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Abstract: Early blight (EB), caused by the necrotrophic pathogen Alternaria solani, is one of the most
common and destructive diseases in the tomato (Solanum lycopersicum L.). The use of fungicides is
a prominent tactic used to control EB; however, their undesirable effects on the environment and
human health, as well as involvement in the development of resistant strains, have driven researchers
to search for new alternatives. Plant defense elicitors are exogenous defense-triggering molecules
that induce a plant’s defense system associated with extensive transcriptional- and metabolic re-
programming of the genome and do not cause direct toxicity to phytopathogens. Moreover, 2,6-
dichloroisonicotinic acid (INA) was an early-identified and strong plant defense elicitor to various
phytopathogens. Recently, the combination of chitosan oligomers and pectin-derived oligogalactur-
onides that can mimic the induction of plants by a pathogen or damaged-derived molecules (PAMP
and DAMP) were characterized as defense elicitors, named FytoSol. In this study, the preventive
roles of these two defense elicitors—FytoSol and INA—against EB disease and its molecular basis,
were explored. According to the results, FytoSol significantly reduced disease severity by an average
of 30% for almost one month with an AUDPC value of 399 compared to the control, which had
an AUDPC value of 546. On the contrary, INA did not provide any protection against EB. Gene
expression analyses of these two distinct plant defense elicitors indicated that the expression patterns
of several SA-, JA-, or ET-pathway-related genes (Pti4, TPK1b, Pto kinase, TomloxD, PRB1-2, SABP2,
WRKY33b, WRKY70, PR-5, and PR3) were induced by defense elicitors differently. FytoSol extensively
upregulated gene expressions of PR3, downregulated the SA-related defense pathway, and provided
remarkable protection against the necrotrophic pathogen Alternaria solani. On the contrary, INA
mostly induced genes related to biotrophic and/or hemibiotrophic pathogen protection. Our results
indicate that FytoSol is a promising plant defense elicitor against EB and the modes of action of the
elicitors are important to characterize their effects against pathogens. Further research may extend
the use of defense elicitors as alternatives to pesticides in agriculture.

Keywords: plant defense inducer; plant immunity; early blight; Solanum lycopersicum; fungus

1. Introduction

Early blight (EB) is one of the most common and destructive diseases in tomatoes
(Solanum lycopersicum L.), potatoes (Solanum tuberosum L.), and other plants. Several
Alternaria species cause EB; however, the most common one is Alternaria solani, an airborne
necrotrophic pathogen [1–3]. A. solani can penetrate plant tissues directly or infect through
stomata or wounds; the initial symptoms may appear on leaves as black or brown necrotic
lesions that enlarge and turn into concentric rings. The fungus also infects different parts
of the plants, such as shoots, stems, and fruits [1,4]. The severity of the disease depends
on many factors, such as environmental conditions and the susceptibility of the host. In
particular, relative humidity, heavy rainfall and dew, temperature, and a stressed host may
show heavy EB disease symptoms in the fields and cause excessive yield loss [2]. Moreover,
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the fungus can adapt to many adverse environmental conditions in the soil, host debris,
seeds, or alternate hosts in the form of conidia or mycelia that can help survive the winter,
and could be primary sources of inoculum for the next session [5].

The tomato (Solanum lycopersicum L.) is one of the most important vegetable crops with
a rich source of antioxidants and nutritional value [1,6]; EB causes detrimental yield losses
in tomato production [7]. EB can be controlled by several maneuvers, including cultural
practices, fungicides applications, and the use of resistant tomato varieties [1]. While
some cultural practices, such as removing infected plant debris and fruits, rotating crops,
and reducing humidity, may keep the field healthy, the prominent practice of controlling
A. solani is by fungicides. Although they are essential for effective disease control, the
frequency of the fungicide application from the beginning to harvest creates a high risk for
the environment and health as well as for the development of resistant strains [2,8]. The
efficacy of fungicides decreases under high disease pressure [1]. Using resistant tomato
varieties is the most effective way to keep EB under control. While several wild tomato
species are reported as resistance sources, breeding studies are not enough to achieve full
protection against the pathogen [2,9,10].

