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Abstract: This study evaluates the content of essential oils (EOs) and prenylated flavonoid Xantho-
humol (XN) in extracts of Slovenian hops, cultivar Aurora, obtained by using fluids of different
polarity. It is a continuation of our previous work, investigating the extraction of bitter acids from
hops. Extraction was conducted semi-continuously, using sub- and supercritical fluids of different
polarity, i.e., carbon dioxide (CO2) and propane as non-polar and dimethyl ether (DME) as the polar
solvent. The experiments explored a temperature range between 20 ◦C and 80 ◦C and pressures
ranging from 50 bar to 150 bar. The content of XN in extracts was analysed using high-performance
liquid chromatography and experiments demonstrated the largest concentration of XN was obtained
using DME. In order to analyse the EO components in extracts, connected with a distinct odour, the
steam distillation of extracts was performed and GC analysis was employed. Hop oil derived from
CO2 extracts at specific conditions, had the highest relative concentration of linalool, β-caryophyllene
and α-humulene, and oil derived from propane extracts had the highest content of all other five
selected components (myrcene, geraniol, farnesene, α-selinene and δ-cadinene). The relative content
of the investigated EO components in DME extracts was similar to that in propane extracts.

Keywords: hop extract; hop essential oils; flavonoids; carbon dioxide; propane; dimethyl ether

1. Introduction

Humulus lupulus L., more commonly referred to as hops, has a long history. The first
description as “lupus salictarius” dates back to the first century B.C. in the book “Naturalis
Historia” [1]. Hops were first used for medicinal purposes. Nowadays, hops and their
extracts have turned the focus of scientists globally towards exploring the biological effects
when used in conventional medicine. New developments point towards the plant as being
a valuable source of material in the areas of nutraceuticals, dietary supplements and other
health-promoting products. The hop plant is a perennial, herbaceous climbing plant from
the Cannabaceae family that regrows each spring from the rhizomes of its underground
rootstock. It is widely cultivated in Europe, West Asia and North America [2,3]. The plant
is a slender climbing vine that produces stems annually and grows in excess of 6–7 m per
season. It is dioecious, i.e., the plant has separate genders. Male flowers are not cultivated
as they do not develop lupulin glands, whereas female plants do. Wind dispersal aids
the natural pollination of hops [4,5]. Lupulin glands are found in the hop inflorescence
produced by cone-shaped catkins (Figure 1) of female hop plants and are rich in EOs and
resins. These glands are known to contain numerous unique bioactive secondary metabo-
lites, consisting of prenylated flavonoids (xanthohumol and desmethylxanthohumol), bitter
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acids, phenolic compounds and EOs [6]. Substances determined in lupulin are often called
resins and EOs. Hops are generally known as an ingredient in beer. The first records of
using hops in the brewing of beer appeared in the late 11th century [7]. Hop resin content
provides the bitterness and EOs the aroma and flavour. The most abundant components in
the soft resins are hop acids, formed of two groups of compounds, alpha-acids (humulones)
and beta-acids (lupulones). In the brewing process, these act as preservative and bittering
agents [8].
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In the 11th century, a book assigned to the physician Mesue reported the first applica-
tions of hops as a medicinal plant with their anti-inflammatory properties [7]. Hop was
primarily used for the treatment of sleep and anxiety disorders. It was also employed as an
agent to enhance gut function and the improvement of pharmaceutical performance be-
cause of its antimicrobial and antifungal characteristics [9]. Oxidative stress is an important
factor contributing to the development of chronic diseases, and polyphenols extracted from
enriched plants are widely used as a source of natural antioxidants [10]. Over the years it
has been reported about a wide range of further effects, both in vivo and in vitro, including
the treatment of diabetes mellitus, anti-carcinogenesis, and cardiovascular diseases [11].
Hop extracts are a valuable source of bioactive (antibacterial, antifungal, cardioprotective,
antioxidant, anti-inflammatory and antiviral effects, etc.) compounds [12,13]. The most
abundant prenylated flavonoid existing in hops, xanthohumol (XN) (Figure 2), is secreted
within the hop resin (lupulin) by glandular trichomes on the adaxial surfaces of cone
bracts and displays numerous beneficial bioactivities, in particular, including antioxidant
activities [14,15].
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Hop oil is one of the most complex EOs derived from plants. The oil is a mixture of at
least 1000 compounds, which include alcohols, terpenes, organic acids and phenolics [16].
Hop essential oil (HEO) accounts for up to 4.0% of the dried hop weight [17] and hydrocar-
bons represent between 50 and 80% of the total oil content. The main terpenes found are
the monoterpene β-myrcene and the sesquiterpenes β-caryophyllene and α-humulene [18].
The second group are oxygen-containing compounds representing around 30% of the total
oil [19–21] and the third group, the thioesters, sulphides and other sulphur-containing
compounds, are found only in traces [20–24]. Those compounds can be divided into
groups based on the type of aroma they provide, such as citrus, herbal, floral, fruity or
a typical hoppy aroma. However, the greatest contribution of aroma is attributed to the
monoterpene alcohols and oxidation products of mono- and sesquiterpenes [25,26]. HEO
has been used in traditional medicine for centuries because of the healing effects of those
terpenes and terpenoids [7,11,27]. Analgesic, anticancer, sedative and anti-inflammatory
effects are only some of the most important health benefits of HEO. Typically, total hop
oils are isolated from hops in two steps. The first step is liquid or supercritical extraction,
which produces pure resin or oil-rich hop extract. In the second processing step, HEO can
be obtained by steam distillation or molecular distillation of the hop extract under high
vacuum [28]. Further determination of total hop oils into hop essences can be achieved
using chromatographic methods [29].

