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Abstract: Coffee producers are ever more interested in understanding the dynamics of coffee’s spatial
and temporal variability. However, it is necessary to obtain high-density yield data for decision-
making. The objective of this study is to evaluate the quality of yield data obtained through a yield
monitor onboard a coffee harvester, as well as to evaluate the potential of the data collected over
three harvests. The yield monitor validation data showed a high correlation (above R2 0.968) when
compared with the data obtained by a wagon instrumented with load cells. It was also possible to
obtain yield maps for three consecutive seasons, allowing the identification of their internal variability,
as well as classifying regions that show alternating yield patterns between years as the expression of
the biennial yield behavior manifested inside and along the field, in addition to the spatial variability.
This result indicates that, in addition to knowing the spatial yield variability, the biennial variance
information must also be considered in the strategies for site-specific management. Regions that
presented high yield variance should be alternated according to the productive year (high and low
yield) and not only in consideration of their yield variability as on the regions with more stable yield
behavior over time. The use of yield data can help the producer make more assertive decisions for
crop and farm management.

Keywords: precision agriculture; coffee yield monitor; yield map validation; mechanical harvesting;
coffee biennial cycle

1. Introduction

Brazil is among the world’s leading producers of Coffea arabica L., second-largest
consumer, and leader in world exports [1]. The expected area cultivated with coffee in
Brazil for the year 2022 is 1.82 million hectares, with 78% of the Arabica variety and 22% of
the Conilon (or Robusta) variety [2].

As a perennial crop, coffee yield is the integrated result of various factors involved
in the crop management, soil, climate, and the plant itself [3]. The coffee crop has particu-
larities that contribute to high spatial variability of yield, and one of them is its biennial
nature [4]. Due to the physiological characteristics of the plant, the crop alternates between
years of high and low yield and this biennial period has a marked effect on the coffee yield
variability [5]. The previous knowledge of high and low yield areas has its benefits, for
example, the adoption of management strategies that consider the potential for yield and
profitability. In addition, a broad knowledge of high-quality coffee production techniques
is indispensable for modern coffee farming and, for that, modern management tools, such
as precision agriculture (PA), must be used [6].

PA techniques offer solutions for the differentiated management of areas, in which
inputs are applied according to demands where and when they are needed. The main
objective of PA is to provide economic and environmental benefits [7]. Thus, agricultural
practices with greater precision can maximize the potential of each portion of the field,
making the crop more profitable, favoring cost reduction and minimizing environmental
impacts [8].
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For some crops, such as grains, techniques for monitoring the spatial variability of
yield are already relatively consolidated and available on the market, unlike perennial crops
such as coffee [9,10]. The yield map is considered the most complete and true information
to visualize the crop variability, as it shows the actual response of the crop to the conditions
presented during the season and, thereby, affected by the different production factors [11].
In mechanized harvesting, this information can be obtained throughout the harvest with
the georeferenced measurement of the product flow in the harvester.

In Brazil, with the increasing reduction of labor availability for agriculture, the coffee
plantations, traditionally cultivated in sloped areas, have migrated to flatter areas, sig-
nificantly expanding mechanized harvesting [12]. This technological advance was made
possible by the development of the first coffee harvester in 1979 [13].

According to Silva et al. [13], this technological development in mechanization has
been favorable for the coffee sector, but when it comes to yield mapping, most of the
scientific approaches that aim to identify spatial variability and yield map of coffee
plants, use manual collected point sampling techniques with low density, in the order
of 2.2 to 4.6 points ha−1 [14–16]. Pioneering investigations for coffee yield mapping with
mechanized harvesting were carried out by Balastreire et al. [17], measuring the weight of
stripped coffee, and by Sartori et al. [18], Molin et al. [6], and Angnes et al. [19], measuring
the harvested volume and which became commercial for some time. Both obtained con-
sistent results quantifying the spatial variability of coffee yield. However, in addition to
the raw data obtained during the harvesting, Sartori et al. [18] and Molin et al. [6] used a
Conversion Factor (CF) to transform field data obtained by the harvester into processed
coffee yield data. Traditionally, producers already sample known volumes of coffee that are
then dried, peeled, and weighed to obtain the CF [20]. In addition to the CF, the samples can
also be classified according to the degree of maturation to quantify the classes of harvested
fruits, such as unripe, ripe, and overripe fruits [21].