Plant defense elicitors are exogenous defense triggering molecules that are not directly
toxic to phytopathogens [11]. These molecules aim to induce the (constitutive and inducible)
plant defense system [12,13]. This system has a complex regulatory mechanism that is
associated with extensive transcriptional and metabolic reprogramming of the genome;
still, different defense layers (PTI, basal defense, and ETI) are controlled by a common set
of defense signals, such as ROIs and Ca2+, and defense-related phytohormones, salicylic
acid (SA), ethylene (ET), and jasmonic acid (JA) [14,15]. Regarding the idea of exogenously-
induced plant defense systems, White et al. [16] first applied SA to tobacco to trigger the
plant defense system against the tobacco mosaic virus; they obtained successful results [11].
To date, an increasing number of different elicitors have been characterized and noted for
their usefulness in plant protection [11,17–21]. These elicitors are synthesized artificially or
have natural origins.

As plant defense elicitors, 2,6-dichloroisonicotinic acid (INA) and benzo(1,2,3)thiadiazole-
7-carbothermic acid S-methyl ester (BTH) were two of the earliest plant defense elicitors dis-
covered by Ciba-Geigy (currently Syngenta) as systemic acquired resistance inducers [22–24].
These two compounds have been the most frequently used defense elicitors in research for
the past 25–30 years; a large body of literature has been accumulated [11]. In addition to
these compounds, β-aminobutyric acid (BABA) is one of the most studied natural plant de-
fense elicitors; research shows that it protects plants against a wide range of pathogens [17].

Studies have demonstrated that INA plays a role as an analog of SA and provides
defense responses against a wide spectrum of phytopathogens. For instance, INA protects
plants against fungi (Colletotrichum lagenarium, Cercospora nicotianae), tobacco mosaic virus,
oomycetes (Peronospora tabacina, Phytophthora parasitica var nicotianae, Hyaloperonospora
arabidopsidis), and bacteria (P. syringae pv. tabaci) [11]. It has potential in wide-spectrum
defense induction. We could not find any research about A. solani and INA’s activity against
this fungal disease.

In addition to well-known defense elicitors, the latest improvements in chemical
genomics have enabled scientists to explore more defense elicitors that could be used as
pesticide alternatives. In this context, novel plant defense inducers were characterized
against several phytopathogens [25–30]. Recently, FytoSol was characterized by FytoFend
SA. The formulations of this compound contain chitosan oligomers and pectin-derived
oligogalacturonides (COS-OGA) that can mimic the induction of plants by the pathogen or
damaged-derived molecules (PAMP and DAMP) [31–33]. Moreover, van Aubel et al. [33]
reported FytoSol’s protective role against P. infestans in the potato and Singh et al. [34]
showed its activity on the root-knot nematode Meloidogyne graminicola infecting rice. More-
over, Clinckemaillie’s doctoral dissertation [35] reported the protective role of chitosan
oligomers and pectin-derived oligogalacturonides (COS-OGA) against A. solani for 9 days;
however, the long-lasting activity was not elucidated. Therefore, the objectives of this
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study were to (1) investigate the effects of two different plant defense elicitors (FytoSol and
INA) against EB caused by A. solani in the tomato, (2) determine the disease severity of
EB over several time points to understand the elicitors’ long-lasting activities, and (3) in-
vestigate plant response to defense elicitor applications at the molecular level for basal
defense mechanisms.

2. Materials and Methods

Plant material and growth conditions: This study was performed with the Moneymaker
tomato (Solanum lycopersicum L.) variety. Surface sterilizations of the seeds were conducted
with 5% (v/v) sodium hypochlorite (NaOCl) for 5 min, followed by 70% ethanol for 10 min.
Sterilized seeds were washed five times with sterile water and germinated in a Petri dish
for seven days at room temperature (25–27 ◦C). Seedlings were transplanted into pots
containing peat–perlite mixtures (2:1) in a growth room at 26 ◦C, with a 16 h/8 h light/dark
regime, and relative humidity at 45–60%. The experiments were initiated when seedlings
reached the three-four leaf growth stage (5–6 weeks old).

