,C). BRs control the various developmental stages of the anther,
including the formation of the microspore mother cell, and its development, as well as TAP
development and pollen coat formation [45]. In the Solanum lycopersicum L., the BR signaling
regulator (BZR1) directly binds to the promoter of RBOH1, thereby inducing the promotion of
pollen development via the RBOH1-mediated ROS signaling pathway by triggering PCD and
tapetal cell degradation (see the review by [44]).

3.4. ET Signaling in Pollen–Pistil System

The studies involving the orchid [128], tobacco [47], and petunia [129] demonstrate
that the pollination-induced ET production in the pistil tissues and its release is critical
for PT growth and successful fertilization. As has been shown, the pollination in orchids
triggers an interorgan regulation of the ET biosynthesis genes; the authors assume that it is
ACC, the soluble ET precursor, that acts as a secondary transmissible ET signal coordinating
the development of floral organs after pollination [128]. The combinatorial interplay among
the ACC isoforms modulates the ET biosynthesis in A. thaliana L. [130].

In P. inflata R.E.Fr., both compatible and incompatible pollinations result in a signifi-
cant increase in ET synthesis, which peaks 3 h after pollination. The second burst in ET
production begins 18 h after compatible pollination [131].

The germination of PGs on the stigma of P. hybrida L. is accompanied by a 7-fold
increase in the ET content [50,132] (Figure 2). It is shown that the stigma is the main
part of ET synthesis. Accumulated (100-fold) ACC in PGs triggers the autocatalytic ET
biosynthesis in the pollen–pistil system. The ACC content in the stigma tissue reaches its
maximum 2 h after pollination. The ACC concentration in styles and ovaries is 100-fold
lower as compared with the stigmas. NBD blocks the male gametophyte development
and growth.
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Figure 2. The germination and growth of petunia PT in the compatible and self-incompatible
pollinations and the role of phytohormones at different stages of these processes (scheme).

The pollination signal is generated on the surface of the stigma and is transduced by
a certain signal resulting from the hormonal imbalance in the pistil and PT cell [47,128,129].
The stigma is the main part of ET synthesis and contains 90% of ABA synthesized by the
pistil [50,132]. The peak of ET production by pistil tissues belongs to earlier events, which ac-
company adhesion, hydration, and pollen grain germination in the stigma tissues [50,131,132].

The hormonal content in the petunia pollen–pistil system under SI pollination differed
dramatically from that under compatible pollination and changed during PT growth [133].

In a compatible pollination event (left part of the scheme, colored violet), PTs grow
to reach the ovary, where fertilization takes place. Pollen grain germination on the
stigma (within 4 h after pollination) was accompanied by a seven-fold increase in ET
level [47,132,133]. During the subsequent 4 h, ET production by pistil tissues decreased.
The growth of PT by 8 h was accompanied by a constant low level of ABA and CK. Herewith,
IAA and GAs levels increased about 1.5-fold within 8 h [133].

In the case of SI pollination (right part of the scheme, colored orange), the pattern
is completely different. PG germination on the stigma (within 4 h of pollination) was
accompanied by a 10-fold and 3-fold increase in ET and ABA content in the stigma and
style, subsequently [47,132,133]. During the subsequent 4 h, the ABA concentration was
maintained at the same high level. One may speculate that this is related to a SI mechanism
and connected with ET activity. The inhibition of PT growth by 8 h was accompanied by a
5-fold increase in CK content in style tissues [133]. Thus, the PT growth is inhibited in the
background of high CK and ABA levels [133]. This altered hormonal level activates several
signaling cascades and transcription regulation. The expression of S-RNAse, proteases, and
nucleases is commenced. CK together with CLPs and S-RNAse disarrange the AC in the SI
PTs, thereby causing membrane disorganization, destruction of organelles, and possible
DNA degradation as the final stage in the SI-induced PCD in P. hybrida L. [134,135].

The maximum ET production by pistil tissues is associated with the earlier events
accompanying the adhesion, hydration, and subsequently germination of PGs in the stigma
tissues. This indicates that the ET synthesis is stimulated by pollen–pistil interaction
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and may be implicated in the interorgan pollination signal generated in the stigma and
transmitted to the style, ovary, and other floral organs (calyx and corolla) for successful
pollination [50,132].

