Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment and Experimental Procedures
2.2.1. Methods for Characterization of Material
2.2.2. Sub- and Supercritical Fluid Extraction (SFE)
2.2.3. Analysis of Xanthohumol in Extract by HPLC
2.2.4. Analysis of EO Content and Composition by GC
3. Results and Discussion
3.1. Content of XN in Hop Extracts
3.2. Identification and Evaluation of the Selected Essential Oil Components in Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Van Cleemput, M.; Cattoor, K.; De Bosscher, K.; Haegeman, G.; De Keukeleire, D.; Heyerick, A. Hop (Humulus lupulus)—Derived Bitter Acids as Multipotent Bioactive Compounds. J. Nat. Prod. 2009, 72, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, P.; Kocábek, T.; Mishra, A.K.; Nath, V.S.; Shrestha, A.; Matoušek, J. Establishment of CRISPR/Cas9 Mediated Targeted Mutagenesis in Hop (Humulus lupulus). Plant Physiol. Biochem. 2021, 160, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nookandeh, A.; Frank, N.; Steiner, F.; Ellinger, R.; Schneider, B.; Gerhäuser, C.; Becker, H. Xanthohumol Metabolites in Faeces of Rats. Phytochemistry 2004, 65, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Yilmazer, M.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. In Vitro Biotransformation of Xanthohumol, a Flavonoid from Hops (Humulus lupulus), by Rat Liver Microsomes. Drug Metab. Dispos. 2001, 29, 223–231. [Google Scholar]
- Mishra, A.K.; Kocábek, T.; Sukumari Nath, V.; Awasthi, P.; Shrestha, A.; Kumar Killi, U.; Jakse, J.; Patzak, J.; Krofta, K.; Matoušek, J. Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop (Humulus lupulus L.). Int. J. Mol. Sci. 2020, 21, 233. [Google Scholar] [CrossRef] [Green Version]
- Biendl, M. Hops and Health. Tech. Qual. 2009, 16, 84048. [Google Scholar] [CrossRef]
- MacKinnon, D.; Pavlovič, V.; Čeh, B.; Naglič, B.; Pavlovič, M. The Impact of Weather Conditions on Alpha-Acid Content in Hop (Humulus lupulus L.) Cv. Aurora. Plant Soil Environ. 2020, 66, 519–525. [Google Scholar] [CrossRef]
- Rodrigues Arruda, T.; Fontes Pinheiro, P.; Ibrahim Silva, P.; Campos Bernardes, P. Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry. Food Bioprocess Technol. 2022, 15, 275–305. [Google Scholar] [CrossRef]
- Kontek, B.; Jedrejek, D.; Oleszek, W.; Olas, B. Antiradical and Antioxidant Activity in Vitro of Hops-Derived Extracts Rich in Bitter Acids and Xanthohumol. Ind. Crops Prod. 2021, 161, 113208. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and Pharmacological Profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional Biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Afonso, S.; Arrobas, M.; Pereira, E.L.; Rodrigues, M.A. Recycling nutrient-rich hop leaves by composting with wheat straw and farmyard manure in suitable mixtures. J. Environ. Manag. 2021, 284, 112105. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.C.; Faria, M.A.; Melo, A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O. Modeling of α-Acids and Xanthohumol Extraction in Dry-Hopped Beers. Food Chem. 2019, 278, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.T.; Dufour, J.-P.; Lewis, A.C. Application of Comprehensive Multidimensional Gas Chromatography Combined with Time-of-Flight Mass Spectrometry (GC × GC-TOFMS) for High Resolution Analysis of Hop Essential Oil. J. Sep. Sci. 2004, 27, 473–478. [Google Scholar] [CrossRef]
- Bordiga, M.; Nollet, L.M.L. Food Aroma Evolution: During Food Processing, Cooking, and Aging; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-80724-4. [Google Scholar]
- Inui, T.; Tsuchiya, F.; Ishimaru, M.; Oka, K.; Komura, H. Different Beers with Different Hops. Relevant Compounds for Their Aroma Characteristics. J. Agric. Food Chem. 2013, 61, 4758–4764. [Google Scholar] [CrossRef]
- Stevens, R. The Chemistry of Hop Constituents. Available online: https://pubs.acs.org/doi/pdf/10.1021/cr60245a002 (accessed on 13 February 2022).