Fungal material and disease assessments: The A. solani EAb 1 isolate [4,36] was generously
provided by Dr. Ahmet Akköprü, the Department of Plant Protection, Faculty of Agricul-
ture, Van Yuzuncu Yıl University, Turkey. The pathogen was grown on potato dextrose agar
(PDA) and tomato seedlings were sprayed with a conidial suspension of 5 × 105 conidia
mL−1 (prepared in sterilized water) using a manual sprayer.

The disease severity (DS) of the plants was evaluated at five consecutive time points
(13 days post-inoculation (dpi), 18 dpi, 23 dpi, 28 dpi, and 33 dpi) with the same plants
to follow the progress of the disease over time. The evaluation was made based on the
five-point (0–5) scale, as the percentage of the compound leaf area covered by necrotic
lesions, according to Pandey et al. [37], with minor modifications. The 0–5 scale was;
0 = no symptoms, 1 = 0–11% symptoms, 2 = 11–25% symptoms, 3 = 25–50% symptoms,
4 = 50–75% symptoms, and 5 = 75% dead compound leaves (Figure 1). Disease severity
scores were transformed to percentage values for each time point and the area under the
disease-progress curve (AUDPC) was calculated according to Pandey et al. [37]. Plant
heights were manually measured with a ruler after plant harvesting. Plant shoot fresh
weights (PFWs) were obtained using a digital top loading weighing balance (Weightlab
Instruments). Plant shoot dry weights (PDWs) were determined after drying at 70 ◦C for
48 h in a Thermo ventilated oven.
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gium. FytoSol was directly dissolved in distilled water until 0.5% concentration and used 

Figure 1. The 0–5 disease severity scale: 0 = no symptoms, 1 = 0–11% symptoms, 2 = 11–25%
symptoms, 3 = 25–50% symptoms, 4 = 50–75% symptoms, and 5 = 75% dead compound leaves.

Plant defense elicitor treatments: FytoSol was kindly obtained from FytoFend SA, Bel-
gium. FytoSol was directly dissolved in distilled water until 0.5% concentration and used
in the experiments. When seedlings reached the 3–4 leaf growth stage, they were sprayed
three times; 7 days before inoculation (dbi), 4 dbi, and 1 dbi with the compound. Distilled
water was sprayed on plants as a control. Elicitor and pathogen untreated plants were
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assigned as the negative control. FytoSol disease progress evaluation study was conducted
as three independent experiments with five replications per experiment.

The 2,6-dichloroisonicotinic acid (INA) was kindly obtained from Dr. Thomas Eulgem,
University of California, Riverside, USA. Since INA does not dissolve in water completely,
it was first dissolved in DMSO (100%) to a 50 mM stock solution and then it was diluted
to 100 µM INA with distilled water. The final DMSO concentrations never exceeded 0.2%.
When seedlings reached the 3–4 leaf growth stage, INA was applied to plants 7 days and
1 day prior to the pathogen application. A total of 0.2% of DMSO was sprayed on plants as a
control. Elicitor and pathogen untreated plants were assigned as the negative controls. The
INA disease progress evaluation study was conducted as three independent experiments
with three replications per experiment.

Plant growth effects of the FytoSol under uninfected conditions were evaluated sep-
arately as three independent experiments with three replications in each. For this, at the
3–4 leaf growth stage, plants were sprayed with FytoSol or water (control) three times as
stated above. Growth parameters were measured on the second and twentieth days after
the third application of 0.5% FytoSol or water.