Additionally, ET induces the synergid PCD and disrupts pollen tube PT [128]. In
successful fertilization, ET signaling is induced by the ER-localized EIN2 and EIN3 and
perceived by the synergids. ACC introduction into the female gametophyte by microin-
jection or a constitutive ET response leads to premature synergid disorganization. Mou
et al. [129] have shown that ACC signaling in Arabidopsis ovular is involved in PT attraction
and promotes secretion of the pollen tube PT chemoattractant LURE1.2.

3.5. ET as a Regulator of Hormonal Interplay in Pollen–Pistil System

A diverse group of phytohormones modulates the ET level in various plants acting at
the ACS gene expression [136–140]. EIN3, one of the regulators of a feedback ET response,
is a link in the interaction with the other phytohormone signaling pathways.

In vitro germinated petunia PG is accompanied by changes at the levels of plant hor-
mones, such as IAA, ABA, GAs, and CKs, and is sensitive to the treatment with exogenous
phytohormones. The membrane potential on the PT and cytosolic pH, lateral membrane al-
location of PM H+–ATPase, and organization of PT AC are sensitive to exogenous hormones.
Exogenous applications of IAA, ABA, and GA3 display the growth-stimulating action ac-
companied by orthovanadate-sensitive polarization of the PM. GA has the maximum
stimulatory effect; IAA induces alkalinization of the cytosol; kinetin, in contrast, causes
cytosol acidification; and exogenous CK inhibits pollen tube germination and growth. All
these facts suggest the existence of extremely complex interactions between ET, IAA, ABA,
and CK [140].

3.6. ET–IAA Interplay

Auxin plays a critical role in the maintenance of PT polar growth, complying with its
similar response in the other organs [141]. The ET’s ability to modulate the effect of auxin
biosynthesis and transport of its determines a wide range of physiological manifestations
in plants [142].

In P. hybrida L., ET controls the PG germination and PT growth by interacting with
auxin, a likely key regulator of plant cell polarization and morphogenesis and one of
the factors controlling the ET biosynthesis at the level of ACC synthase gene expression
(Figure 2). The male gametophyte–stigma tissues interaction leads to an increase in ET and
IAA production by a 7- to 10-fold and a 1.5- to 2.0-fold content in the pollen–pistil system
over 0–4 h, subsequently.

Exogenous IAA and ET stimulate the PT germination and growth. 1-MCP (methylcy-
clopropene), a blocker of ET reception, and TIBA (triiodobenzoic acid), a blocker of IAA
transport, inhibit pollen germination, while IAA removes the inhibitory of both 1-MCP
and AOA (aminoxyacetic acid), an inhibitor of ACC synthesis, and Ethrel, a plant growth
regulator, partially removed the inhibitory effect of TIBA. The pollen pollination prelimi-
narily treated with 1-MCP causes a 2.5-fold decline in both the rate of PT growth and ACC
level. IAA inhibits the action of 1-MCP recovering the synthesis of ACC and PT growth
compared with control values [50,132,142].

These results taken together suggest the interaction of the ET-IAA interplay signal
transduction pathways at the level of ACC biosynthesis during the germination and growth
of petunia male gametophyte.

3.7. ET-ABA Interplay

The germination and growth of petunia male gametophyte are characterized by a high
level of ET and ABA production in the pollen–pistil system. The stigma is the main part
of ET synthesis and contains about 90% of ABA. ABA abolishes the inhibitory effects of
1-MCP (an ET receptors blocker), AOA (a blocker of ACC), and Fluridone (a blocker of
ABA synthesis) on the PT development, whereas ethrel arrest has an inhibitory effect of
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fluridone on the PT growth. In stigmas pretreated with AOA and ABA, ABA suppresses
the inhibitory effect of AOA on the ACC synthesis in the petunia pollen–pistil system
before pollination [50,132,143,144].

ABA is involved in the osmoregulation in petunia male gametophyte in the progamic
phase of fertilization by interacting with ET at the ACC synthesis level [144]. Two potential
targets of the ABA in a PT are identified, namely, (1) PM H+-ATPase, an electrogenic proton
pump, and (2) Ca2+-dependent K+ channels [140]. A stimulatory effect of ABA on the
H+-ATPase electrogenic activity is mediated by an increase in the free Ca2+ level in the PT
cytosol and ROS generation. The ET/ABA content of the stigma may control adhesion,
hydration, and germination of PGs.