- Sharpe, F.R.; Laws, D.R.J. The Essential Oil of Hops a Review. J. Inst. Brew. 1981, 87, 96–107. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus Lupulus—A Story That Begs to Be Told. A Review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Rettberg, N.; Biendl, M.; Garbe, L.-A. Hop Aroma and Hoppy Beer Flavor: Chemical Backgrounds and Analytical Tools—A Review. J. Am. Soc. Brew. Chem. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Sharp, D.; Qian, Y.; Clawson, J.; Shellhammer, T.H. An Exploratory Study toward Describing Hop Aroma in Beer Made with American and European Hop Cultivars. BrewingScience 2016, 69, 112. [Google Scholar]
- Takoi, K.; Koie, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of Hop-Derived Monoterpene Alcohols by Lager Yeast and Their Contribution to the Flavor of Hopped Beer. J. Agric. Food Chem. 2010, 58, 5050–5058. [Google Scholar] [CrossRef] [PubMed]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical Transformations of Characteristic Hop Secondary Metabolites in Relation to Beer Properties and the Brewing Process: A Review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef]
- Nuutinen, T. Medicinal Properties of Terpenes Found in Cannabis Sativa and Humulus Lupulus. Eur. J. Med. Chem. 2018, 157, 198–228. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. What Is New on the Hop Extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Eyres, G.T.; Marriott, P.J.; Dufour, J.-P. Comparison of Odor-Active Compounds in the Spicy Fraction of Hop (Humulus lupulus L.) Essential Oil from Four Different Varieties. J. Agric. Food Chem. 2007, 55, 6252–6261. [Google Scholar] [CrossRef]
- Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schönberger, C. Hops: Their Cultivation, Composition and Usage; Fachverlag Hans Carl GmbH: Nuremberg, Germany, 2015; Volume 2014, ISBN 978-3-418-00904-9. [Google Scholar]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’acqua, S.; Bertucco, A. Extraction of bioactive enriched fractions from Eruca sativa leaves by supercritical CO2 technology using different co-solvents. J. Supercrit. Fluids 2014, 94, 245–251. [Google Scholar] [CrossRef]
- Fetzer, D.L.; Cruz, P.N.; Hamerski, F.; Corazza, M.L. Extraction of baru (Dipteryx alata vogel) seed oil using compressed solvents technology. J. Supercrit. Fluids 2018, 137, 23–33. [Google Scholar] [CrossRef]
- Czaikoski, K.; Mesomo, M.C.; Scheer, A.D.P.; Santa, O.R.D.; Queiroga, C.L.; Corazza, M.L. Kinetics, composition and biological activity of Eupatorium intermedium flower extracts obtained from scCO2 and compressed propane. J. Supercrit. Fluids 2015, 97, 145–153. [Google Scholar] [CrossRef]
