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Abstract: The different cultivars of apricot seeds may differ in their properties. To ensure economical
and efficient seed processing, knowledge of the cultivars’ composition and physical properties
may be necessary. Therefore, the correct identification of the cultivar of the apricot seeds may be
very important. The objective of this study was to develop models based on selected textures of
apricot seed images to distinguish different cultivars. The images of four cultivars of apricot seeds
were acquired using a flatbed scanner. For each seed, approximately 1600 textures from the image,
converted to the different color channels R, G, B, L, a, b, X, Y, and Z, were calculated. The models
were built separately for the individual color channels; the color spaces Lab, RGB, XYZ; and all color
channels combined based on selected texture parameters using different classifiers. The average
accuracy of the classification of apricot seeds reached 99% (with an accuracy of 100% for the seeds of
the cultivars ‘Early Orange’, ‘Bella’, and “Harcot’, and 96% for “Taja’) in the case of the set of textures
selected from the color space Lab for the model built using the Multilayer Perceptron classifier. The
same classifier produced high average accuracies for the color spaces RGB (90%) and XYZ (86%).
For the set of textures selected from all color channels, i.e., R, G, B, L, a,b, X, Y, and Z, the average
accuracy reached 96% (Multilayer Perceptron and Random Forest classifiers). In the case of individual
color channels, the highest average accuracy was up to 91% for the models built based on a set of
textures selected from color channel b (Multilayer Perceptron). The results proved the possibility of
distinguishing apricot seed cultivars with a high probability using a non-destructive, inexpensive,
and objective procedure involving image analysis.
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1. Introduction

Apricot (Prunus armeniaca L.) belongs to the Prunus genus and the Rosaceae family.
This stone fruit is grown around the world, mainly in temperate regions. Apricot is
a fruit consisting of skin, flesh, and stone with seed (kernel). Stones with seeds can
be used in a variety of ways, e.g., for biodiesel or energy production, as sorbent for
wastewater and water cleanup, for active carbon preparation, in the food industry, and
in the cosmetic industry. Apricot kernels contain proteins, minerals, amino acids, fatty
acids, and cyanogenic glycosides [1]. These compounds may be necessary for human
health [2,3]. The leading countries in terms of the production of apricot, as estimated
for 2018-2025, are Turkey, Uzbekistan, Algeria, and Italy [4]. Apricot seeds have great
industrial potential. However, economical and efficient seed utilization requires knowledge
of the cultivars’ composition and physical properties [5]. It is very important to recover
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by-products from apricot processing and to reduce the impact on the environment [6]. The
properties of apricot stones and seeds must be considered in the design of equipment for
transportation, sorting, separating, breaking, and processing [7]. The seeds of apricots
belonging to different cultivars may differ in chemical composition [1,3,8,9]. Therefore, the
correct identification of the cultivar of the apricot seeds may be very important.

The identification of different products has been achieved through both contact meth-
ods (e.g., RAPD analysis—random amplification of polymorphic DNA, as well as mul-
tisensory gas analysis) and non-contact methods (e.g., imaging, excitation systems, and
vibration sensors). In contact methods, the product is identified by sampling the product
and transporting it to the laboratory, where these methods are employed to identify the
products [10-12]. In addition to their complexity and time-consuming nature, contact
(destructive) methods have other limitations, the most important of which is the possibility
of damaging the sample [13]. Therefore, in previous studies, computer vision systems
were usefully explored as an inexpensive, accurate, and objective approach to evaluating
seed cultivars [14-16]. Since fruit is one of the main products in international markets and
exports, its classification and grading are among the most important domains in agricul-
ture [17]. Also, horticultural products have a higher added value than other crops, which
doubles the importance of fruits.