Many papers have discussed the sub- and supercritical fluid extraction of hops and
the usage of various gases as extracting solvents. The efficiency of the process is frequently
reported to rely on the solvent used. Conventional solvents have good selectivity, a relatively
low boiling point and a low enthalpy of vaporization, facilitating the low energy removal of
the solvent at the end of the process. However, cost reduction, combined with restrictions
placed against organic solvents has reduced the number of available solvents for use. Carbon
dioxide has proved to be a highly efficient primary solvent for extraction as a result of its
deep penetration into biological materials and its high solvent power [21]. Depending on the
conditions and technologies used, a variety of final product compositions can be obtained [30].
CO2 has been used as the primary solvent for over 90% of supercritical fluid extraction
(SFE) studies [21]. Supercritical CO2 is an effective solvent for the extraction of non-polar
compounds, which include hop soft resins, oil and aroma components. Additionally, CO2 has
a large quadrupole moment, which enables it to dissolve some moderately polar compounds
such as polyphenols [31,32]. To extract biologically active prenylated flavonoids such as XN, a
co-solvent is needed. Compressed propane has been proposed as a viable non-polar solvent
in several studies, which demonstrates good extraction yields and a high antioxidant activity
of extracts [33–38].

However, based on the authors’ knowledge, no study has investigated the extraction
process of hops using DME and sulfur hexafluoride (SF6) as solvents. As such, Bizaj
et al. investigated sub- and supercritical extraction of Slovenian hops, Aurora variety, by
using sub- and supercritical fluids of different polarities [39]. DME was used as a polar
solvent, and CO2, propane and SF6 were employed as non-polar solvents. Differences in the
extracted concentrations of α- and β-acids obtained from hop pellets were observed. The
study further determined mass transport coefficients, crucial for the design and scale-up of
the extraction process with mathematical modelling presented in detail. DME at 60 ◦C and
150 bar yielded the highest extraction yield (25.6%). DME also demonstrated tuneability
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with temperature and pressure both having a remarkable effect on the extraction yield and
max. concentration of both α-acids and β-acids. The highest extracted concentration of
α-acids was 9.6% (40 ◦C, 100 bar) and for β-acids, 4.5% (60 ◦C, 50 bar). In the study, propane
proved to be the second-best solvent based on extraction yield (18.7% under operating
conditions 60 ◦C and 150 bar) with concentrations of both α- and β-acids also being high
(8.7% of α-acids and 4.3% of β-acids). With CO2, the maximum yield (12.2%) was reached
at 40 ◦C and 150 bar with a max. concentration of α-acids of 7.9%. SF6 proved to be a very
poor solvent for extracting hop resins, having a maximum extraction yield of only 0.9% at
60 ◦C and 150 bar.

In the present work, the content of hop prenylflavonoid (XN) and EOs have been
determined in hop extracts obtained by the extraction of Slovenian hop cv. Aurora using
CO2, propane and DME, while extracts derived with SF6 as a solvent were not analysed
further because of low extraction yield.

2. Materials and Methods
2.1. Materials

For this research, the hop cultivar Aurora was used. Aurora is a diploid hybrid be-
tween Northern Brewer and a TG seedling of unknown origin. It has an intense hoppy
aroma as well as an intensive green colour. Hop cones were harvested and picked in a
selected hop garden planted in Lower Savinja Valley in Slovenia at their optimal maturities
between 23rd and 30th of August, air dried at 60 ◦C, homogenised and compressed into
pellets. These were consequently purged with inert gas N2 and sealed in laminated poly-
thene/metallised polyester bags. Pellets were stored away from sunlight at temperature
between +1 ◦C to +4 ◦C to inhibit excessive oxidation. The content of XN in raw material
(pellets) was 0.53% (w/w).

