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Abstract: Lignin is crucial to the formation of fruit texture quality. Here, we aimed to explore the
relationship between lignin metabolism and fruit texture by investigating the lignin content, total
phenols and their related enzyme activities among three Chinese olive (Canarium album (Lour.)
Raeusch) genotypes. Our results showed that lignin deposition moved from the exocarp to the flesh
in Chinese olive fruit. The lignin, total phenols and enzyme activities were all different between
the three Chinese olive cultivars at each developmental stage. The lignin content was positively
correlated with the PAL, 4CL and POD activities. These results demonstrated that lignin metabolism
was regulated through the related enzyme activities. Therefore, our findings may provide insight to
facilitate further improvement in fruit texture quality in Chinese olive.

Keywords: Canarium album; fruit quality; texture; flavor; phenols

1. Introduction

Chinese olive (Canarium album (Lour.) Raeusch) is an evergreen tree that grows in
the tropical and subtropical regions of China. The fruit are rich in various nutrients, such
as polyphenols, flavonoids, dietary fiber and calcium. The fresh fruit of Chinese olive is
quite popular among customers, as well as their processed fruit. The delicate flesh, crisp
texture and few wood fibers make Chinese olive fruit easy to chew and leave a sweet
aftertaste. Meanwhile, lignin plays an important role in the fruit texture and quality of
Chinese olive [1].

Lignin is crucial to plants, which produces strength and rigidity, delivers water and
resists external adverse factors during growth and development [2]. However, more lignin
content is not beneficial to fruit. The lignin biosynthetic pathway is widely known (Figure 1).
Lignin is an aromatic polymer that is deposited in the secondary cell walls of vascular
plants [3]. It derives primarily from the oxidative polymerization of three hydroxycinnamyl
alcohol monomers, namely, p-coumaryl, coniferyl and sinapyl alcohols, which form the p-
hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units, respectively [4,5]. In general, lignin
is produced mainly through the biosynthesis of lignin monomers and their transportation
and polymerization [6]. Lignin biosynthesis is catalyzed via a series of enzymes, including
PAL (phenylalanine ammonia-lyase), 4CL (4-coumarate-CoA ligase), CAD (cinnamyl-
alcohol dehydrogenase), CCR (cinnamoyl-CoA reductase) and peroxidases (PODs). PAL is
the first key rate-limiting enzyme in the metabolic pathway of phenylpropane, catalyzing
the deamination of phenylalanine to generate trans-cinnamic acid [7]. Then, 4CL is an
upstream key enzyme in the lignin biosynthesis pathway and participates in the production
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of p-coumaroyl-CoA from hydroxycinnamic acid [8]. CAD is a rate-limiting enzyme that
converts cinnamyl aldehyde into cinnamyl alcohol [9]. In addition, CCR is a key enzyme
for the production of the lignin monomer [10]. It was reported that the class III POD plays
important roles in the polymerization of lignin [11].
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Figure 1. Lignin biosynthetic pathway.

In this study, the lignin and total phenols contents, as well as corresponding enzyme
activities of the lignin metabolism, were investigated among three Chinese olive cultivars,
namely, ‘Changying’ (CY, used mainly for processing), ‘Tanxiang’ (TX, used mainly for
fresh consumption) and ‘Lingfeng’ (LF, used mainly for fresh consumption), over several
different fruit developmental stages. The results provided the relationship between lignin
metabolism and fruit sizes and may lay a foundation for the future improvement of the
fruit texture quality underlying the lignin biosynthesis in Chinese olive fruit.

2. Materials and Methods
2.1. Plant Material

Three Chinese olive cultivars, namely, ‘Changying’ (CY), ‘Tanxiang’ (TX) and ‘Lingfeng’
(LF), were selected as the experiment materials. Three trees were selected from each cultivar,
where all trees were 10 years old, grew well and had no diseases or insect pests. All the trees
were located in the Sweet Chinese Olive Base of Chinese Olive Specialty Cooperative in
Shiyinshan, Minqing County, Fuzhou, Fujian Province (118◦86′ east longitude, 26◦29′ north
latitude). The fruit were picked for the first time on the 50th day after flowering (DAF,
18 July 2019), and then were picked every 20 days until the 170th DAF (14 November 2019).
A total of 45 fruit from each cultivar at each stage were randomly assigned into three groups
with 15 fruit per group, and each group served as a biological replicate. The fruit pits were
removed and the fruit flesh was cut into slices; then, the fruit slices were frozen in liquid
nitrogen and stored at −80 ◦C.