- Mesomo, M.C.; Scheer, A.D.P.; Perez, E.; Ndiaye, P.M.; Corazza, M.L. Ginger (Zingiber officinale R.) extracts obtained using supercritical CO2 and compressed propane: Kinetics and antioxidant activity evaluation. J. Supercrit. Fluids 2012, 71, 102–109. [Google Scholar] [CrossRef]
- Correa, M.; Bombardelli, M.C.M.; Fontana, P.D.; Bovo, F.; Messias-Reason, I.J.; Maurer, J.B.B.; Corazza, M.L. Bioactivity of extracts of Musa paradisiaca L. obtained with compressed propane and supercritical CO2. J. Supercrit. Fluids 2017, 122, 63–69. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Ghazani, S.M.; Corazza, M.L.; Marangoni, A.G.; Ribani, R.H. Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. J. Supercrit. Fluids 2018, 133, 122–132. [Google Scholar] [CrossRef]
- Guedes, A.R.; de Souza, A.R.C.; Zanoelo, E.F.; Corazza, M.L. Extraction of citronella grass solutes with supercritical CO2, compressed propane and ethanol as cosolvent: Kinetics modeling and total phenolic assessment. J. Supercrit. Fluids 2018, 137, 16–22. [Google Scholar] [CrossRef]
- Bizaj, K.; Škerget, M.; Košir, I.J.; Knez, Ž. Sub- and Supercritical Extraction of Slovenian Hops (Humulus lupulus L.) Aurora Variety Using Different Solvents. Plants 2021, 10, 1137. [Google Scholar] [CrossRef]
- European Brewery Convention. Section 7-Hops, Method 7.2. In Analytica-E.B.C.; Hans Carl Getränke Fachverlag: Nürenberg, Germany, 2007. [Google Scholar]
- European Brewery Convention. Section 7-Hops, Method 7.7. In Analytica-E.B.C.; Hans Carl Getränke Fachverlag: Nürenberg, Germany, 2007. [Google Scholar]
- European Brewery Convention. Section 7-Hops, Method 7.10. In Analytica-E.B.C.; Hans Carl Getränke Fachverlag: Nürenberg, Germany, 2007. [Google Scholar]
- European Brewery Convention. Section 7-Hops, Method 7.12. In Analytica-E.B.C.; Hans Carl Getränke Fachverlag: Nürenberg, Germany, 2007. [Google Scholar]
- He, G.Q.; Xiong, H.-P.; Chen, Q.H.; Ruan, H.; Wang, Z.-Y.; Lonseny, T. Optimization of Conditions for Supercritical Fluid Extraction of Flavonoids from Hops (Humulus lupulus L.). J. Zhejiang Univ. Sci. B 2005, 6, 999. [Google Scholar] [CrossRef] [Green Version]
- Jackowski, J.; Hurej, M.; Rój, E.; Popłoński, J.; Kośny, L.; Huszcza, E. Antifeedant Activity of Xanthohumol and Supercritical Carbon Dioxide Extract of Spent Hops against Stored Product Pests. Bull. Entomol. Res. 2015, 105, 456–461. [Google Scholar] [CrossRef]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Rój, E. Experimental Data on Xanthohumol Solubility in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2013, 360, 445–450. [Google Scholar] [CrossRef]
- Rój, E.; Tadić, V.M.; Mišić, D.; Žižović, I.; Arsić, I.; Dobrzyńska-Inger, A.; Kostrzewa, D. Supercritical Carbon Dioxide Hops Extracts with Antimicrobial Properties. Open Chem. 2015, 13, 1157–1171. [Google Scholar] [CrossRef]