CO2 (>99.5% purity) was obtained from Messer Slovenija d.o.o. (Ruše, Slovenia).
Propane (>99.5% purity) and DME (>99.5% purity) were obtained from Linde plin d.o.o.
(Celje, Slovenia). All chemicals used for HPLC and GC analysis were purchased from
Sigma-Aldrich (Darmstadt, Germany).

2.2. Equipment and Experimental Procedures
2.2.1. Methods for Characterization of Material

The pellets were stored in refrigerated storage for a month and then ground in domestic
grinder. To obtain homogeneous hop particles for further experiments the sieve analysis
was performed to separate the fractions. The median particle size of grinded hop pellets
was 1300 µm, determined from particle size distribution curves (frequency and cumulative
arithmetic). Using standard Analytica—EBC method 7.2 (Analytica—EBC 2007) [40], the
moisture content of raw material and extracts was determined. The moisture content was
taken under consideration in all calculations, and therefore yields and concentrations are
expressed on dry basis.

2.2.2. Sub- and Supercritical Fluid Extraction (SFE)

Extractions were conducted using a semi-continuous flow apparatus using CO2,
propane and DME as solvents. The extractions with CO2 and propane were performed at
temperatures 20 ◦C, 40 ◦C, 60 ◦C and 80 ◦C and extractions with DME at 40 ◦C, 60 ◦C and
80 ◦C, while the pressure range was from 100 bar to 150 bar for CO2 and 50 bar to 150 bar
for propane and DME. The apparatus and experimental procedure is described in previous
work [39]. Extracts obtained were stored in dark at temperature between +1 ◦C to +4 ◦C for
further analysis.

Equation (1) was used to calculate the extraction yield.

Yield(Ext.) =
m extract

mo f matrix
∗ 100% (1)
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2.2.3. Analysis of Xanthohumol in Extract by HPLC

According to Analytica—EBC 7.7 method [41], high-performance liquid chromatogra-
phy (HPLC) was employed to determine prenylated flavonoid xanthohumol in extracts,
utilising liquid chromatograph Agilent 1200 Series (Agilent, Palo Alto, CA USA). In total,
0.5 g of hop extract were added to 80 mL of the mixture of diethyl ether/methanol and 0.1M
aqueous hydrochloric acid in a ratio of 10/50/20 (v/v/v). Extracts were filtered through the
Chromafil Xtra PET- 45/25 (Macherey-Nagel, Düren, Germany) disposable syringe filter,
and 10 µL injection loop on HPLC injector was used. The separation was achieved on Nucle-
odur 5–100 C18, 125 × 4 mm HPLC analysis column (Macherey-Nagel, Düren, Germany).
The isocratic mobile phase comprised of distilled water, methanol (J.T.Baker, Phillipsburg,
NJ USA) and 85% aqueous solution of orthophosphoric acid (MERCK, Darmstadt, Ger-
many) in a ratio of 775/210/9 (v/v/v) and the detection was carried out with diode array
detector (DAD) set at 370 nm. The quantification was performed utilising the external
standard (HHV, Mainburg, Germany). All solvents were obtained from Sigma-Aldrich
(Darmstadt, Germany) and were of analytical grade purity.

Yields of XN, which represent the wt% of discharged XN in relation to the initial
concentration of XN in raw material, are calculated using Equation (2)

Yield(XN) =
m(XN)in extract

m(XN)in raw material
× 100% (2)

2.2.4. Analysis of EO Content and Composition by GC

Determination of total EO content in extract was carried out according to Analytica—
EBC 7.10 method [42]. Briefly, 25 g of extract was mixed with 1000 mL of deionized
water and steam distilled for 3 h. Identification and quantification of components of hop
essential oil were carried out according to Analytica—EBC 7.12 method [43]. In total,
0.2 mL of collected oil was diluted with 5 mL of hexane and separated by GC analysis.
Hewlett-Packard 5890 series GC system (Hewlett-Packard, Palo Alto, USA) equipped
with the flame ionisation detector and HP-1 capillary column (30 m × 0.25 mm, 25 µm,
Agilent, Palo Alto, USA) and nitrogen 5.0 as a carrier gas with a flow rate of 0.6 mL min−1

was used. In total, 1 µL of solution was injected in the injector at the temperature of 200 ◦C.
The temperature programme was 1 min at 60 ◦C, 2.5 ◦C min−1 to 190 ◦C, 1 min at 190 ◦C,
70 ◦C min−1 to 240 ◦C and 11 min at 240 ◦C. The detection was carried out on a flame
ionization detector set at 260 ◦C. For all analysed components the standard compounds,
i.e., myrcene, linalool, geraniol, β-caryophyllene, α-humulene, farnesene, α-selinene and δ-
cadinene were used for identification and were purchased from Sigma-Aldrich, Darmstadt,
Germany. Method was validated regarding the linearity at six points over the expected
concentration range, LOQ, accuracy and repeatability (Table 1).