Recently, Santana et al. [22] compiled academic research on PA in Brazilian coffee
production in the period from 2000 to 2021 and observed that remote sensing and the
investigation of soil and climate spatial variability, along with yield data sampled with aid
of geostatistics, predominated with few studies focusing on yield maps from harvesters.
In addition, Molin et al. [6] and Angnes et al. [19] showed that the observation of areas
with different productive potential within the stands, and the possibility of site-specific
treatment indicates the potential of using PA concepts for the management of coffee areas.

In this sense, the objectives of this study were to evaluate the quality of coffee volume
data obtained using a yield monitor embedded in a coffee harvester. The other objective
was to generate yield maps along production cycles to advance the understanding of
the spatial and temporal variability of coffee yields in commercial areas. The spatialized
production information in the form of yield maps is fundamental for understanding the
behavior of the variability of a crop.

2. Material and Methods

The study was conducted in commercial coffee areas in the municipality of Patos de
Minas, Minas Gerais state, Brazil (reference coordinates: Latitude 18◦32′28.55′′ S, Longitude
46◦3′51.17′′ W, coordinates reference system WGS 84; altitude greater than 1000 m). The
climate of the study areas is classified as AW, tropical with dry winter and rainy summer,
according to the Köppen climate classification [23]. The monthly normals temperature
(1991–2020) range from 18.9 ◦C in the coldest month (June) to 23.4 ◦C in the warmest month
(October) with average annual temperature around 21.6 ◦C [24].

The yield data were collected for the crop harvests of 2019, 2020, and 2021. The
experimental area of 10.24 ha is characterized by a flat to a slightly corrugated surface and
equipped with drip irrigation. The area was cultivated with the IAC Catuai 144 variety,
planted in 2006 and had its first harvest in 2009.

Data were obtained using a harvester K3 Millennium (Jacto, Pompeia, Brazil), equipped
with a yield monitor [18]. In the coffee harvester, two systems of vibrating rods detach
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the fruits from the branches on both sides of the coffee plants. The fruits are collected
below the plants, transported by horizontal belts, and driven by two elevators, one on
each side of the plants. When the fruits get to the top of the machine, they are blown to
remove light impurities and then fall into a small reservoir that feeds the paddle conveyor.
The paddle conveyor then takes the fruits to a container that moves parallel to the har-
vester (Figure 1—green flow). On top of the temporary reservoir, there is an ultrasonic
sensor which monitors the presence or absence of fruits and governs the hydraulic motor
(Figure 1c) trigger of the paddle conveyor, ensuring its 2.791 L volume compartments are
full. The datalogger collected data (number of full cells in a given period) at a frequency of
0.05 Hz, with the geographic coordinates obtained by the GNSS receiver. The work speed
is obtained by the displacement sensor installed on a non-drive wheel of the harvester.

Figure 1. Flow of coffee fruits in the harvester and details of the components of the yield monitor,
temporary reservoir, and ultrasonic sensor (a); paddle conveyor (b); hydraulic motor (c); data logger (d);
GNSS receiver (e); coffee wagon (f).

At the same time, an experiment was carried out to compare the data obtained with
the yield monitor with the simultaneous weighing using a coffee wagon instrumented with
load cells (Figure 2). The measurement of harvester yield data was carried out using a
big-bag fixed to a metal structure supported on four load cells with individual reading
capacity of up to 1000 kg and with an accuracy of 10 g, on a coffee wagon, similar to the
work performed by [17]. The load cells were calibrated and connected to a data logger
responsible for sending the data at a frequency of 5 Hz to a notebook that performed the
integration with the positioning data obtained by a GNSS SMART6-L™ (NovAtel Inc., Calgary,
AB, Canada) with TerraStar-C correction that results in an accuracy of±0.09 m [25] (Figure 2e).
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Figure 2. Details of the coffee wagon instrumentation used to measure the harvester’s yield data,
loading (a); big-bag (b); load cells (c); data logger (d); GNSS receiver (e); unloading (f).