- Guimarães, B.P.; Nascimento, P.G.B.D.; Ghesti, G.F. Intellectual Property and Plant Variety Protection: Prospective Study on Hop (Humulus lupulus L.) Cultivars. World Pat. Inf. 2021, 65, 102041. [Google Scholar] [CrossRef]
- Neiens, S.D.; Steinhaus, M. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris. J. Agric. Food Chem. 2018, 66, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Yamada, M.; Taniguchi, H.; Matsukura, Y.; Shindo, K. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.). J. Agric. Food Chem. 2015, 63, 10181–10191. [Google Scholar] [CrossRef] [PubMed]
- Štěrba, K.; Čejka, P.; Čulík, J.; Jurková, M.; Krofta, K.; Pavlovič, M.; Mikyška, A.; Olšovská, J. Determination of Linalool in Different Hop Varieties Using a New Method Based on Fluidized-Bed Extraction with Gas Chromatographic-Mass Spectrometric Detection. J. Am. Soc. Brew. Chem. 2015, 73, 151–158. [Google Scholar] [CrossRef]
- Takoi, K.; Itoga, Y.; Takayanagi, J.; Kosugi, T.; Shioi, T.; Nakamura, T.; Watari, J. Screening of Geraniol-Rich Flavor Hop and Interesting Behavior of β-Citronellol during Fermentation under Various Hop-Addition Timings. J. Am. Soc. Brew. Chem. 2014, 72, 22–29. [Google Scholar] [CrossRef]
- Van Opstaele, F.; Goiris, K.; De Rouck, G.; Aerts, G.; De Cooman, L. Production of Novel Varietal Hop Aromas by Supercritical Fluid Extraction of Hop Pellets—Part 1: Preparation of Single Variety Total Hop Essential Oils and Polar Hop Essences. J. Supercrit. Fluids 2012, 69, 45–56. [Google Scholar] [CrossRef]
- Duarte, L.M.; Amorim, T.L.; Grazul, R.M.; de Oliveira, M.A.L. Differentiation of Aromatic, Bittering and Dual-Purpose Commercial Hops from Their Terpenic Profiles: An Approach Involving Batch Extraction, GC–MS and Multivariate Analysis. Food Res. Int. 2020, 138, 109768. [Google Scholar] [CrossRef]
- Van Opstaele, F.; Goiris, K.; De Rouck, G.; Aerts, G.; De Cooman, L. Production of Novel Varietal Hop Aromas by Supercritical Fluid Extraction of Hop Pellets—Part 1: Preparation of Single Variety Total Hop Essential Oils and Polar Hop Essences. Cerevisia 2013, 37, 97–108. [Google Scholar] [CrossRef]
EO Component | Linearity Range (g/L) | Correlation Coefficient R2 | LOQ (g/L) | Accuracy (%) | RDS (%) |
---|---|---|---|---|---|
myrcene | 2.72–27.23 | 0.9996 | 1.85 | 102.25 | 2.45 |
linalool | 0.24–1.18 | 0.9994 | 0.09 | 92.71 | 13.93 |
geraniol | 0.16–0.81 | 0.9986 | 0.09 | 80.16 | 9.40 |
β-caryophyllene | 0.12–0.60 | 0.9992 | 0.05 | 96.69 | 9.62 |
α-humulene | 9.36–23.4 | 0.9946 | 2.37 | 100.64 | 4.85 |
farnesene | 1.14–2.86 | 0.9954 | 0.76 | 114.63 | 4.64 |
α-selinene | 0.24–0.60 | 0.9927 | 0.13 | 84.14 | 5.33 |
δ-cadinene | 0.43–0.98 | 0.9976 | 0.26 | 103.25 | 4.20 |
Solvent Used for Extraction | T (°C) | p (bar) | (%) | (%) | (%) |
---|---|---|---|---|---|