2.2. Methods
2.2.1. Measurement of Fruit Weight and Size

An electronic analytical balance was used to measure the fruit weight, and an electronic
vernier caliper was used to measure the vertical and horizontal diameters of the fruit. Fruit
shape index = vertical diameter/horizontal diameter.
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2.2.2. Observation of Lignin Deposition

Lignin deposition was observed with phloroglucinol-hydrochloric acid [12], and the
pictures were taken using a Nikon (SMZ25) stereo microscope.

2.2.3. Determination of Lignin, Total Phenols Content and Enzyme Activities

The processed sample was taken from the refrigerator at −80 ◦C. Each cultivar and
each stage provided three biological replicates, with 63 samples in total. Lignin was
extracted with thioglycolic acid and measured spectrophotometrically [13]. The total
phenols content was measured according to the method [14,15].

The enzyme activities of PAL, 4CL, CAD and CCR were detected using an enzyme-
linked immunosorbent assay kit (Elisa). Briefly, 1 g samples with 10 mL PBS (pH 7.4) were
homogenized by hand on ice and centrifuged at 3000× g (4 ◦C, 20 min). The resultant
supernatant was used as the activity assays of PAL, 4CL, CAD and CCR.

POD activity was measured according to the references [16,17]. Briefly, 1 g samples
with 5 mL PBS solution (pH 7.0) were grounded on ice, then centrifuged at 15,000× g (4 ◦C,
15 min) and the supernatant was gathered as an enzyme fluid for testing. The reaction
mixture included PBS solution (pH 6.0), H2O2 (30%) and guaiacol. A total of 5 µL of enzyme
fluid was mixed with a 3 mL reaction mixture for the reactions. A total of 5 µL of PBS
solution (pH 7.0) was used as the reference. The absorbances at 470 nm were determined at
0 min and 5 min, and the difference (∆A470) was obtained. The POD active single bit (U)
was expressed as the change in absorbance per minute (∆A470·min−1·g−1 (FW)).

2.2.4. Data Analysis

Excel software was used to analyze the data and make graphs. The analysis of variance
(ANOVA) was performed using SPSS software (ver.22.0). Duncan’s multiple range test was
used to compare the means.

3. Results
3.1. The Growth and Development Status of Three Chinese Olive Cultivars’ Fruit

During the fruit development, the fruit weights of CY, TX and LF first increased
and then stayed relatively stable from the 130th DAF (10.42 g) to the 170th DAF (10.34 g)
(Figure 2A). The shape index changed slightly during the whole fruit development. The
CY fruit was long and spindly (shape index, 1.94), while TX was oval (shape index, 1.51)
and LF was elliptical (shape index, 1.73) (Figure 2B).

During fruit development, the CY fruit changed from green to light yellow-green.
TX changed from blue-green to green-yellow and LF changed from light green to yellow
(Figure 3).

3.2. Lignin Deposition in Flesh during Fruit Development

On the 50th DAF, part of the fruit endocarp turned light red and started to become
lignified, and the mesocarp presented as light red with a star or dot shape (small part)
(Figure 4A). On the 70th DAF, the endocarp was further lignified and appeared dark red.
The mesocarp near the endocarp became red with a star or dot shape on the 90th DAF. On
the 110th DAF, the color area of the mesocarp spread outward. On the 130th DAF, a large
number of woody cells gathered on the vascular bundles of the mesocarp, the endocarp
was highly lignified and a hard pit had developed.

The TX fruit was taken as the example to present the crosscutting structure (Figure 4B).
The endocarp had a color reaction and lignification on the 50th DAF, and the vascular
bundles of the mesocarp appeared pink with a star or dot shape (small part). On the
170th DAF, the endocarp was highly lignified and had a large number of woody cells
gathered on the vascular bundles of the mesocarp, which were distributed radially on the
mesocarp tissue.
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Figure 2. Fruit weight and shape indexes of Chinese olives at different developmental stages.
(A) Single fruit weight, (B) Fruit shape index.