The evaluation of the quality of the data generated by the monitor was carried out in
two crop rows, one with low and the other with high yield of coffee fruits of the Catuaí
144 variety, with a spacing between lines of 4.0 m and 0.5 m between plants, with an
approximate population of 5000 plants ha−1. In the low yield line, therefore, with low grain
flow, data were collected in an extension of approximately 250 m and, in the high flow area,
in an extension of approximately 87 m.

In order to compare the data obtained by the harvester and the load cells, it was neces-
sary to standardize the frequency between the data obtained using the distance traveled
as an adjustment factor. The data were analyzed with the addition of a standard offset
according to the delay distance between the harvester and the instrumented wagon and
the data without the offset. To compare the yield estimates performed by the yield monitor
versus the load cells, a linear model was adjusted, and its coefficient of determination
(R2) calculated.

To obtain the weight values of processed coffee (peeled and dried grains), it was
necessary to obtain the CF. For this, 23, 44, and 31 samples were collected during the
2019, 2020, and 2021 harvests, respectively, at each coffee wagon, so random samples were
collected throughout the area (Figure 3).
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Figure 3. Collection flow and processes for obtaining the CF.

Each sample consists of one liter of raw coffee that was weighed and sent to dry until
it reached approximately 12% moisture and then peeled and weighed again to obtain the
CF. The final weight of the processed coffee was determined using Equation (1):

X =

((
10000× Vi

Di ×W

)
× CF

)
/1000 (1)

where X is the yield of processed coffee (Mg ha−1); Vi = volume accumulated over a time
interval (L); Di is the distance traveled in the same time interval (m), W is the width of the
coffee line (4 m), and CF is (kg L−1).

Yield data was filtered, eliminating headland maneuver data. Data close to roads
that divide and cross the area and the discrepant data were filtered using the MapFilter
2.0 software using global filtering with a threshold of 100%, based on the methodology
proposed by Maldaner and Molin [26].

Descriptive statistical and geostatistical analyses followed by visual assessment of
yield maps were performed to identify patterns in spatial variability [27]. The variability
expressed by the coefficient of variation (CV) was classified as low (CV < 12%), median
(12% < CV < 62%), and high (CV > 62%), according to Warrick and Nielsen [28]. Spatial
dependence index (SDI) was calculated from the semivariograms as C0/(C0 + C1), where
C0 is the nugget variance (non-spatial variance), and C0 + C1 is the sill variance (spatially
dependent variance). SDI was interpreted as strong (<0.25), moderate (between 0.25 and
0.75), or weak (>0.75), according to Cambardella et al. [29]. The model was determined
based on the lowest root mean squared error (RMSE) value.

Yield data were interpolated using the software Vesper 1.6 [30] using the ordinary
kriging method with a spatial resolution of 3.0 × 3.0 m. For the temporal analysis of the
data, the interpolated maps were normalized with values 0 to 1 from Equation (2):

xni =
xi −min(x)

max(x)−min(x)
(2)

where xni is the normalized yield at point i of the grid, and xi is the yield at point i of
the grid.

The identification of the temporal patterns of yield in the study area was first per-
formed through the punctual correlation between the yield of the high-yield years. For
this, the adjusted Pearson correlation coefficient was calculated for a linear model. At
the same time, the normalized difference in yield between the years was calculated
from Equation (3):

Di ft,n = (xni,t1 − xni, t2)
2 (3)
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where Di ft,n is the normalized difference between the evaluated years, xni,t1 is the normal-
ized yield at point i of the grid in year t1, and xni, t2 is the normalized yield in grid point i
in year t2.

To evaluate the temporal behavior and stability of yield between the years, the average
temporal variance (Equation (4)) was calculated, following the methodology proposed by
Blackmore et al. [31].

σ2
i =

∑19
21
(
Yt.i −Yt

)2

3
(4)

where: σ2
i is the temporal variance at grid point i, t is the time in years between 2019 and

2021, Y is the yield in years t at point i, and Yt is the mean of the yield for the whole field in
years t.