3.8. IAA-CK Interplay

The pistil developmental program is under the control of both IAA and CK. The CK
response integrates auxin and CK pathways for the development of the female reproductive
organ. In a triple mutant, both pistil length and the ovule numbers are reduced [145].

IAA and CK play a key role in the AC regulation during petunia PT growth via their
effects on actin polymerization [133]. The AC in growing PTs is sensitive to exogenous
auxins. The IAA growth stimulatory effect correlates with an increased amount of actin
filaments (AFs) in both apical and subapical zones of PTs. In contrast, CK decreases the
total AFs content in PTs and inhibits their development. The CK inhibitory effect on the
growth of petunia male gametophyte is associated with the degradation of F-actin along
the PT, disarranging the apically directed vesicular transport required for its growth.

In vitro cultured pollen on the medium supplemented with latrunculin B (Latr B), an
inhibitor of actin polymerization, arrests the PT growth because of the AC disturbance.
This effect is accompanied by a dramatic decrease (almost to zero) in the endogenous
IAA content. IAA causes monotonous alkalinization of the cytoplasm in PTs and has a
significant effect on F-actin assembly, thereby suggesting the involvement of IAA in the
interplay with AFs organization through the corresponding modulation of the activity of
pH-sensitive actin-binding proteins (ABPs). As for CK, its content significantly increases
during the first 60 min of culture. These facts suggest that both IAA and CK play an
important role in the regulation of the AC during PT growth via their effects on F-actin
polymerization. These data suggest the hypothesis that the AC in male gametophytes acts
here as an integrator of auxin and CK signaling pathways and that the mechanism of their
interplay may include both ABPs and PIN proteins [140].

3.9. ET-IAA-CK Interplay

The ET content is regulated by other plant hormones, for example, auxin, GA3, and
CK [139]. The hormones can interact at the level of their metabolism, transport, and
transduction of hormonal signals. Signaling pathways of auxin, ET, and CKs are united
via the peptide Polaris (PLS), which inhibits ET and CK responses and positively regulates
auxin transport [146]. An important factor in the ET response regulation and the target
for other hormones is the controlled degradation of the proteins involved in ET signaling
pathway. In particular, the induction of ET biosynthesis by CKs is performed by stabilizing
ACC synthases (ACS5 and ACS9) [147]. An ET-induced regulatory module delays the
flower senescence in rose by controlling the CK synthesis [148].

3.10. BRs and PT Growth

In Arabidopsis, the pistil BRs promote PT growth [149,150]. The CYP90A1/CPD pro-
moter of the key enzymes in BR biosynthesis is highly active in the cells of the tract for PTs.
The in vitro grown PTs respond to BRs in a dose-dependent manner. Pollen germination
and growth increase nine- and fivefold, respectively, when the media are supplemented
with 10 µM epibrassinolide.
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4. Self-Incompatibility (SI)-Induced PCD

In flowering plants, the pollen–pistil interplay followed by the transfer of the recogni-
tion function to the sporophytic tissue of the pistil has led to a successful establishment
of SI.

SI is the genetically related reproductive barrier that inhibits autogamy and allows the
pistil to reject “self” pollen and to accept “non-self” pollen. SI is the kind of pollen–pistil
interplay best understood at a molecular level. SI is specified by S-determinant genes
at a highly polymorphic S-locus [151]. The pollen–pistil interaction and three different
types of the molecular control of pollen and pistil recognition have been characterized for
three families—Brassicaceae, Papaveraceae, and Solanaceae. The system of self-recognition
characteristic of two families (Brassicaceae and Papaveraceae) is due to specific reactions
between the male and female S-determinants belonging to the same S-haplotype. The
growth inhibition of incompatible PTs is carried out on the stigma [152].

4.1. Papaver SI System

In Papaver, PrsS-PrpS represents the protein–ligand/receptor interacting pairs. The
stigma-specific polypeptide ligand is produced in the stigma that causes rejection of incom-
patible PTs. The downstream signaling events triggered by the S-specific interaction of PrsS
with incompatible pollen have been well characterized [153,154]. SI is implemented via a
signaling cascade with an increase in Ca2+, ROS, and NO, as well as mitogen-activated pro-
tein kinase (MAPK) activity and protein phosphorylation. Rapid inhibition of PT growth is
achieved by AC depolymerization and inhibition of soluble inorganic pyrophosphatase.
An incompatible interaction triggered PCD involving the activation of a DEVDase/caspase-
3–like activity. The SI-induced cytosol acidification of the PT is likely to be fundamental for
the induction of a caspase-like activity and F-actin foci formation [155].