Table 1. Concentration range, correlation coefficients, accuracy, repeatability and LOQ data.

EO Component
Linearity

Range
(g/L)

Correlation
Coefficient

R2

LOQ
(g/L)

Accuracy
(%)

RDS
(%)

myrcene 2.72–27.23 0.9996 1.85 102.25 2.45
linalool 0.24–1.18 0.9994 0.09 92.71 13.93
geraniol 0.16–0.81 0.9986 0.09 80.16 9.40

β-caryophyllene 0.12–0.60 0.9992 0.05 96.69 9.62
α-humulene 9.36–23.4 0.9946 2.37 100.64 4.85

farnesene 1.14–2.86 0.9954 0.76 114.63 4.64
α-selinene 0.24–0.60 0.9927 0.13 84.14 5.33
δ-cadinene 0.43–0.98 0.9976 0.26 103.25 4.20
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3. Results and Discussion
3.1. Content of XN in Hop Extracts

The concentrations of XN in the hop extracts obtained with CO2, propane and DME
are presented in Table 2. The yield of XN calculated using Equation (2) exemplifies the
wt% of the extracted XN in relation to the initial concentration of XN in the raw material.
Equation (1) was used to represent the overall yield of the extraction process in wt%.

Table 2. Yield of extracted Xanthohumol and its concentration in the extracts expressed in weight %
(mean ± SD) prepared by using CO2, propane and DME. (Limit of quantification, LOQ = 0.1%).

Solvent Used for
Extraction

T
(◦C)

p
(bar)

Yield *
(Ext.)

(%)
W **

(XN)
(%)

Yield ***
(XN)

(%)

CO2

20 100 11.4 0.0 /
20 150 11.7 0.0 /
40 100 2.6 0.0 /
40 150 12.2 ± 0.2 a 0.0 /
60 150 6.5 0.0 /
80 150 3.7 0.0 /

propane

20 50 12.6 0.0 /
20 100 15.3 0.0 /
20 150 15.3 0.0 /
40 50 15.6 0.0 /
40 100 16.9 0.0 /
40 150 17.8 0.04 ± <0.1 1.35
60 50 18.4 0.04 ± <0.1 1.38
60 100 18.6 0.13 ± <0.1 4.57
60 150 18.7 ± 0.1 b 0.12 ± <0.1 4.21
80 50 14.3 0.0 /
80 100 16.1 0.01 ± <0.1 0.30
80 150 16.9 0.01 ± <0.1 0.32

DME

40 50 24.9 1.96 ± 0.1 92.11
40 100 22.9 1.92 ± 0.1 82.83
40 150 25.3 1.72 ± 0.1 82.12
60 50 23.9 1.82 ± 0.1 81.96
60 100 24.9 1.65 ± 0.1 77.56
60 150 25.6 ± 0.5 c 1.78 ± 0.1 85.96
80 50 24.7 1.20 ± 0.1 56.0
80 100 24.0 1.36 ± 0.1 61.46
80 150 23.5 1.48 ± 0.1 65.62

* Extraction yield expressed in wt%, a, b, c—based on triplicate experiments (mean ± standard deviation). **
Concentration of xanthohumol in extract expressed in wt% (mean ± standard deviation). *** Yield of xanthohumol
isolated regarding initial concentration of xanthohumol in raw material expressed in wt%.

XN is a flavonoid of the chalcone group. It is a non-polar compound that is only
partially soluble in hot water but highly soluble in alcohol or alcohol–water mixtures. On
the other hand, it is insoluble in non-polar solvents such as hexane. In the literature, the
extraction process using non-polar CO2 is described as inept for XN extraction [44–47],
unless an organic co-solvent is added. However, it has been found that CO2 can be a good
solvent for XN at pressures above 500 bar and temperatures above 60 ◦C [48]. The results
of the present work (Table 2) agree with the previous findings and show that, although
CO2 generally acts as a selective solvent for the extraction of non-polar compounds, it
does not dissolve XN in the temperature and pressure ranges investigated. The fraction of
hops extracted by CO2, under sub- and supercritical conditions at densities ranging from
427.2 kg/m3 to 904.0 kg/m3, contained hop bitter acids (α-acids and β-acids) [39] and hop
oil, and no XN was found. In the case of propane, the maximal concentration of XN in the
extract was obtained at conditions that also gave the maximal yield of extraction (60 ◦C
and 100 bar).
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The highest yields of XN were obtained with DME, which were 20 times greater than
for extracts obtained using propane. These results were obtained with DME at 40 ◦C and
50 bar. Increasing the pressure to 150 bar, the yield of XN decreased. Conversely, at 80 ◦C,
the yield of extraction decreased but the yields increased with increasing pressure. When
comparing the results, the highest yield of XN (92.1%) was obtained by extraction with
DME at 40 ◦C and 50 bar where the extraction yield was also high (24.9%). The results
show that XN is highly soluble in DME, making it possible to extract almost all XN from
the raw material.