In recent years, to reduce human labor and save time, image processing and computer
vision algorithms have been utilized for different fruits. Most of the automatic sorting
systems that are available are designed for various fruits, such as citrus fruits, oranges,
apples, strawberries, mango, lemons, dates, etc. [18]. The main steps in the classification
and grading of fruits according to images are the preparation and preprocessing of fruit
images, segmentation, feature extraction, and the comparison and sorting of extracted
features based on the classification criteria.

There are various methods for the classification and grading of fruits by algorithms. In
the study performed by Capizzi et al. [19] to classify the defects of oranges, color and texture
were used along with a neural network, and an accuracy of 88% was obtained. In another
study, the classification of intra-class fruits according to color and texture characteristics
using an ANN approach was carried out, with an accuracy of 83-98% [20]. New methods
also use machine learning algorithms to identify and classify horticultural products. One
study used shape features to identify apricot cultivars and employed six methods based on
machine learning to determine their class, which proved to be successful [21]. It is worth
noting that due to the development of new instrumentation and analysis tools, horticultural
products can now be analyzed using image processing techniques. The usefulness of
models based on features selected from images that were employed to perform cultivar
discrimination of seeds, pits, and stones was also reported in the literature, e.g., for seeds
and stones of peach [22], seeds of pepper [23], pits of sweet [24] and sour cherries [25], seeds
of apples [16], and seeds of wheat [26]. Based on the promising results in the literature on
the effectiveness of image analysis and machine learning to distinguish seeds and pits, the
following research hypotheses were formulated to be tested by the present study:

(1)  Among the features of the external structure of apricot seeds, there are parameters
that depend on the cultivar.

(2) The application of selected image features combined with machine learning algo-
rithms enables us to build discriminative models that can distinguish between seed
samples belonging to different apricot cultivars.

The objective of this study was to develop models based on selected textures of
apricot seed images to distinguish different cultivars with the use of a non-destructive,
inexpensive, and objective procedure. The novelty of this study is the approach that uses
texture parameters extracted from the individual color channels R, G, B, L, 4, b, X, Y,
and Z, along with machine learning algorithms from the Lazy, Meta, Functions, Trees,
Rules, and Bayes groups in order to discriminate between apricot seeds cultivars. A large
data set, including approximately 1600 textures, was considered. The textures, which
varied depending on the apricot seed cultivar, were selected and used to build innovative
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discriminative models that may be very useful for the evaluation of apricot seed diversity,
assessments of authenticity, and the detection of seed adulteration.

2. Materials and Methods
2.1. Materials

Mature apricots of the cultivars “Taja’, ‘Early Orange’, ‘Harcot’, and ‘Bella” were
collected from an orchard located in central Poland. The seeds were extracted manually
from apricot stones obtained from fruits. In the case of each of the four cultivars, twenty-
five seeds were obtained. The total number of seeds subjected to image analysis was
one hundred.

2.2. Image Analysis

The seeds were imaged with the use of a flatbed scanner, specifically a Canon CanoScan
9000F Mark II (Tokyo, Japan). In total, images of one hundred seeds were acquired. The
obtained digital color images at a resolution of 800 dpi were saved in TIFF format and then
were converted to BMP to enable processing using the MaZda software version 4.7 (L6dz
University of Technology, Institute of Electronics, £.6dZ, Poland) [27]. The first step in the
image processing was the conversion of the seed images to color the channels R, G, B, L, a,
b, X, Y, and Z. Color images of apricot seeds for the cultivars ‘Taja’, ‘Early Orange’, ‘Harcot’,
and ‘Bella’ are presented in Figure 1.

‘Early Orange’ ‘Harcot’ ‘Taja’

e 60060

Figure 1. Images of apricot seeds belonging to different cultivars.