4.2. S-RNase–Based SI

SI is the system of “non-self-recognition” in the Solanaceae, Rosaceae, and Plantagi-
naceae families [156,157] (Figure 2). It is genetically determined by a single S-locus with
multiple haplotypes and fundamentally differing from the Papaver SI. The S-locus encodes
the S-RNases expressed in the pistil and multiple SLF (S-locus F-box) proteins in pollen
controlling the female and male specificity of SI, respectively. The S-RNases function as
a cytotoxin to inhibit self-pollen. The SLF proteins collaboratively defuse the non-self
S-RNases via the ubiquitin–26S proteasome system.

In Pyrus pyrifolia (Burm.f.) Nakai (Rosaceae), S-RNase specifically degrades the ROS
in the incompatible PT tip, depolymerizes AC, and triggers the changes in mitochondria
and DNA degradation in SI PTs [158].

Nicotiana spp. has an S-RNase–based SI. Three genes (HT-B, 120K, and NaStEP),
unrelated to the S-locus that have been identified in the pistil, suggest that this process
is even more complex [159]. These results imply that NaStEP and NaSIPP destabilize
mitochondria, thereby blocking PT growth.

In P. hybrid L., PCD markers, such as DNA fragmentation (a violation of the plasma
membrane integrity and DNA degradation), in the in vivo growing SI PTs suggest that
PCD is a factor of S-RNase–based SI [134]. Using transmission electron microscopy shows
a complete degradation of the PT content.

The AC is turned on in the S-RNase–based SI-induced PCD in P. hybrida L. In vivo,
the pretreatment of petunia stigma with Latr B completely inhibits the germination of SI
PTs [158]. An in vitro cultured of petunia PTs on the medium supplemented with 0.2 nM
Latr B inhibits their growth via a disturbance of the AC organization [135]. Earlier, Roldán
et al. indicated the F-actin disorganization in the incompatible PTs of Nicotiana. alata Link
and Otto [160].

In P. hybrida L., the SI-induced PCD of PTs is associated with caspase-like protease
(CLP) activity [134]. 90% of in vivo growing SI PTs show CLP activity.
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CLP activities are detectable in 90% of the in vivo growing SI PTs. A high CLP activity
within 2–4 h is characteristic of the growing PTs and coincides with the S-RNase activation.
The Latr B-induced f-actin depolymerization decreases the CLP activity in the SI PTs. These
results suggest that the CLP activity is specific to the cytoplasm and, most likely, to the
nuclei of the PT suggested by its intense glow. Any CLP activity is absent in in vivo grown
compatible PTs [135].

4.3. ET, ABA, and CK as the Factors of SI-Induced PCD in P. hybrida L.

The phytohormone ET has been implicated as an important regulator of the PCD in
plants, including senescence of generative and reproductive organs; aerenchyma formation;
leaf and petal abscission; and endosperm cell death in fertilized ovules [161–163]. Currently, ET
is recognized as one of the positive triggers of PCD. [164,165]. In some species, ET acts as a key
hormone for floral senescence [161]. Shibuya et al. has shown the involvement of two proteins
of the ET biosynthesis in petal senescence in Japanese morning glory (Ipomea nil L.) [166].

ABA may play a protective reaction defining the timing and extent of PCD in cereals.
In particular, the ABA inhibition during the development of maize and wheat endosperm
stimulates ET synthesis, while the inhibition of ET biosynthesis retards PCD. The treatment
with 1-MCP decreases the degree of DNA degradation while Fluridone (an inhibitor of
ABA synthesis) stimulates ET synthesis 2–2.5-fold [167]. ABA has a regulatory effect on the
ET biosynthetic machinery in Hibiscus flower development [168]. Autophagy, a variant
of PCD, has been implicated in the responses to various environmental stresses through
interplaying with ABA, JA, and salicylic acid (SA) [101].

4.3.1. ET and ABA

Higher ET and ABA levels, exceeding 2–2.5-fold their levels after cross-compatible pol-
lination, are observed in the inhibition of PT growth after SI pollination in P. hybrida L. [133].