CO2 | 20 | 100 | 11.4 | 0.0 | / |
20 | 150 | 11.7 | 0.0 | / | |
40 | 100 | 2.6 | 0.0 | / | |
40 | 150 | 12.2 ± 0.2 a | 0.0 | / | |
60 | 150 | 6.5 | 0.0 | / | |
80 | 150 | 3.7 | 0.0 | / | |
propane | 20 | 50 | 12.6 | 0.0 | / |
20 | 100 | 15.3 | 0.0 | / | |
20 | 150 | 15.3 | 0.0 | / | |
40 | 50 | 15.6 | 0.0 | / | |
40 | 100 | 16.9 | 0.0 | / | |
40 | 150 | 17.8 | 0.04 ± <0.1 | 1.35 | |
60 | 50 | 18.4 | 0.04 ± <0.1 | 1.38 | |
60 | 100 | 18.6 | 0.13 ± <0.1 | 4.57 | |
60 | 150 | 18.7 ± 0.1 b | 0.12 ± <0.1 | 4.21 | |
80 | 50 | 14.3 | 0.0 | / | |
80 | 100 | 16.1 | 0.01 ± <0.1 | 0.30 | |
80 | 150 | 16.9 | 0.01 ± <0.1 | 0.32 | |
DME | 40 | 50 | 24.9 | 1.96 ± 0.1 | 92.11 |
40 | 100 | 22.9 | 1.92 ± 0.1 | 82.83 | |
40 | 150 | 25.3 | 1.72 ± 0.1 | 82.12 | |
60 | 50 | 23.9 | 1.82 ± 0.1 | 81.96 | |
60 | 100 | 24.9 | 1.65 ± 0.1 | 77.56 | |
60 | 150 | 25.6 ± 0.5 c | 1.78 ± 0.1 | 85.96 | |
80 | 50 | 24.7 | 1.20 ± 0.1 | 56.0 | |
80 | 100 | 24.0 | 1.36 ± 0.1 | 61.46 | |
80 | 150 | 23.5 | 1.48 ± 0.1 | 65.62 |
Essential Oil Components Regarding Aroma Group | Spicy-Woody | Floral | Floral | Spicy-Woody | Spicy-Woody | Spicy-Woody | Herbal | Herbal | ||
---|---|---|---|---|---|---|---|---|---|---|
Oil Marker Components | myrcene * (rel.%) | linalool * (rel.%) | geraniol * (rel.%) | β-caryophyllene * (rel.%) | α-humulene * (rel.%) | farnesene * (rel.%) | α-selinene * (rel.%) | δ-cadinene * (rel.%) | ||
Solvent Used for Extraction | T (°C) | p (bar) | ||||||||
CO2 | 20 | 100 | 4.04 ± 0.3 | 0.70 ± <0.1 | 0.39 ± <0.1 | 12.46 ± 0.5 | 33.47 ± 0.7 | 4.71 ± 0.1 | 0.95 ± <0.1 | 2.45 ± 0.1 |
20 | 150 | 2.50 ± 0.2 | 0.77 ± <0.1 | 0.42 ± <0.1 | 12.39 ± 0.5 | 43.74 ± 0.9 | 3.96 ± 0.1 | 0.95 ± <0.1 | 2.36 ± 0.1 | |
40 | 100 | 0.10 ± <0.1 | 0.89 ± <0.1 | 0.42 ± <0.1 | 7.47 ± 0.3 | 28.88 ± 0.6 | 1.67 ± <0.1 | 0.87 ± <0.1 | 1.95 ± 0.1 | |
40 | 150 | 2.57 ± 0.2 | 0.79 ± <0.1 | 0.37 ± <0.1 | 10.28 ± 0.4 | 37.14 ± 0.8 | 3.49 ± 0.1 | 0.92 ± <0.1 | 2.37 ± 0.1 | |
60 | 150 | 0.66 ± <0.1 | 2.60 ± 0.1 | 0.19 ± <0.1 | 13.49 ± 0.6 | 46.30 ± 1.0 | 4.89 ± 0.1 | 0.98 ± <0.1 | 2.55 ± 0.1 | |
80 | 150 | 0.04 ± <0.1 | 0.40 ± <0.1 | 0.48 ± <0.1 | 7.60 ± 0.3 | 31.82 ± 0.7 | 1.31 ± <0.1 | 1.01 ± <0.1 | 2.38 ± 0.1 | |
propane | 20 | 50 | 13.60 ± 0.9 | 0.81 ± <0.1 | 0.66 ± <0.1 | 11.55 ± 0.5 | 34.37 ± 0.7 | 11.73 ± 0.3 | 2.17 ± 0.1 | 1.79 ± 0.1 |
20 | 100 | 17.59 ± 1.2 | 1.12 ± <0.1 | 0.44 ± <0.1 | 11.19 ± 0.5 | 31.19 ± 0.7 | 10.76 ± 0.3 | 1.70 ± 0.1 | 1.43 ± 0.1 | |
20 | 150 | 12.19 ± 0.8 | 0.66 ± <0.1 | 0.36 ± <0.1 | 10.69 ± 0.4 | 32.05 ± 0.7 | 11.15 ± 0.3 | 2.06 ± 0.1 | 1.68 ± 0.1 | |
40 | 50 | 9.25 ± 0.6 | 0.95 ± <0.1 | 0.44 ± <0.1 | 10.67 ± 0.4 | 31.10 ± 0.7 | 10.62 ± 0.3 | 1.92 ± 0.1 | 1.56 ± 0.1 | |
40 | 100 | 14.26 ± 0.9 | 0.67 ± <0.1 | 0.37 ± <0.1 | 9.50 ± 0.4 | 28.74 ± 0.6 | 9.65 ± 0.3 | 1.94 ± 0.1 | 1.53 ± 0.1 | |