Gene expression analysis: Twenty-four hours after the third application of 0.5% FytoSol
or water, or the second application of 100 µM INA or 0.2% DMSO, at day 0, a total of nine
single leaves were collected from three plants from the experimental and control groups
and immediately grounded/pooled in liquid nitrogen. For the gene expression analyses,
experiments were repeated three times with three replicates per treatment and the samples
were moved to −80 ◦C until further studies after grounding in liquid nitrogen. Total RNA
isolation was performed with a PureLink RNA Mini Kit (Thermo Fisher Scientific, Waltham,
MA, USA) following the manufacturer’s instructions. The concentration and purity of
the total RNA extracts were determined using a Multiskan GO spectrophotometer (Thermo
Scientific). Afterward, DNA was removed from the RNA extracts by using the RNase-Free
DNase I (Thermo Scientific). cDNA was synthesized using the RevertAid First Strand
cDNA Synthesis Kit (Thermo Fisher Scientific). Selected tomato defense-related genes
(Supplementary Table S1) were evaluated. Three biological replicates and three technical
replicates were performed for each experimental group and the expression patterns of
these genes were quantified by real-time reverse transcription-quantitative PCR using
the PicoReal Real-Time PCR system (Thermo Scientific). The CT values provided from
real-time PCR instrumentation were imported into an excel sheet and the expression levels
were calculated for each gene of interest, normalized to Actin using the 2−∆∆CT method as
described by Livak and Schmittgen [38]. The mean, SD, and CV values were determined
from three biological and three technical replicates. The variation was determined by the
mean +-SD and statistical data were converted to the linear form by the 2−CT calculation.

Statistical analysis: All obtained data were tested for normality using the Shapiro–Wilk
test. Data for plant growth parameters were subjected to analysis of variance (ANOVA) and
the means were separated using the least significant difference (LSD) multiple range tests
(p < 0.05). Disease severity and progress values were evaluated according to the Student’s
t-test with a significance threshold of p < 0.05. All statistical analyses were performed using
the Statistix software V10 (Analytical Software, Tallahassee, FL, USA).

3. Results
3.1. Evaluation of the Effects of FytoSol on Alternaria solani Disease Severity and Progress

In this study, we aimed to investigate the long-lasting activities of two different defense
elicitors (FytoSol and INA) against EB disease caused by A. solani in the tomato. To evaluate
the effects of FytoSol (a newly identified plant defense elicitor) against A. solani infection—
at the 3–4 leaf growth stage, 0.5% of FytoSol or water (control) treatments were applied to
plants three times (7, 4, and 1 dbi) before A. solani inoculation (5 × 105 spores mL−1). After
pathogen inoculation, the disease symptoms were evaluated using a 0–5 disease severity
scale [37] every five days beginning 13 days post-inoculation (dpi), followed by 18, 23,
28, and 33 dpi. According to the results, while the severity of the disease increased over
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time, FytoSol was able to reduce disease severity significantly at the first four time points
compared to the control (Table 1). FytoSol-treated plants showed 33%, 29%, 33%, and 24%
fewer disease symptoms compared to control treatments at the first four-time points (13,
18, 23, and 28 dpi), respectively. At 33 dpi, FytoSol still demonstrated reduced disease
symptoms (16%), which was not statistically significant. Moreover, the AUDPC value that
measures quantitative severity of the disease from multiple observations revealed that
FytoSol treatment clearly prevents disease development compared to the control (Table 1).

Table 1. The effects of FytoSol on Alternaria solani disease severity and progress on the tomato.
Disease symptoms were evaluated using a 0–5 disease severity scale at five-time points (13, 18, 23, 28,
and 33 dpi). The AUDPC value measures the quantitative severity of the disease from 13 to 33 dpi
observations.