Pretreatment of the petunia stigmas with ethrel and ABA, as well as inhibitors of
their synthesis, AOA (an inhibitor of ACC) and fluridone, respectively, to different degrees
influences the growth of incompatible PT [134]. The fluridone treatment stimulates their
growth 1.5-fold. AOA stimulates the PT growth threefold so that the PTs almost reach the
ovary (90% of the style length). At the same time, degradation and fragmentation of DNA
in PTs is almost completely absent. These results suggest that ET controls the progress of
PCD at the DNA degradation in the SI pollen tubes during functioning of SI mechanism.

Summing up, the above-mentioned data favor the assumption that ET and ABA,
exerting antagonistic/synergetic effects, most likely control the progress of SI-induced
PCD at the DNA degradation in PTs. It is suggested that the ABA-induced changes in
cytoplasmic pH (pHc) are involved in the cascade response in the progamic phase of
fertilization, including the function of pH-dependent K+-channels. A stimulatory effect
of ABA on the H+-ATPase electrogenic activity is mediated by an increase in the cytosolic
Ca2+ content and ROS generation in the PT [139]. In addition, there is evidence that ABA is
a putative determinant of PCD in the TAP [93].

In the Brassicaceae, pollen triggers the downstream signaling pathways to prevent
self-pollination. Note that a reorganization of actin filaments is observed in the papilla
cells, similar to the early events in the poppy SI PT [169,170]. Su et al. showed that ET
negatively mediates the SI response of B. rapa L. ssp. pekinensis via PCD in the papilla
cells [171]. An ET treatment of the stigmas induces PCD in the papilla cells and breaks
down the SI, whereas the treatment of the stigmas with ET inhibitors suppresses PCD and
compatible pollination.

4.3.2. CK as a Factor of SI-Induced PCD

The natural CK (kinetin) and its synthetic analog (6-benzylaminopurine (BAP)) at
high concentrations induce PCD in plants. Note that BAP induces PCD in the cultured
plant cells, whereas kinetin induces this process in living tissues. All CK-dependent phe-
nomena, including PCD, are associated with a multistep phosphorelay signaling pathway,
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comprising histidine kinase receptors (HKs), histidine phosphotransfer proteins (HPs), and
RRs [172].

CKs play a crucial role in the AC regulation during PT growth via their effects on
F-actin polymerization. Kinetin decreases the total AFs content in PTs and inhibits their
growth. In vitro pollen germination on the kinetin-containing culture medium leads to a
decrease in the density of AFs along the entire PT. This is most clearly seen in the apical
zone of PTs. The CK content increases during the first 60 min of culture [140].

Acidification of cytosol in the PT plays an important role in the SI-induced PCD in the
Papaver PTs by creating favorable conditions for CLP activation [153]. In P. hybrida L., CK
inhibits PT growth due to acidification of the cytoplasm and disorganization of AC. [140].
Zakharova et al. have shown that exogenous CK (zeatin) stimulates the CLP activity in
compatible petunia PTs and blocked their growth. The actin depolymerization with Latr
B significantly reduces the CLP activity in the SI PTs and, on the contrary, its increase in
the compatible pollen tubes. The authors assume that CK is an assumed activator of the
CLPs [135]. According to their hypothesis, CK at high concentrations acidifies the cytosol SI
PTs, thus creating favorable conditions for CLP activation and, perhaps, for AC reorganization.
Correspondingly, CK together with CLPs and S-RNase trigged AC destruction of SI PTs,
disruption of the membrane integrity and organelles, as well as eventually degrading DNA as
the final stage of the S-RNase–based SI-induced PCD in P. hybrida L. S-RNase destroys the
AC breaking it down into point foci [173]. A similar pattern was observed after treating the
in vitro growing PTs with CK [140].

The above-mentioned effects of CK evidently comply with its growth-inhibitory effect,
in particular, a dramatic (5-fold) rise in the CK level 4–8 h after SI pollination during the
arrest of SI PTs in styles. Exogenous CKs (kinetin and zeatin) inhibit PT growth both
in vitro and in vivo [133].

Thus, the identified inhibitory effect of CK on the PT growth and the actin polymeriza-
tion, and the opposite stimulatory effect on the caspase-like activity give reason to believe
that CK, similar to CLPs, plays a key role in the arrest of PT growth in the course of the
S-RNase-based SI-induced PCD in P. hybrida L.

5. Conclusions and Future Prospects

In this review, we summarized the data on the involvement of ET and CK along with
other phytohormones (auxin, GA, ABA, JA, and BRs) in the male gametophyte development
and pollen–pistil interplay in the progamic phase of fertilization and SI-induced PCD.