Examples of apricot seed images from different color channels are shown in Figure 2.
The images, which include the seeds on a black background, were segmented to separate
the seeds from the background. Image thresholding was performed by manually determin-
ing brightness regions. The background was completely black, and the seeds were light,
as shown in Figure 1, so the seeds were easily separated from the background, and the
preferences of the researcher performing the brightness determination did not affect the
results of segmentation. Each seed was one region of interest (ROI). For each ROI, about
1600 parameters were calculated, including about 180 textures for each color channel. The
image features included textures extracted based on the gradient map (5 texture parame-
ters), the co-occurrence matrix (132 texture parameters, including 11 features computed
for 3 between-pixel distances and 4 various directions), the run-length matrix (20 texture
parameters, including 5 features computed for 4 various directions), the histogram (9 tex-
tures), the Haar wavelet transform (10 textures), and the autoregressive model (5 textures).
Textures were duplicated for each color channel. However, due to the differences in the
images, the texture values were different for each color channel. Due to the different
number of textures for different matrices, most textures were unique to a matrix. Some
textures, for example, Mean, Variance, Skewness, and Kurtosis, were repeated for several
matrices but had different values.
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Figure 2. Images of apricot seeds from different color channels.

2.3. Classification

The analysis to distinguish seeds belonging to different cultivars was performed using
the WEKA machine learning software version 3.8.4 (University of Waikato, Hamilton,
New Zealand) [28]. In the first step, models were built for the individual color channels
R,G,B,L,a b, X, Y, and Z. The next step of the analysis included developing models
separately for each of the three color spaces: Lab, RGB, and XYZ. Finally, models were
built for a set of textures selected from all color channels, i.e,, R, G, B, L,a,b, X, Y, and
Z. For each set of textures, attribute selection was carried out to choose features with the
highest discriminative power. The best-first search method and CFS (correlation-based
feature selection) attribute evaluator were applied. In the literature, it was reported that the
number of samples should be at least 10 times greater than the number of attributes [29,30].
In the present study, images of one hundred seeds were acquired. Therefore, ten attributes
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were selected to build models for distinguishing the samples. Models including ten textures
were used successfully to discriminate between different classes of kernels in previous
studies [31]. The classification was performed using algorithms from the Lazy, Meta,
Functions, Trees, Rules, and Bayes groups. A 10-fold cross-validation mode was used. The
apricot seed dataset was randomly divided into 10 parts. Each part, in turn, was used as
the test set, and the remaining 9 parts were used as the training sets. Thus, the learning
was performed a total of 10 times with the use of different training sets. The results were
presented as the average of 10 estimates [32]. Based on the obtained results, the classifiers
producing the highest accuracies were selected. The accuracies (%) for each of the cultivars
‘Taja’, “Early Orange’, "Harcot’, and ‘Bella’ were determined, as was the average accuracy
(%) of classification for all four cultivars.

3. Results and Discussion

The most accurate results were obtained using three classifiers, namely IBk (Lazy),
Multilayer Perceptron (Functions), and Random Forest (Trees), and the accuracies of these
methods are presented in this paper. In the case of analysis performed separately for
each color channel (Table 1), the average accuracy of classification of apricot seeds for the
cultivars ‘Taja’, ‘Early Orange’, ‘Harcot’, and ‘Bella” reached 91% for the model developed
based on a set of textures selected from color channel b using the Multilayer Perceptron
classifier. In this case, the individual seed cultivars were classified with accuracies ranging
from 86% (‘Early Orange’) to 96% (‘Bella’). Slightly lower average accuracies of seed
classification for the four apricot cultivars were determined for the IBk and Random Forest
classifiers. However, in the case of the IBk classifier, quite high average accuracies of 88%
and 89% were obtained for the color channels b and X, respectively. The classification
carried out using the Random Forest classifier provided an average accuracy of up to 88%
for color channel b. The lowest average accuracies were noted for the color channel R
for all classifiers. The models developed based on textures selected from color channel R
provided average accuracies of 68% for IBk and 67% for both Multilayer Perceptron and
Random Forest.