Treatment Disease Severity (%)

Ev
al

ua
ti

on
Ti

m
e

Po
in

ts

FytoSol 14.40 ± 1.86 B
13 dpi

Control 21.38 ± 2.56 A

18 dpi FytoSol 22.37 ± 2.01 B

Control 31.54 ± 2.90 A

FytoSol 31.16 ± 2.20 B
23 dpi

Control 46.85 ± 2.76 A

28 dpi FytoSol 36.53 ± 2.73 B

Control 48.33 ± 2.77 A

FytoSol 40.82 ± 2.98 NS
33 dpi

Control 48.85 ± 2.82 NS

AUDPC
FytoSol 399.17 ± 26.49 A

Control 545.78 ± 31.30 B

Data from three independent experiments were analyzed using the Student’s t-test and the means were separated
at a p < 0.05 ± standard error (SE) significance level. Numbers followed by different letters indicate significant
differences at each time point separately.

According to the morphological observations, while plant heights were not signifi-
cantly different between A. solani-infected and -uninfected plants, the growth parameters
of the plants were mostly reduced in infected plants compared to the negative controls
(Figure 2). This reduction was also observed in PFW and PDW values. Nevertheless, the
FytoSol application was able to reverse the negative effect of disease on PFW compared
to the control (Figure 2B). This difference was not significant on PDW. On the other hand,
the FytoSol application itself did not affect plant biomass or other growth parameters on
uninfected healthy plants (Supplementary Figure S1).
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Figure 2. The effects of FytoSol on (A) plant fresh weight, (B) plant dry weight, and (C) plant height
on Alternaria solani-infected or -uninfected (negative control) tomato plants. Columns with different
letters are significantly different according to the LSD test (p < 0.05).

3.2. Evaluation of the Effects of INA on Alternaria solani Disease Severity and Progress

To understand and compare the underlying mechanisms of two different elicitors, we
treated tomato plants with a well-known plant defense elicitor, 2,6-dichloroisonicotinic
acid (INA), at 7 dbi and 1 dbi on A. solani-inoculated plants. After pathogen inoculation,
the disease symptoms were evaluated at 18, 23, 28, and 33 dpi based on a 0–5 disease
severity scale. According to the results, INA did not reduce the disease severity of EB at
any of the time points, even increasing it significantly at 28 dpi (Table 2). The application of
INA also increased AUDPC values (Table 2). Correlating with those results, plant height
and PFW have also been affected by A. solani inoculation. Moreover, the INA application
reduced plant height and PFW significantly due to increased disease pressure compared to
the control (Figure 3).

Table 2. The effect of 2,6-dichloroisonicotinic acid (INA) on Alternaria solani disease severity and
progress on the tomato. Disease symptoms were evaluated using a 0–5 disease severity scale at 18, 23,
28, and 33 dpi. The AUDPC value measures the quantitative severity of the disease from 18 to 33 dpi
observations.

Treatment Disease Severity (%)

Ev
al

ua
ti

on
ti

m
es

Po
in

ts

18 dpi INA 47.15 ± 5.7 NS

Control 46.07 ± 3.1 NS

INA 52.52 ± 3.1 NS
23 dpi

Control 46.86 ± 2.5 NS

28 dpi INA 58.60 ± 2.6 A

Control 43.28 ± 3.0 B

INA 55.34 ± 2.9 NS
33 dpi

Control 42.75 ± 4.1 NS

AUDPC
INA 534.02 ± 28.5 NS

Control 447.40 ± 26.3 NS

Data from three independent experiments were analyzed using the Student’s t-test and the means were separated
at a p < 0.05 ± standard error (SE) significance level. Numbers followed by different letters indicate significant
differences. NS: non-significant.
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3.3. The Immune-Related Gene Expressions of Tomato Leaves with FytoSol and INA Applications

The disease severity index, AUDPC values, and morphological parameters demon-
strated the effects of two different plant defense elicitors against A. solani. While FytoSol
successfully reduced the disease severity of EB, INA did not reduce or even increase the
disease severity. In this section, we explore the underlying mechanisms that the plant
responses (under the defense elicitor applications) were aimed to elicit. For this, the expres-
sion patterns of defense-associated genes (Pti4, TPK1b, Pto kinase, TomloxD, PRB1-2, SABP2,
WRKY33b, WRKY70, PR-5, and PR3), which might play a role in the plant basal defense
against EB, were quantified using RT-qPCR. The expression profiles of FytoSol-applied
plants were compared to control (water) and normalized with Actin. INA-applied plants
were compared relative to 0.2% DMSO (control)-sprayed plants. According to the results,
FytoSol and INA induced plant defense systems differently.