3. Results and Discussion
3.1. Quality of Yield Data

In order to compare the data obtained by the yield monitor and the data obtained
by the load cells, they were synchronized. This synchronization was necessary due to
the path that the coffee fruits travel internally in the harvester. The harvest speed was
approximately constant, and the displacement of the paddle conveyor was controlled by
the ultrasound sensor, which depends on the amount of fruit being harvested. In this
sense, it was necessary to adjust the distance between the beginning of the harvest and the
beginning of the discharge to the coffee wagon.

The coffee wagon moved approximately 10 m until the first data was recorded by
the harvester’s yield monitor. The behavior of the coffee fruit flow obtained in the high
yield row (Figure 4a) shows that 519 L and 359 kg of coffee were harvested at a distance of
approximately 87 m, representing a fruit flow of 5.96 L m−1 and 4.12 kg m−1, respectively.
For the low-yield row (Figure 4b), the data indicated a harvest of 435 L and 331 kg of
coffee in 219 m, corresponding to a flow of 1.98 L m−1 and 1.51 kg m−1, respectively,
approximately three times lower than in the high-yield row. In addition, the distance lag
between the beginning of the harvester’s data recording and the arrival of material on the
instrumented wagon was approximately 36 m, a distance 3.6 times greater than in the high
flow condition. In this case, higher variability in fruit flow was also observed. The first
peak of variation was observed for both the load cells and by the yield monitor shortly
after the arrival of the first fruits to the coffee wagon when the harvester was already in
operation and the fruit flow suddenly increased.

The high frequency of data collection obtained with the load cells on the wagon made
it possible to clearly observe the variations in the flow of coffee fruits and, in some places,
the offset between the data from the monitor and the load cells (Figure 4b). The fact that
the measurement was made at different locations along with the coffee fruit flow most
likely explains these differences. The ultrasonic sensor effectively controls the grain flow to
ensure that the paddle conveyor compartments remain full until unloading. The load cells
measure the mass flow being unloaded at the end of the paddle conveyor. The flicker effect
is caused by the lack of harvested coffee fruit to fill the cells, causing the paddle conveyor
to not move. Consequently, small variations in the comparison of signals are expected, as
the systems are not measuring the flow of fruits harvested at the same location and with
the mechanical interference of the flow by the yield monitor.

The results are also presented considering the addition of the offset in the distance
between the harvester and instrumented wagon data. The offsets adopted were 10 m and
36 m for the high and low flow lines, respectively (Figure 4c,d). After correcting the load
cells’ spatial offset, the data became more similar to those of the yield monitor, especially
for the low flow line. Regardless, the yield monitor performed well in capturing the yield
variability in the field.
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Figure 4. Distribution of coffee fruit harvest data obtained by the yield monitor and by load cells in
the (a) high- and (b) low-yield rows, and with the addition of offset in the distance to the load cells
wagon in the (c) high- and (d) low-yield rows.

The coffee fruit volume data obtained by the yield monitor and the fruit weight
data obtained by the load cells on the wagon were initially correlated separately for each
area without the addition of the offset. The fruit flow was regular for the high-yield row
(Figure 5a), with no great variations in yield along the way, resulting in R2 of 0.995. In the
low-yield row (Figure 5b), the R2 was 0.968. The joint analysis of the data referring to the
two collections (Figure 5c) resulted in an R2 of 0.975, indicating a high correlation between
the data obtained at high frequency by weighing and those on fruit volume obtained by
the yield monitor at relatively low frequency.

As for the data considering the offset, the differences are small for the high-yield row
(Figure 5d) when compared to those without the offset (R2 0.997), which can be explained
by the constant and linear coffee fruit flow. For the low-yield row (Figure 5e), it is possible
to notice a difference between the data that were not adjusted (Figure 5b). As the area
presented greater variation in the fruit flow, the adjustment between the fruits leaving the
harvester and the fruits entering the instrumented wagon proved to be efficient to perform
the comparison, obtaining an R2 of 0.997. When the data from the two collections are
grouped (Figure 5f), it is possible to observe a good fit, with R2 of 0.994.