(1) ET joins the coordination of successive events in the developing anther, including
the TAP development and cell death, anther dehiscence, microspore development PG
maturation, and dehydration.

(2) Hormonal signaling during male gametophyte development and PT growth play
one of the key roles along with polymorphic secreted peptides and small proteins, ROS/NO
signaling, and second messenger Ca2+.

(3) The physiological effect on phytohormones in PG/PT–female gametophyte com-
munications comprise the modulation of pH, namely, a temporary disturbance of the
homeostatic regulation of the PT cytosol pH, which may act as a signal in the initiation of
further responses triggered by phytohormones.

(4) ET is a regulator of gametophyte–sporophyte interplay in the progamic stage of
fertilization and controls PT germination via the interaction with IAA, GA, ABA, and CK
at the level of ACC. ET is regarded as a positive SI-induced PCD regulator.

(5) CK is a factor of the S-RNase-based SI-induced PCD in P. hybrida L. along with CLPs
and cytoskeleton depolymerization. CK inhibits the growth of PTs, causing acidification of
the cytoplasm and destroying the AC.

Two main questions will have to be answered in the future. Firstly, what is the regula-
tory mechanism for the involvement of hormonal signals in the pollination, germination,
and growth of PTs? What signals play a central role in this cascade? A vision for the next
decade is the integration of advanced genetic, molecular, physiological, biochemical, and
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cellular-biological approaches for a comprehensive study of plant fertilization. The data
obtained will serve as a basis for the development of technologies for overcoming the
hybridization barriers between species and for obtaining new varieties of crops resistant to
the effects of climate change and diseases.
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172. Kunikowska, A.; Byczkowska, A.; Doniak, M.; Kaźmierczak, A. Cytokinins résumé: Their signaling and role in programmed cell
death in plants. Plant Cell Rep. 2013, 32, 771–780. [CrossRef]

173. Thomas, S.G.; Huang, S.; Li, S.; Staiger, C.J.; Franklin-Tong, V.E. Actin depolymerization is sufficient to induce programmed cell
death in self-incompatible pollen. J. Cell Biol. 2006, 174, 221–229. [CrossRef]

http://doi.org/10.1146/annurev.cellbio.16.1.1
http://doi.org/10.1007/s11103-012-9968-0
http://doi.org/10.1139/B09-041
http://doi.org/10.1104/pp.15.00677
http://doi.org/10.1007/s11103-015-0356-4
http://doi.org/10.1093/jxb/ers395
http://www.ncbi.nlm.nih.gov/pubmed/23349142
http://doi.org/10.1023/A:1006333103342
http://www.ncbi.nlm.nih.gov/pubmed/10794539
http://doi.org/10.1093/jxb/err218
http://www.ncbi.nlm.nih.gov/pubmed/21841180
http://doi.org/10.1016/j.molp.2018.05.001
http://www.ncbi.nlm.nih.gov/pubmed/29753021
http://doi.org/10.3389/fpls.2020.586901
http://doi.org/10.1016/j.bbrc.2020.02.128
http://doi.org/10.1007/s00299-013-1436-z
http://doi.org/10.1083/jcb.200604011

	Introduction 
	Phytohormones in Tapetum (TAP) and Pollen Wall Development Programs 
	Auxin (IAA) 
	GA and JA Are Indispensable for Stamen Development 
	ABA 
	ET Signaling in Male Gametophyte Development 
	CK Signaling Is Involved in TAP and Pollen Development 

	Pollen–Pistil Interactions in the Progamic Phase of Fertilization 
	Growth 
	Pollen–Pistil Interaction 
	BRs Are Essential for Male Fertility 
	ET Signaling in Pollen–Pistil System 
	ET as a Regulator of Hormonal Interplay in Pollen–Pistil System 
	ET–IAA Interplay 
	ET-ABA Interplay 
	IAA-CK Interplay 
	ET-IAA-CK Interplay 
	BRs and PT Growth 

	Self-Incompatibility (SI)-Induced PCD 
	Papaver SI System 
	S-RNase–Based SI 
	ET, ABA, and CK as the Factors of SI-Induced PCD in P. hybrida L. 
	ET and ABA 
	CK as a Factor of SI-Induced PCD 


	Conclusions and Future Prospects 
	References