According to the TPK1b and Pti4 defense gene relative expressions—both were slightly
upregulated with INA application, while FytoSol did not change their relative expres-
sion levels (Figure 4A). Correlated with that, Pto kinase expression was also intensively
upregulated (10-fold) with INA application but downregulated with FytoSol (Figure 4A).
Relative expressions of TomloxD and PRB1-2 were also downregulated with both FytoSol
and INA applications (Figure 4A). Furthermore, relative expressions of SABP2 were slightly
downregulated with both FytoSol and INA applications (Figure 4A). Moreover, FytoSol
significantly downregulated both WRKY33b and WRKY70 gene expressions compared with
those of the control treatment (Figure 4B). Two key pathogenesis-related genes (PR genes)
were also evaluated after FytoSol or INA application. While the relative expression of PR3
was extensively upregulated (6-fold) with the FytoSol application, INA did not induce
PR3 gene expression (Figure 4A). On the contrary, transcript levels of PR-5, one of the
marker genes of the salicylic acid-related pathway, were downregulated with the FytoSol
application (Figure 4B). All of these results implicated that FytoSol and INA applications
induced the basal plant defense differently, and the FytoSol-induced defense pathway
effectively protects the plant against EB.
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defense-related genes in the tomato. (A) Quantitative real-time PCR analysis of defense-related genes;
TPK1b, Pti4, Pto kinase, TomloxD, PRB1-2, SABP2, PR3 after FytoSol, INA, or control applications.
(B) Quantitative real-time PCR analysis of defense-related genes; WRKY33b, WRKY70, PR-5 after
FytoSol or control applications. Values present mean ± SE of three biological replicates per treatment.
Defense-related genes were normalized to Actin.

4. Discussion

Alternaria solani is an important fungal pathogen that causes early blight and significant
economic losses worldwide on tomatoes [1]. While pesticides are commonly used against
EB, their negative effects on the environment and human health, and development of
resistant strains due to pesticide overuse have forced researchers to explore alternative
plant protection methods [5,11,39]. The induction of plant defenses (in response) is one
tempting method for disease protection in agricultural fields. Plant defense elicitors are
specific molecules that induce plant defense responses and are considered candidates
against pesticides for plant protection [11].

In the current study, we investigated two promising plant defense elicitors—FytoSol,
which is a newly revealed plant defense elicitor [31,32], and INA, which is an early-
identified and well-known plant defense elicitor [22,33]. Their preventive roles against EB
and its molecular basis were explored in the tomato.

According to the results, the application of FytoSol reduced the severity of EB disease
by approximately 33% two weeks after the last elicitor application. While EB disease
progressed over time, the protection activity of FytoSol continued significantly (p < 0.05)
for almost one month with an average of 30% protection until the fifth time point (Table 1)
compared to the control. Even though it is not statistically significant, the reduction in
disease severity continued at the fifth time point (33 dpi). The AUDPC value also revealed
FytoSol’s protective role against EB (Table 1). Previously, Clinckemaillie [35] reported the
protective role of the chitosan oligomers and pectin-derived oligogalacturonides (COS-
OGA) against A. solani. That result is also consistent with ours—that EB can be repressed by
application of the FytoSol. However, they reported a higher (80%) protection ratio against
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A. solani than the current study. The percentage of the protection might be differentiated
based on the races and/or virulence of the A. solani as well as the applied concentration of
the pathogen used in these studies. While 5 × 105 conidia per mL were used in this study,
Clinckemaillie [35] used 45 × 103 conidia per mL. Moreover, the ages of the plants and
plant growth conditions might be factors for different disease protection rates [2]. They
used four-week-old plants; in this study, 5–6 week old plants were used. Moreover, here,
the disease severity was evaluated from 13 to 33 dpi at five-day intervals; they started mon-
itoring disease severity at an earlier growth stage—two days after pathogen inoculation;
they evaluated for seven days (a total of 9 dpi). It is possible that the induction of defense
responses could be very high in the very first days and then might plateau at a certain level
to provide a smooth response against this pathogen. FytoSol still provided durable protec-
tion against EB for more than a month. Regarding the plant growth parameters, the results
showed that plants prioritize their defenses toward growth and reallocate the resources for
protection [40,41], ending up with a reduction in plant growth parameters compared to the
negative control (Figure 2). However, FytoSol was able to reverse morphological growth
reductions caused by EB and improve PFW compared to the control (on infected plants)
(Figure 2); on the other hand, FytoSol itself did not have any positive or negative effects on
plant growth in uninfected healthy plants (Supplementary Figure S1).