The figures evidence the fact that the coffee mass data obtained from the load cells
allowed greater detailing of the small flow changes during harvest. This behavior can be
explained due to the low frequency in the collection of data from the yield monitor, as
already observed by Maldaner et al. [32] when using an instrumented wagon to measure
yield data in sugarcane harvesters.
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Figure 5. Linear regression of coffee harvest data obtained by the yield monitor and by load cells for
the (a,d) high-yield row, (b,e) low-yield row, (c,f) and all data together (a–c) before and (d–f) after
correcting the offset.
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3.2. Temporal and Spatial Yield Variability

The data referring to coffee fruit samples obtained in the field over the three harvests
and the calculated CF are presented in Table 1. It was possible to observe that in the years
2019 and 2021, the area was harvested when more than 80% of the fruits were overripe or
dry. On the other hand, the 2020 harvest happened when 49.1% and 22.2% of the coffee
fruits were classified as ripe and unripe, respectively. Analyzing the results, the 1.0 L
of coffee samples convert to a higher mass of dried and peeled grains when the harvest
presented a higher percentage of overripe and dry coffee fruits, therefore, resulting in
higher CF.

Table 1. Coffee fruit weight, maturity stage, and CF from samples collected over three consecutive
harvests (2019 to 2021).

Coffee Sample
Weight (g)

Dry Coffee
Humidity (%)

Processed Coffee
Weight—CF (g L−1)

Unripe Coffee
Fruits (%)

Ripe Coffee
Fruits (%)

Overripe Coffee
Fruits (%)

2019 (n = 23) 470.0 11.9 159.5 6.1 7.5 86.4
SD 39.2 0.26 14.8 4.4 3.9 8.3

CV (%) 8.3 2.2 9.3 72.2 51.7 9.4

2020 (n = 44) 677.5 12.0 127.7 22.2 49.1 28.7
SD 22.9 0.1 9.4 8.6 11.2 7.6

CV (%) 3.4 1.2 7.4 39.0 22.9 26.5

2021 (n = 31) 492.5 12.0 143.5 7.4 8.5 84.1
SD 33.3 0.2 12.5 3.8 4.2 8.4

CV (%) 6.8 1.5 8.7 51.8 48.7 10.1

n: number of samples. SD: standard deviation. CV: coefficient of variation.

As highlighted by Pezzopane et al. [33], as coffee fruits ripen, natural water loss is
expected. Therefore, in the years 2019 and 2021, the amount of overripe coffee was greater
and with the driest fruits. According to Silva et al. [34], unripe coffee has humidity between
60–70%, ripe coffee 45–55%, and overripe coffee 30–40%. In the harvest years of 2019 and
2021, the higher percentage of overripe fruits led to a coffee fruit density ranging between
470.0 and 492.5 g L−1. On the other hand, for the 2020 harvest, most of the fruits were
in the ripe and unripe stages, resulting in an average coffee fruit density of 677.5 g L−1.
This variation in the maturation stage also influences the size of the fruit. The overripe
coffee fruits are usually smaller than the unripe and ripe coffee fruits, therefore, due to
the smaller volume, more fruits are sampled per liter, resulting in higher CF values after
drying and processing.

The need to obtain a CF from field samples to convert volume to yield data may be
one of the factors limiting the adoption of yield monitors embedded in harvesters. As an
alternative to this challenge, Bazame et al. [21] proposed the use of images associated with
artificial intelligence to classify the grains and determine the stage of maturation in high
spatial resolution.

During the 2019 harvest, data from some regions were not recorded by the yield
monitor due to operational problems, resulting in a smaller amount of data when compared
to the other years. However, even with this loss, the density of the filtered yield data ranged
from 535 to 760 points ha−1. The density of data collection was still high when compared
to scientific approaches that also aimed to identify spatial variability and map coffee yield.
Ferraz et al. [14], Carvalho et al. [15], and Ferraz et al. [16] used manually collected point
sampling techniques, and data collection ranged from 2.2 to 4.6 points ha−1.