3.3. Lignin Content and Total Phenols in Fruit Flesh at Different Developmental Stages

During fruit development, the changes in lignin differed between the three Chinese
olive cultivars (Figure 5A). The lignin content in the CY fruit first increased to the highest
value (3.73 mg·g−1) on the 70th DAF, decreased later and then rose again from the 90th
DAF to the 170th DAF (Figure 5A). The lignin content in TX rose gradually and reached the
highest value (2.64 mg·g−1) on the 170th DAF (Figure 5A). The lignin in LF rose first and
then decreased, the highest value of lignin content (2.87 mg·g−1) appeared on the 130th
DAF and then dropped sharply to the final stage (Figure 5A). On the 170th DAF, the LF
fruit contained a lower amount of lignin than the other two cultivars (Figure 5A).
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pulp filling and core hardening), and the right image: 170 DAF (the stage of fruit maturity).
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Figure 5. Concentrations of lignin and total phenols among three Chinese olive cultivars at different
fruit developmental stages. Different letters indicate significant differences between different varieties
within each stage (p < 0.05). (A) Lignin, (B) Total phenols.

The trend of change in total phenols content first rose and then dropped in all three
Chinese olive cultivars (Figure 5B). The total phenols in the CY fruit changed greatly during
the whole process, while that in TX and LF changed slightly (Figure 5B). The total phenols
in CY fruit rose sharply, up to the highest value (10.91 mg·g−1) on the 110th DAF, while the
highest values of total phenols in TX (10.71 mg·g−1) and LF (7.42 mg·g−1) both appeared
on the 130th DAF (Figure 5B). In general, the total phenols in CY and TX were higher than
that in LF during the fruit development (Figure 5B).

3.4. Measurement of the Activities of Lignin-Metabolism-Related Enzymes

During fruit development, the PAL activities presented an M-shaped trend in all three
Chinese olive cultivars and maintained a low level on the 50th DAF (Figure 6A). The PAL
activities in the CY and TX fruit were the highest on the 150th DAF, which was 20 days
later than that in LF (Figure 6A). On the 170th DAF, the PAL activities dropped in all three
Chinese olive cultivars (Figure 6A).

However, the 4CL activities changed differently between the three Chinese olive
cultivars (Figure 6B). The 4CL activity in CY fruit first dropped, rose later, then dropped
and rose again, which reached the highest value on the 90th DAF (Figure 6B). The 4CL
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activity in TX first rose and then dropped, and the highest value appeared on the 150th
DAF (Figure 6B). The 4CL activity in LF first went up, fell later, then rose and declined
again, and the highest value appeared on the 130th DAF (Figure 6B). In general, the 4CL
activities changed significantly in all the three Chinese olive cultivars from the 90th to 130th
DAF (Figure 6B). On the 170th DAF, the 4CL activity in TX was significantly lower than
that in CY and LF (Figure 6B).

The CAD activities first rose and then declined in all three Chinese olive fruit (Figure 6C).
The highest values of CAD activity in CY, TX and LF appeared on the 110th DAF, 90th
DAF and 130th DAF, respectively (Figure 6C). The CAD activities changed greatly from the
70th to 110th DAF in all three cultivars (Figure 6C). From the 150th to 170th DAF, the CAD
activity in LF was obviously lower than that in the other two (Figure 6C).

The CCR activities changed differently from each other among the three cultivars
(Figure 6D). The CCR activity in CY first dropped and then increased to the highest value on
the 170th DAF, while CCR activities in TX and LF first rose and then dropped (Figure 6D).
The CCR activities in TX and LF reached the highest value on the 130th DAF and 70th DAF,
respectively (Figure 6D). On the 170th DAF, the CCR activity in CY was obviously higher
than that in the other two (Figure 6D).
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Figure 6. Activities of lignin synthesis enzymes in Chinese olive fruit at different developmental
stages. Different letters indicate significant differences between the three varieties within each stage
(p < 0.05). (A) PAL, (B) 4CL, (C) CAD, (D) CCR and (E) POD.
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The POD activities first declined, rose later and then declined again in all three cultivars
(Figure 6E). On the 170th DAF, the POD activity in CY was obviously higher than that in
TX and LF (Figure 6E).

3.5. Correlation Analysis

There was a negative correlation between lignin content and total phenols (Table 1). In
contrast, lignin content was positively correlated with PAL, 4CL and POD enzyme activities
but negatively correlated with CAD and CCR enzyme activities (Table 1). Furthermore, total
phenols were positively correlated with CAD enzyme activities but negatively correlated
with PAL, 4CL, CCR and POD enzyme activities (Table 1).

Table 1. Correlation analysis of lignin content, total phenol and enzyme activities.