As a second defense inducer, a common and effective dose of INA (100 µM) was
applied to plants before A. solani inoculation. It showed that INA did not induce the plant
basal defense against EB; it even increased the disease susceptibility as plants aged (Table 2
and Figure 3). Previously, INA was found to be effective against Colletotrichum orbiculare
(previously Colletotrichum lagenarium) and Cercospora nicotianae as fungal pathogens [42,43].
However, both of these pathogens are hemibiotroph, whose lifecycles are biotrophic at the
early stages of infection and then switch to the necrotrophic phase [44,45]. On the other
hand, A. solani is a necrotrophic pathogen [2]. INA may especially interact with defense
systems that are related to biotrophs and hemibiotrophs but not to necrotrophs [46,47].
Another possibility might be related to SA; since INA did not cause any changes in SA
levels, it may not activate EB protection through SA-related defense responses [11,48,49].

The reduced disease severity of EB on the FytoSol-applied plants—but not on INA-
applied plants—suggests that basal plant resistance induced by FytoSol is distinct from
INA-induced. To understand the molecular mechanism, some of the major plant defense-
associated genes related to salicylic acid-, jasmonic acid-, and ethylene-related pathways
were investigated by RT-qPCR assays on the tomato leaves (Figure 4). One of the ethylene-
responsive genes, Pti4, which encodes a transcription factor that belongs to the ERF
(ethylene-responsive element-binding factor) family of proteins [50], was evaluated. Rela-
tive expression of Pti4 did not change with the FytoSol application, which suggests that
the Pti4-related ethylene-responsive defense activation does not have a major role against
EB, while jasmonic acid and ethylene-induced mechanisms are generally emphasized for
necrotrophic pathogens [46]. Rasool et al. [51] also found that Pti4 is less responsive to soil
biochar amendments and related EB protection as well. On the contrary, Pti4 relative ex-
pression was upregulated with INA application (Figure 4A). Previous research showed that
Pti4 is important to activate the expression of GCC-box PR genes against the hemibiotroph
pathogen Pseudomonas syringae pv tomato in Tomato [50,52,53]. Another gene that functions
through modulation of ET signaling, tomato protein kinase 1 (TPK1b), which encodes the
receptor-like cytoplasmic kinase, was also investigated [54]. Pathogen infection, mechan-
ical wounding, and oxidative stress induce TPK1b expression; reduced gene expression
of TPK1b with RNA interference increases plant susceptibility against the necrotrophic
fungus Botrytis cinerea and insect herbivory [55]. In this study, the application of FytoSol
did not change the TPK1b gene expression, implying that FytoSol-related defense activation
is not through TPK1b transcription (Figure 4A). On the contrary, INA application induced
TPK1b gene expression. A previous study demonstrated that INA did not activate SA
accumulation [49,56], but intact SA signaling is required for EB protection [48]. Therefore,
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while TPK1b gene activation occurs in INA-applied plants, INA may not induce a plant
defense against EB, due to the lack of intact SA signaling.