In the case of models built based on textures selected from individual color spaces,
apricot seeds for the cultivars “Taja’, ‘Early Orange’, ‘Harcot’, and ‘Bella’” were classified
with higher average accuracies (Table 2). Classification carried out using the Multilayer
Perceptron classifier yielded the best results for all three color spaces (RGB, Lab, and
XYZ). The set of textures selected from the color space Lab allowed for the classification
of different cultivars of apricot seeds with an average accuracy of 99%. The seeds of the
cultivars ‘Early Orange’, ‘Bella’, and ‘Harcot’” were correctly classified in 100% of cases.
This meant that these apricot seeds were completely different from others in terms of a set
of selected image textures, and all samples belonging to the actual classes ‘Early Orange’,
‘Bella’, and ‘Harcot” were correctly included in the predicted classes ‘Early Orange’, ‘Bella’,
and ‘Harcot’, respectively. For other color spaces (RGB and XYZ), the Multilayer Perceptron
classifier provided average accuracies equal to 90% and 86%, respectively. Complete
differentiation was not observed for any cultivar. The IBk classifier produced average
accuracies of 81% for color space XYZ, 86% for color space RGB, and 95% for color space
Lab. In the case of color space RGB, the apricot seeds for the ‘Early Orange’ cultivar were
classified with 100% accuracy. The average accuracies obtained using the Random Forest
classifier were equal to 85% for color space XYZ, 88% for color space RGB, and 91% for
color space Lab.
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Table 1. The accuracies of cultivar classification of apricot seeds based on textures selected from
individual color channels.

» Accuracy for Cultivar (%) Average
Classifier Color Channel - Accuracy (%)
Taja Early Orange Bella Harcot y
R 82 59 52 80 68
G 76 96 89 83 86
B 71 93 93 83 85
L 71 83 85 77 79
Lazy.IBk a 86 79 70 80 79
b 93 86 81 90 88
X 82 96 89 87 89
Y 76 96 85 87 86
V4 71 93 81 87 83
R 82 59 56 70 67
G 75 90 74 83 81
B 75 90 89 87 85
Functions. L 71 79 81 80 78
Multilayer Perceptron 4 93 86 74 70 81
b 89 86 96 93 91
X 82 93 74 80 82
Y 79 93 81 83 84
V4 79 90 85 87 85
R 86 62 56 63 67
G 82 90 74 87 83
B 79 90 78 83 83
L 86 90 85 67 82
Trees. a 89 79 59 80 77
Random Forest b 89 90 85 87 88
X 86 86 81 80 83
Y 86 90 70 80 82
V4 71 86 78 83 80

Table 2. The accuracies of cultivar classification of apricot seeds based on textures selected from color spaces.

Accuracy for Cultivar (%)
Classifier Color Space y Averageo/
Taja Early Orange Bella Harcot Accuracy (%)
RGB 68 100 85 90 86
Lazy.IBk Lab 96 93 93 97 95
XYZ 71 93 81 77 81
Functions RGB 76 96 96 90 90
Multilayer Percé tron Lab % 100 100 100 99
Y P XYZ 82 86 89 87 86
" RGB 79 93 89 90 88
Rand ree;' Lab 93 9% 89 87 91
andom Forest XYZ 89 79 85 87 85

Satisfactory results yielding average accuracies in the range of 92% (IBk) to 96%
(Multilayer Perceptron and Random Forest) were obtained for the model built based on a
set of textures selected from all color channels, i.e., R, G, B, L,a, b, X, Y, and Z (Table 3). In
the case of individual apricot seed cultivars, the accuracies were also very high. For models
built using Multilayer Perceptron, accuracies were in the range of 93-100%. The highest
accuracy of 100% was observed for ‘Bella’. All samples of ‘Bella” were correctly classified
as ‘Bella’. For the IBk classifier, accuracies ranged from 89% (‘Taja’) to 96% (‘Bella’), and for
the Random Forest classifier, they ranged from 93% (“Taja’) to 97% (‘Harcot’).
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Table 3. The accuracies of cultivar classification of apricot seeds based on textures selected from a set
of all color channels, i.e., R, G,B,L,a,b, X, Y, and Z.