40 | 150 | 3.24 ± 0.2 | 0.89 ± <0.1 | 0.45 ± <0.1 | 11.56 ± 0.5 | 36.79 ± 0.8 | 12.44 ± 0.3 | 2.78 ± 0.1 | 2.13 ± 0.1 | |
60 | 50 | 8.12 ± 0.5 | 0.87 ± <0.1 | 0.51 ± <0.1 | 11.08 ± 0.5 | 33.73 ± 0.7 | 11.68 ± 0.3 | 2.36 ± 0.1 | 1.86 ± 0.1 | |
60 | 100 | 5.18 ± 0.3 | 1.12 ± <0.1 | 0.51 ± <0.1 | 10.09 ± 0.4 | 30.24 ± 0.6 | 10.20 ± 0.3 | 2.10 ± 0.1 | 1.55 ± 0.1 | |
60 | 150 | 10.66 ± 0.7 | 0.75 ± <0.1 | 0.42 ± <0.1 | 10.00 ± 0.4 | 30.07 ± 0.6 | 10.16 ± 0.3 | 1.99 ± 0.1 | 1.59 ± 0.1 | |
80 | 50 | 1.53 ± 0.1 | 0.97 ± <0.1 | 0.36 ± <0.1 | 12.48 ± 0.5 | 44.85 ± 0.9 | 2.66 ± 0.1 | 1.07 ± <0.1 | 2.58 ± 0.1 | |
80 | 100 | 2.46 ± 0.2 | 1.77 ± 0.1 | 0.60 ± <0.1 | 9.60 ± 0.4 | 33.87 ± 0.7 | 2.33 ± 0.1 | 2.00 ± 0.1 | 1.87 ± 0.1 | |
80 | 150 | 0.52 ± <0.1 | 1.11 ± <0.1 | 0.61 ± <0.1 | 10.50 ± 0.4 | 38.24 ± 0.8 | 2.25 ± 0.1 | 0.92 ± <0.1 | 2.30 ± 0.1 | |
DME | 40 | 50 | 6.28 ± 0.4 | 0.76 ± <0.1 | 0.40 ± <0.1 | 9.80 ± 0.4 | 30.18 ± 0.6 | 10.39 ± 0.3 | 2.18 ± 0.1 | 1.66 ± 0.1 |
40 | 100 | 9.48 ± 0.6 | 1.12 ± <0.1 | 0.47 ± <0.1 | 9.41 ± 0.4 | 28.65 ± 0.6 | 9.51 ± 0.2 | 2.12 ± 0.1 | 1.52 ± 0.1 | |
40 | 150 | 3.68 ± 0.2 | 0.82 ± <0.1 | 0.44 ± <0.1 | 11.00 ± 0.5 | 33.94 ± 0.7 | 11.26 ± 0.3 | 2.45 ± 0.1 | 1.80 ± 0.1 | |
60 | 50 | 14.47 ± 0.9 | 0.87 ± <0.1 | 0.48 ± <0.1 | 8.75 ± 0.4 | 27.25 ± 0.6 | 8.95 ± 0.2 | 2.11 ± 0.1 | 1.50 ± 0.1 | |
60 | 100 | 15.30 ± 1.0 | 1.11 ± <0.1 | 0.52 ± <0.1 | 8.91 ± 0.4 | 27.53 ± 0.6 | 9.03 ± 0.2 | 2.25 ± 0.1 | 1.52 ± 0.1 | |
60 | 150 | 16.33 ± 1.1 | 0.73 ± <0.1 | 0.41 ± <0.1 | 9.61 ± 0.4 | 30.23 ± 0.6 | 9.78 ± 0.3 | 2.35 ± 0.1 | 1.71 ± 0.1 | |
80 | 50 | 0.29 ± <0.1 | 1.42 ± 0.1 | 0.46 ± <0.1 | 7.89 ± 0.3 | 29.11 ± 0.6 | 2.02 ± <0.1 | 0.67 ± <0.1 | 1.65 ± 0.1 | |
80 | 100 | 1.14 ± 0.1 | 1.60 ± 0.1 | 0.59 ± <0.1 | 8.80 ± 0.4 | 33.47 ± 0.7 | 2.29 ± 0.1 | 0.81 ± <0.1 | 2.13 ± 0.1 | |
80 | 150 | 1.07 ± 0.1 | 1.46 ± 0.1 | 0.50 ± <0.1 | 6.91 ± 0.3 | 27.01 ± 0.6 | 1.94 ± 0.1 | 2.13 ± 0.1 | 1.77 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizaj, K.; Škerget, M.; Košir, I.J.; Knez, Ž. Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. Horticulturae 2022, 8, 368. https://doi.org/10.3390/horticulturae8050368
Bizaj K, Škerget M, Košir IJ, Knez Ž. Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. Horticulturae. 2022; 8(5):368. https://doi.org/10.3390/horticulturae8050368
Chicago/Turabian StyleBizaj, Katja, Mojca Škerget, Iztok Jože Košir, and Željko Knez. 2022. "Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity" Horticulturae 8, no. 5: 368. https://doi.org/10.3390/horticulturae8050368
APA StyleBizaj, K., Škerget, M., Košir, I. J., & Knez, Ž. (2022). Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. Horticulturae, 8(5), 368. https://doi.org/10.3390/horticulturae8050368