3.2. Identification and Evaluation of the Selected Essential Oil Components in Extracts

Figure 3 gives a typical chromatogram, and the relative amounts (rel.%) of hop
oil components in hop extracts obtained with CO2, propane and DME are presented
in Table 3. These identified components were myrcene, linalool, geraniol, β-caryophyllene,
α-humulene, farnesene, α-selinene and δ-cadinene. Compounds in HEO can be divided
into groups, based on the type of aroma they provide. The aromas presented in this paper
are floral, herbal and spicy-woody or a typical hoppy aroma. The greatest contribution
to the aroma is attributed to the oxidation products of mono- and sesquiterpenes [25,26],
and their contributions to the woody or spicy characteristics have been reported [49,50].
The most aroma-contributing compound and quality indicator of hops is linalool with a
floral odour, and it is the major constituent of the alcohol fraction, followed by geraniol [51].
Both are noted as highly flavour active and contribute to the aroma in terms of floral
and citrus odours. Linalool is a hydration product of myrcene and, during fermentation,
geraniol can also be transformed to some extent into linalool [52]. Oxidation degradation
products of sesquiterpenes are generally sesquiterpene alcohols, and the oxidation products
of α-humulene and β-caryophyllene are the epoxides found in hops [23].
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Table 3. Evaluation of hop oil marker components, connected with a distinct odour, present in the oil in extracts derived with different solvents in combination with
different pressures and temperatures, expressed in relative %.

Essential Oil Components Regarding Aroma Group Spicy-Woody Floral Floral Spicy-Woody Spicy-Woody Spicy-Woody Herbal Herbal

Oil Marker Components myrcene *
(rel.%)

linalool *
(rel.%)

geraniol *
(rel.%)

β-
caryophyllene *

(rel.%)

α-humulene *
(rel.%)

farnesene *
(rel.%)

α-selinene *
(rel.%)

δ-cadinene *
(rel.%)

Solvent Used for
Extraction

T
(◦C)

p
(bar)

CO2

20 100 4.04 ± 0.3 0.70 ± <0.1 0.39 ± <0.1 12.46 ± 0.5 33.47 ± 0.7 4.71 ± 0.1 0.95 ± <0.1 2.45 ± 0.1
20 150 2.50 ± 0.2 0.77 ± <0.1 0.42 ± <0.1 12.39 ± 0.5 43.74 ± 0.9 3.96 ± 0.1 0.95 ± <0.1 2.36 ± 0.1
40 100 0.10 ± <0.1 0.89 ± <0.1 0.42 ± <0.1 7.47 ± 0.3 28.88 ± 0.6 1.67 ± <0.1 0.87 ± <0.1 1.95 ± 0.1
40 150 2.57 ± 0.2 0.79 ± <0.1 0.37 ± <0.1 10.28 ± 0.4 37.14 ± 0.8 3.49 ± 0.1 0.92 ± <0.1 2.37 ± 0.1
60 150 0.66 ± <0.1 2.60 ± 0.1 0.19 ± <0.1 13.49 ± 0.6 46.30 ± 1.0 4.89 ± 0.1 0.98 ± <0.1 2.55 ± 0.1
80 150 0.04 ± <0.1 0.40 ± <0.1 0.48 ± <0.1 7.60 ± 0.3 31.82 ± 0.7 1.31 ± <0.1 1.01 ± <0.1 2.38 ± 0.1