Descriptive statistics of raw and filtered yield data are presented in Table 2. Data
showed variations between years, with 2019 being the year with the lowest average yield
(1.29 Mg ha−1). In the following year, the yield of processed coffee reached 2.03 Mg ha−1,
and in 2021, it again decreased to 1.44 Mg ha−1. According to the classification of Warrick
and Nielsen [28], the values of coefficient of variation (CV) ranging from 43.43% to 49.04%
indicate that there is median variability in yield in the area. Carvalho et al. [15] highlighted
that this may be a problem when only the average yield is considered for management
decisions carried out for the entire area.
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Table 2. Descriptive statistics of yield data after filtering for the three evaluated crops.

Year Dataset n n ha−1
Mean Min Max SD

CV (%)
Mg ha−1

2019
Original 6398 624.8 1.90 0 303.88 4.96 260.88
Filtered 5479 535.0 1.29 0.12 2.68 0.57 44.35

2020
Original 8242 804.8 2.20 0.00 164.63 3.90 176.94
Filtered 7789 760.6 2.03 0.09 4.06 0.88 43.43

2021
Original 7748 756.6 1.54 0.00 7.18 0.89 57.90
Filtered 6913 675.1 1.44 0.13 2.90 0.71 49.04

n: number of samples. SD: standard deviation. CV: coefficient of variation.

Observing the average annual yield data, it is possible to identify the behavior of the
crop, going from a year of low yield in 2019, to a year of high yield in 2020, and again
showing low yield values in the following harvest (2021). In general, the coffee yield has a
biennial behavior, with an alternation between a year of high yield, followed by a year of
low yield. This variation is explained by the morphophysiological behavior of the coffee
plant [35,36].

In addition to the biennial variability, the yield data for the three years also show
a large yield spatial variability in the area (Figure 6). Several factors can influence this
variability, including the biennial characteristic [4], the occurrence of diseases, pests and
weeds [37–39], and soil fertility and foliar nutrition [40,41]. The biennial participation is
expressive in the variation of the coffee yield. Due to the physiological characteristics of the
plant, it must have high vegetative activity during one year, so that the following year it
can produce well [5]. These high-density data (between 552.8 and 792.1 points ha−1) show
this behavior of the crop with a high level of detail.

Figure 6. Filtered processed coffee yield map data obtained by the yield monitor for the 2019 harvest;
2020 and 2021.
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The semivariograms of yield data (Table 3) fitted exponential models with RSME of
0.022 Mg ha−1 for the 2019 harvest, with RSME of 0.011 Mg ha−1 for 2020 and 0.016 Mg ha−1

for 2021 using the Gaussian model. The spatial dependence index (SDI) was moderate, sim-
ilar to the results found by Molin et al. [6], in which the authors used yield data obtained by
a yield monitor and found a moderate SDI value fitted to the spherical model. In contrast,
Carvalho et al. [15] collected point yield data samples, with a density of 4.5 points ha−1

at regular spacings and reported strong spatial dependence for yield in two seasons, with
semivariograms fitted to a spherical model. Silva et al. [13], who sampled fruits of four
plants around the crossing points of a sampling grid of 25 m (11 points ha−1) to calculate
the average yield per plant, also found a strong spatial dependence for the yield of two
coffee plantations by adjusting spherical models.

Table 3. Semivariogram model and variables used to interpolate coffee yield data.

Year Model Range Sill 1 Nugget 2 RSME (Mg ha−1) SDI

2019 Exponential 59.9 0.343 0.214 0.022 moderate
2020 Gaussian 316.4 1.031 0.563 0.011 moderate
2021 Gaussian 202.2 0.596 0.345 0.016 moderate

1 Sill = maximum observed variability in data; 2 nugget = sources of error or variation at distances smaller than
the sampling interval.

After adjusting the semivariograms, it was possible to estimate the yield in unsampled
locations by interpolation and to standardize the size of each pixel of the maps for further
spatial and temporal analysis.

The results of interpolation and normalization of yield data are shown in Figure 7. Re-
gions with values close to 1 represent the maximum yield, while regions close to 0 represent
the minimum yield for the year. A visual comparison shows some similarities between the
years. The regions that had high yields in 2019 and 2021 were the same regions that had
the lowest yields in 2020. Carvalho et al. [15] also observed similar results. The explanation
for this alternation may be related to fruiting. Plants that produced a lot in 2019 (regions
with green coloring in Figure 7) used their reserves for fruiting, negatively influencing the
growth of branches and, consequently, reducing yield in 2020 (regions with red coloring in
Figure 7). According to Matiello et al. [42], the coffee plant goes through a phase of low
metabolism after high yields, and this behavior can cause this alternation of yield. It is
important to point out that the biennial yield behavior is expressed inside and along the
field, in addition to the spatial variability.