Accuracy for Cultivar (%)

Classifier Average Accuracy (%)
Taja Early Orange Bella Harcot
Lazy.IBk 89 93 96 90 92
Functions.
Multilayer Perceptron 93 % 100 93 %
Trees. 93 9 96 97 9

Random Forest

The obtained results were very satisfactory and proved the usefulness of image fea-
tures and machine learning for the evaluation of cultivar diversity of apricot seeds. It
was found that models built for textures selected from individual color spaces and color
channels, as well as a set of textures selected from all color channels, i.e.,,R,G,B,L,a,b, X, Y,
and Z, provided high discrimination accuracies. The results fully confirmed the research hy-
potheses. The obtained results proved the possibility of classifying apricot seeds belonging
to different cultivars with a high level of accuracy using image analysis. There are literature
reports on the application of image processing and machine learning for the evaluation
of apricot fruit and seeds (kernels). In the case of apricots, image analysis was used for
developing a classification model based on the physical features (length, width, mass,
thickness, and the projected area of three perpendicular surfaces) in order to distinguish
five cultivars with a top accuracy of 87.7% [33]. The classification of four apricot cultivars
based on shape features was also performed by Yang, Zhang, Zhai, Pang, and Jin [21],
who achieved an accuracy reaching 90.7% for a test set using machine learning. Image
analysis was useful for the classification of apricots into different maturity stages (unripe,
ripe, and overripe), reaching an accuracy of 0.923 [34]. A hyperspectral imaging system
and multivariate analysis were applied for the detection of adulteration of almonds with
apricot seeds [35]. Our own research expanded the possibilities for using image analysis for
the examination of apricot. The innovative models based on attributes selected from a set of
approximately 1600 texture parameters from different color channels of images were built
for distinguishing apricot seeds belonging to different cultivars. The developed models
can be used for the identification of the cultivar of apricot seeds and can contribute to a
better understanding of apricot diversity. Due to the great usefulness of image features for
distinguishing cultivars, research should be continued for more cultivars and carried out
for other species. Further research may also require increasing seed numbers. in this study;,
the total number of apricot seeds belonging to four apricot cultivars was one hundred.
Even though this number of samples was sufficient to achieve an average accuracy of
classification of apricot seeds reaching 99%, increasing the number of samples may increase
the accuracy. In the literature, it was reported that including features extracted from images
of 30 kernels for each class can be sufficient for classification with an accuracy of up to
100% [30]. However, Shahinfar et al. [36] proved that increasing the number of training
images from 10 to 1000 can lead to improved performance metrics. Although the increase
in accuracy was slight in some cases, larger numbers of samples for examined apricot seeds
could allow the use of deep learning, which could result in increased accuracy.

4. Conclusions

This study proposed a new image-processing-based method that can distinguish and
classify different apricot cultivars. The use of models based on selected textures is crucial
for determining the cultivar of apricot and classifying it accordingly. The textures extracted
from the images allowed for cultivar discrimination of apricot seeds with an average
accuracy of up to 99% for a model built using the Multilayer Perceptron classifier based on
textures selected from color space Lab. In this case, three of the four cultivars were correctly
classified in 100% of cases. Thus, the formulated research hypotheses were confirmed. The
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presence of cultivar-dependent textures on the outer surface of apricot seed was verified.
After selecting the image features, the textures with the highest discriminatory power
allowed for the development of models using machine learning algorithms to distinguish
apricot seed cultivars with high accuracy. The obtained results are very promising. Models
based on textures from images converted to different color channels can be used in practice
to identify seed cultivars. However, only some models provided a satisfactory accuracy
above 95%. Therefore, it may be useful to extend the present study by including more
cultivars from different seasons and locations to confirm the usefulness of the applied
approach to discriminating apricot seed.
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