propane

20 50 13.60 ± 0.9 0.81 ± <0.1 0.66 ± <0.1 11.55 ± 0.5 34.37 ± 0.7 11.73 ± 0.3 2.17 ± 0.1 1.79 ± 0.1
20 100 17.59 ± 1.2 1.12 ± <0.1 0.44 ± <0.1 11.19 ± 0.5 31.19 ± 0.7 10.76 ± 0.3 1.70 ± 0.1 1.43 ± 0.1
20 150 12.19 ± 0.8 0.66 ± <0.1 0.36 ± <0.1 10.69 ± 0.4 32.05 ± 0.7 11.15 ± 0.3 2.06 ± 0.1 1.68 ± 0.1
40 50 9.25 ± 0.6 0.95 ± <0.1 0.44 ± <0.1 10.67 ± 0.4 31.10 ± 0.7 10.62 ± 0.3 1.92 ± 0.1 1.56 ± 0.1
40 100 14.26 ± 0.9 0.67 ± <0.1 0.37 ± <0.1 9.50 ± 0.4 28.74 ± 0.6 9.65 ± 0.3 1.94 ± 0.1 1.53 ± 0.1
40 150 3.24 ± 0.2 0.89 ± <0.1 0.45 ± <0.1 11.56 ± 0.5 36.79 ± 0.8 12.44 ± 0.3 2.78 ± 0.1 2.13 ± 0.1
60 50 8.12 ± 0.5 0.87 ± <0.1 0.51 ± <0.1 11.08 ± 0.5 33.73 ± 0.7 11.68 ± 0.3 2.36 ± 0.1 1.86 ± 0.1
60 100 5.18 ± 0.3 1.12 ± <0.1 0.51 ± <0.1 10.09 ± 0.4 30.24 ± 0.6 10.20 ± 0.3 2.10 ± 0.1 1.55 ± 0.1
60 150 10.66 ± 0.7 0.75 ± <0.1 0.42 ± <0.1 10.00 ± 0.4 30.07 ± 0.6 10.16 ± 0.3 1.99 ± 0.1 1.59 ± 0.1
80 50 1.53 ± 0.1 0.97 ± <0.1 0.36 ± <0.1 12.48 ± 0.5 44.85 ± 0.9 2.66 ± 0.1 1.07 ± <0.1 2.58 ± 0.1
80 100 2.46 ± 0.2 1.77 ± 0.1 0.60 ± <0.1 9.60 ± 0.4 33.87 ± 0.7 2.33 ± 0.1 2.00 ± 0.1 1.87 ± 0.1
80 150 0.52 ± <0.1 1.11 ± <0.1 0.61 ± <0.1 10.50 ± 0.4 38.24 ± 0.8 2.25 ± 0.1 0.92 ± <0.1 2.30 ± 0.1

DME

40 50 6.28 ± 0.4 0.76 ± <0.1 0.40 ± <0.1 9.80 ± 0.4 30.18 ± 0.6 10.39 ± 0.3 2.18 ± 0.1 1.66 ± 0.1
40 100 9.48 ± 0.6 1.12 ± <0.1 0.47 ± <0.1 9.41 ± 0.4 28.65 ± 0.6 9.51 ± 0.2 2.12 ± 0.1 1.52 ± 0.1
40 150 3.68 ± 0.2 0.82 ± <0.1 0.44 ± <0.1 11.00 ± 0.5 33.94 ± 0.7 11.26 ± 0.3 2.45 ± 0.1 1.80 ± 0.1
60 50 14.47 ± 0.9 0.87 ± <0.1 0.48 ± <0.1 8.75 ± 0.4 27.25 ± 0.6 8.95 ± 0.2 2.11 ± 0.1 1.50 ± 0.1
60 100 15.30 ± 1.0 1.11 ± <0.1 0.52 ± <0.1 8.91 ± 0.4 27.53 ± 0.6 9.03 ± 0.2 2.25 ± 0.1 1.52 ± 0.1
60 150 16.33 ± 1.1 0.73 ± <0.1 0.41 ± <0.1 9.61 ± 0.4 30.23 ± 0.6 9.78 ± 0.3 2.35 ± 0.1 1.71 ± 0.1
80 50 0.29 ± <0.1 1.42 ± 0.1 0.46 ± <0.1 7.89 ± 0.3 29.11 ± 0.6 2.02 ± <0.1 0.67 ± <0.1 1.65 ± 0.1
80 100 1.14 ± 0.1 1.60 ± 0.1 0.59 ± <0.1 8.80 ± 0.4 33.47 ± 0.7 2.29 ± 0.1 0.81 ± <0.1 2.13 ± 0.1
80 150 1.07 ± 0.1 1.46 ± 0.1 0.50 ± <0.1 6.91 ± 0.3 27.01 ± 0.6 1.94 ± 0.1 2.13 ± 0.1 1.77 ± 0.1