When the normalized yield data are individually compared among the years, it is
possible to observe this yield alternation in the area. In consecutive years (Figure 8a,c) it
is possible to notice the yield inversion pattern, presenting negative correlation values r
of −0.53 when comparing between the harvests of 2019 and 2020, and r of −0.87 in the
comparison between the harvests of 2020 and 2021. These results corroborate the results
found by Carvalho et al. [15], which evaluated coffee yield over two years and also found
a negative correlation between sequential years, with an r of −0.69. When the data from
the odd years (2019 and 2021) are compared (Figure 8b), the behavior is opposite, with a
positive correlation of r of 0.75. This indicates that there is an alternation of yield within
the same area during the years and that the alternation regions are repeated.

The maps of the normalized difference in yield are shown in Figure 9. Values close
to 1 indicate that the region has a greater difference in yield between the years evaluated,
whereas values close to 0 show a low difference in yield between the years. Likewise, in
the correlation data, it was possible to notice the alternating behavior of yield between
the sequential years 2019 and 2020 (Figure 9a) and 2020 and 2021 (Figure 9c). The map
of the difference between the odd-numbered years (2019 and 2021) showed a result of
low difference, indicating the similarity between the productive regions (Figure 9b). This
yield difference between the years presents an additional degree of difficulty in manag-
ing the spatial variability of coffee plantations, since temporal variability influences and
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requires a longer sequence of data for a better understanding of the variability and for
making decisions.

Figure 7. Normalized yield map for the harvest in 2019, 2020, and 2021.

Following the methodology proposed by [31], Figure 10 shows the map with the
temporal variance yield for the three years evaluated. The regions that have the greatest
variance in yield data are highlighted in the red areas, and the regions that have the most
stability in yield data over the three years are highlighted in the blue areas. The regions with
the highest variance were also the regions that showed the greatest differences between
sequential years (Figure 9a,c). This result may indicate that, in addition to knowing the
production variability, the variance information must also be considered in the strategies
for site-specific management. The regions that presented high yield variance should
possibly be conducted differently, receiving localized treatments alternated according to the
productive year (high and low yield) and not only in consideration of their yield variability.
As for the regions with low variance in the yield data, it is assumed that they present a
more stable yield behavior over time, so they could be conducted taking into account only
the yield variability.
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Figure 8. Correlation of normalized yield data between crops of 2019 and 2020 (a), 2019 and 2021 (b),
and 2020 and 2021 (c).

Figure 9. Normalized difference map between yield data between crops 2019 and 2020 (a), 2019 and
2021 (b), and 2020 and 2021 (c).
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Figure 10. Yield map temporal variance along the three harvests.

4. Conclusions

The data obtained by the volumetric yield monitor embedded in a harvester showed a
high correlation with those obtained with the load cells. This fact qualifies the yield data,
allowing the identification of the fruit flow variation during harvest and the spatialization
of these data to obtain reliable yield maps, with high data density.

It was possible to obtain yield data in a commercial area during three consecutive
seasons, allowing the identification of its internal variability, as well as classifying regions
that present alternating yields between the years evaluated. This result indicates that, in
addition to knowing the spatial yield variability, the biennial variance information must
also be considered in the strategies for site-specific management. Regions that presented
high yield variance should be conducted differently, being alternated according to the
productive year (high and low yield) and not only in consideration of their yield variability.
This type of information helps in the search for possible causes of this variability so that
the crop can be managed considering these spatial and temporal differences.

Future research to estimate coffee productivity using high-density data obtained by
harvesters should consider faster and more assertive methods to identify the degree of
fruit maturation, so, in addition to productivity, it would be possible to obtain a new layer
regarding fruit quality, a subject that was not addressed in detail in this work and that is of
great interest to coffee producers.
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