Lignin
Content

Total
Phenols PAL 4CL CAD CCR POD

Lignin
Content 1 −0.252 0.426 0.119 −0.110 −0.025 0.264

Total
Phenols 1 −0.289 −0.049 0.218 −0.080 −0.195

PAL 1 0.208 0.258 0.238 0.286
4CL 1 0.042 0.143 −0.158
CAD 1 0.323 0.062
CCR 1 0.353
POD 1

4. Discussion

Chinese olive is a kind of stone fruit, and the flesh is made up of an exocarp and
mesocarp. The exocarp consists of an epidermal cell layer, while the mesocarp is regularly
scattered with vascular bundles, and the endocarp develops into a hard pit. In this study,
we found that lignin deposition in Chinese olive fruit first started from the exocarp and
spread outward; then, the vascular tissue of the flesh was gradually lignified. During
the maturing stage, the endocarp was highly lignified, and the vascular bundles of the
mesocarp presented lignin distribution in the three Chinese olive cultivars.

Lignin metabolism in plants was widely reported. For example, lignin content in-
creased initially and decreased afterward during pear fruit development [18]. In tobacco
leaves, the accumulation of lignin gradually increased first, then slowly decreased during
maturation [19]. Here, we discovered that the changes in lignin content differed between
the three Chinese olive cultivars, and may have caused the diverse range of fruit textures.

Lignin and its precursors, namely, phenols, are both derived from the phenylpropane
metabolic pathway. In fresh waxy corn, the lignin content was significantly correlated with
the polyphenol content and firmness [20]. The fruit firmness and lignin content increased
while the total phenols decreased in damaged mangosteen pericarp [21]. Interestingly, the
increase in the firmness of mangosteen pericarp after impact was related to the increased ac-
tivities of the enzymes required for lignin biosynthesis but not for phenol biosynthesis [22].
In this work, the total phenols content changed differently between the three cultivars
during the whole developmental process. Correlation analysis showed that total phenols
content was negatively correlated with lignin content, suggesting that total phenols were
related to lignin biosynthesis.

Lignin biosynthesis involves a series of enzymes, including PAL, 4CL, CAD, CCR
and POD [23]. The lignin content is closely related to the enzyme activities of PAL, 4CL,
CAD and POD in buckwheat [24]. It was reported that PAL, CAD and POD are involved
in lignin biosynthesis in postharvest bamboo shoots [25], and similar results were also
found in loquat [26] and mangosteen [27]. The accumulation of lignin in the flesh tissue of
water bamboo shoots was positively correlated with PAL and POD activities [28]. The rise
in PAL activity did not necessarily result in an increase in lignin in cherimoya fruit [29].
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Furthermore, 4CL was suggested to participate in the regulation of lignin and flavonoid
biosynthesis in Chinese pear [30]. POD activity was related to lignin content in Arabidopsis
thaliana [31]. Here, PAL activities generally presented an M-shaped trend during the process
of ripening and showed no significant differences between the three Chinese olive cultivars
within each stage from the 70th DAF to 170th DAF. The M-shaped trend indicated that
PAL activities produced two peaks. The first peak may signify the growth of fruit, while
the second peak showed the rapid synthesis of substance-influenced fruit flavor. The 4CL
activities were significantly different between the three Chinese olive cultivars within each
stage from the 50th DAF to 90th DAF and from the 130th DAF to 170th DAF. Moreover,
CAD, CCR and POD are the key downstream enzymes for lignin biosynthesis. Herein, we
discovered that CAD and CCR activities changed differently between the three cultivars
during fruit development. POD activities in all three cultivars declined in the early stage
and then rose in the middle and late stages during fruit development. Correlation analysis
found that the PAL, 4CL and POD activities were positively correlated with lignin content,
indicating that they may be involved in lignin biosynthesis. On the other side, CAD and
CCR activities were negatively correlated with lignin content, which revealed that they
may not be the key enzymes for lignin biosynthesis and are involved in upstream reactions.

5. Conclusions

In the present study, we explored the formation of fruit texture and quality in Chinese
olive with different flesh characteristics via the lignin metabolism pathway. We found that
lignin metabolism was involved in the development of fruit texture and quality. The lignin
content and PAL, 4CL and POD enzyme activities were the important factors for developing
different fruit textures. In further study, we will explore the molecular mechanisms for
lignin formation to improve the fruit quality and flavor of Chinese olives.
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