* Relative amount of selected components in HEO expressed in wt% (mean ± standard deviation).
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The composition of the volatile mixtures present in extract fractions were influenced
by temperature, pressure and the selected solvent applied during the extraction. The main
terpenes myrcene, β-caryophyllene and α-humulene represented the major peaks and values
as can be observed from Figure 3 and Table 3. However, their relative contents varied
for various solvents used in the extraction. Both sesquiterpenes, β-caryophyllene and α-
humulene, have a similar structure and are less polar than the monoterpene myrcene. Hence,
sesquiterpenes were extracted more easily with CO2 because they are less polar than propane.
Myrcene was more soluble in propane and had the highest relative value of 17.6 rel.% observed
at 20 ◦C and 100 bar. The volatiles identified with CO2 as a solvent were similar to those
reported for the EOs, obtained by F. Van Opsteale et al. [53] and Duarte et al. [54], respectively.

The second greatest content of myrcene was detected in the DME extract obtained at
60 ◦C and 150 bar (16.3 rel.%), although DME is a more polar and aprotic solvent. Linalool
concentration varied from 0.4 rel.% to 2.6 rel.% and the best solvent was proven to be
CO2 at 60 ◦C and 150 bar (2.6 rel.%), while the concentration in propane and DME was
similar (1.8 rel.% and 1.6 rel.%). On the other hand, farnesene content was the highest in the
propane extract at 40 ◦C and 150 bar (12.4 rel.%); in the CO2 extract, lower concentrations
were detected (from 1.3 rel.% to 4.9 rel.%), but, interestingly, in DME at a lower temperature,
40 ◦C, and the highest pressure, 150 bar, relatively high concentrations were detected
(11.3 rel.%). Additionally, values related to α-selinene were the highest in propane-derived
oil (2.8 rel.%) and DME at 40 ◦C and 150 bar (2.5 rel.%). Furthermore, δ-cadinene identified
in oil derived with both non-polar solvents had the highest concentrations of around
2.5 rel.%. All 27 hop oil samples presented an interesting terpenic profile. In line with
expectations, the major compounds in all samples were myrcene, β-caryophyllene and
α-humulene. Linalool, geraniol, farnesene, α-selinene and δ-cadinene were identified in all
samples, although in much lower relative content. The temperature, pressure and selected
solvent applied during the extraction influenced the composition of volatile compounds
present in the fractions of the various extracts. Both non-polar solvents (CO2 and propane)
showed a relatively similar chemical profile of volatiles with a majority of sesquiterpenes,
but some deviations must be noted. As such, the extracts of cv. Aurora derived with
propane had a better terpenic profile with the highest myrcene content, while CO2 extracts
had better relative values of β-caryophyllene and α-humulene. In the review published
by F. Van Opstaele et al. [55] regarding SFE of plant EO, it is explained that at a carbon
dioxide density of 0.50 g/mL, hop oxygenated sesquiterpenoids required longer extraction
times due to their higher molecular weight and polarity, and were completely extracted
after 125 min. Therefore, in order to extract total hop oil with CO2, 125 min is the minimum
extraction time under the applied experimental conditions. The extraction time in the
present work was around 90 min (data not shown), thus, this could be the reason for
the lower value of myrcene in the CO2 extract. Hop EOs derived with DME somehow
had a lower relative amount than all the investigated components, but the difference was
not significant.

4. Conclusions

In this study, extracts of hop cones of Slovenian cultivar Aurora, obtained by sub-
and supercritical CO2, propane and DME extraction processes, were analysed for their
flavonoid xanthohumol and volatile compounds content, using HPLC and GC methods,
respectively. The differences between 27 different hop extracts were observed using a
variety of solvents in the extraction process. The results showed that, in spite of the fact
that CO2 acts as a selective solvent for the extraction of non-polar compounds, it was an
ineffective solvent for XN over the experimental temperature (from 20 ◦C to 80 ◦C) and
pressure (from 100 to 150 bar) range. Conversely, DME acts as a polar solvent and the
data show it to be the best solvent for dissolving XN from hops, which, to the best of our
knowledge, has not yet been reported in the literature. The highest yield of XN of 92.11%
(concentration in extract 1.96 wt%) was observed at 40 ◦C and 50 bar.
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Overall, DME showed high variability in solvent power with temperature and pressure
both having a remarkable effect on the extraction yield and also on the max. concentration
of both acids (α-acids and β-acids) presented in our previous study [39]. With propane,
the max. yield of XN was reached at 60 ◦C and 100 bar and it was 4.57% (0.13 wt% in
extract). The opposite findings were noted for the hop oil content in extracts. Hop oil
derived from CO2 extracts at specific conditions had the highest relative values of linalool,
β-caryophyllene and α-humulene, and oil derived with propane had the highest content
of the other five investigated components (myrcene, geraniol, farnesene, α-selinene and
δ-cadinene). Results also showed that for the extraction of hop essential oils, DME is not
that superior—as for the extraction of acids and XN. At operating conditions, this study
demonstrated that the relative content of selected essential oil components in DME extracts
is similar to that in propane extracts.
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8. MacKinnon, D.; Pavlovič, V.; Čeh, B.; Naglič, B.; Pavlovič, M. The Impact of Weather Conditions on Alpha-Acid Content in Hop

(Humulus lupulus L.) Cv. Aurora. Plant Soil Environ. 2020, 66, 519–525. [CrossRef]
9. Rodrigues Arruda, T.; Fontes Pinheiro, P.; Ibrahim Silva, P.; Campos Bernardes, P. Exclusive Raw Material for Beer Production?

Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry.
Food Bioprocess Technol. 2022, 15, 275–305. [CrossRef]

10. Kontek, B.; Jedrejek, D.; Oleszek, W.; Olas, B. Antiradical and Antioxidant Activity in Vitro of Hops-Derived Extracts Rich in
Bitter Acids and Xanthohumol. Ind. Crops Prod. 2021, 161, 113208. [CrossRef]

11. Zanoli, P.; Zavatti, M. Pharmacognostic and Pharmacological Profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396.
[CrossRef] [PubMed]

12. Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional
Biomolecules. Appl. Sci. 2020, 10, 5074. [CrossRef]

13. Afonso, S.; Arrobas, M.; Pereira, E.L.; Rodrigues, M.A. Recycling nutrient-rich hop leaves by composting with wheat straw and
farmyard manure in suitable mixtures. J. Environ. Manag. 2021, 284, 112105. [CrossRef] [PubMed]

14. Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological Profile of Xanthohumol, a
Prenylated Flavonoid from Hops (Humulus lupulus). Molecules 2015, 20, 754–779. [CrossRef] [PubMed]

http://doi.org/10.1021/np800740m
http://www.ncbi.nlm.nih.gov/pubmed/19476340
http://doi.org/10.1016/j.plaphy.2021.01.006
http://www.ncbi.nlm.nih.gov/pubmed/33445042
http://doi.org/10.1111/1541-4337.12201
http://www.ncbi.nlm.nih.gov/pubmed/33401815
http://doi.org/10.1016/j.phytochem.2003.11.016
http://www.ncbi.nlm.nih.gov/pubmed/15003419
http://doi.org/10.3390/ijms21010233
http://doi.org/10.1094/TQ-46-2-0416-01
http://doi.org/10.17221/344/2020-PSE
http://doi.org/10.1007/s11947-021-02716-w
http://doi.org/10.1016/j.indcrop.2020.113208
http://doi.org/10.1016/j.jep.2008.01.011
http://www.ncbi.nlm.nih.gov/pubmed/18308492
http://doi.org/10.3390/app10155074
http://doi.org/10.1016/j.jenvman.2021.112105
http://www.ncbi.nlm.nih.gov/pubmed/33567356
http://doi.org/10.3390/molecules20010754
http://www.ncbi.nlm.nih.gov/pubmed/25574819


Horticulturae 2022, 8, 368 11 of 12

15. Machado, J.C.; Faria, M.A.; Melo, A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O. Modeling of α-Acids and Xanthohumol Extraction in
Dry-Hopped Beers. Food Chem. 2019, 278, 216–222. [CrossRef] [PubMed]

16. Roberts, M.T.; Dufour, J.-P.; Lewis, A.C. Application of Comprehensive Multidimensional Gas Chromatography Combined with
Time-of-Flight Mass Spectrometry (GC × GC-TOFMS) for High Resolution Analysis of Hop Essential Oil. J. Sep. Sci. 2004, 27,
473–478. [CrossRef]

17. Bordiga, M.; Nollet, L.M.L. Food Aroma Evolution: During Food Processing, Cooking, and Aging; CRC Press: Boca Raton, FL, USA,
2019; ISBN 978-0-429-80724-4.

18. Inui, T.; Tsuchiya, F.; Ishimaru, M.; Oka, K.; Komura, H. Different Beers with Different Hops. Relevant Compounds for Their
Aroma Characteristics. J. Agric. Food Chem. 2013, 61, 4758–4764. [CrossRef]

19. Stevens, R. The Chemistry of Hop Constituents. Available online: https://pubs.acs.org/doi/pdf/10.1021/cr60245a002 (accessed
on 13 February 2022).

20. Sharpe, F.R.; Laws, D.R.J. The Essential Oil of Hops a Review. J. Inst. Brew. 1981, 87, 96–107. [CrossRef]
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