Pto kinase is a disease resistance gene that encodes serine/threonine kinase. Its interac-
tion with the pathogen avirulence (avr) gene avrPto triggers signaling pathways, leading
to effector-triggered immunity (ETI) and it inhibits Pseudomonas syringae pathovar tomato
growth [57]. Khan et al. [58] demonstrated that Pti4 also interacts with Pto kinase in the
tomato. So, we evaluated the relative gene expression of Pto kinase and found that INA ap-
plication intensively upregulated (10-fold increase) Pto Kinase expression as well. However,
Pto kinase expression was downregulated with the FytoSol application (Figure 4A). This
finding is also consistent with Pti4 gene expression results. Pto kinase does not seem to have
any role in defense signaling against the necrotrophic pathogen A. solani.

The gene expression level of the jasmonic acid-related gene TomloxD, which encodes
lipoxygenase and is involved in JA synthesis [51], was also evaluated. It was reported
that pathogen attacks, drought stress, physical injury, as well as hormone applications
(abscisic and jasmonic acid) regulate TomloxD expression [59]. Here, the relative expression
of TomloxD was downregulated with the FytoSol application, which was also consistent
with Clinckemaillie’s [35] findings (Figure 4A). Moreover, the INA application did not
induce relative TomloxD expression. Although a previous study reported overexpression of
TomloxD owing to enhanced resistance against biotrophic fungal pathogen Cladosporium
fulvum and high temperature in tomatoes [60], current findings evidenced that TomloxD-
regulated-JA defense pathways were not activated by these inducers for EB protection.

One of the previous studies found that the application of benzoic acid and its hydrox-
ylated derivatives upregulated salicylic acid-binding protein (SABP2) and pathogenesis-related
protein (PRB1-2) gene expressions and reduced A. solani disease severity [61]. Therefore,
we investigated the modes of action of FytoSol and INA on SABP2 and PRB1-2 gene ex-
pressions. SABP2 is a protein that plays a role in the conversion of methyl salicylic acid
(MeSA) into salicylic acid (SA) and induces SAR [62]. The application of these two defense
inducers downregulated SABP2 gene expression (Figure 4A). This finding is also consistent
with Brouwer et al. [48], who claimed that intact SA-signaling is key for EB protection.
Apparently, modes of action of INA and FytoSol were not through conversion of methyl
salicylic acid (MeSA) into salicylic acid (SA). Although INA is an analog of the SA, it does
not trigger any changes in SA levels unlike the exogenous application of SA [43]. However,
other SA-analog; benzothiadiazole (BTH), and benzoic acid applications increased SA levels
and induced resistance against EB [35,61], providing insight into the uniqueness of each
elicitor for plant protection. Related to these findings, FytoSol and INA applications did
not upregulate the expression of PRB1-2 (Figure 4A), one of the pathogenesis-related-like
proteins. While previous studies demonstrated the activity of SABP2 and PRB1-2 against
EB protection, none of the tested plant defense elicitors induced their transcript levels.

The WRKY transcription factors family is crucial in plant immune responses [63]. Here,
WRKY33b and WRKY70 were analyzed as two important members of this family, with
FytoSol application downregulating WRKY33b and WRKY70 gene expressions (Figure 4B).
On the contrary, previous research showed that INA upregulated their activities [64].
Previous studies reported that WRKY33 and WRKY70 have complex roles against biotic and
abiotic stress factors [63,65–67]. WRKY70 mostly has a role against biotrophic pathogens
and it increases susceptibility to necrotrophs as a node of convergence for SA- and JA-
mediated defense signaling [68,69]. WRKY33 was previously found to be an important
transcription factor for plant resistance against necrotrophic fungal pathogens [65,66], but
the main mode of action may not be through this signaling pathway for all necrotrophic
pathogens.

Pathogenesis-related genes (PR genes) are key components of the plant defense system.
They are induced by infection or defense signaling molecules and are used as molecular
markers of the defense signaling system [70,71]. PR genes are diverse molecules that differ
in structure, mechanisms/modes of action, and specificity to the pathogen [72]. While
some of them are hydrolytic enzymes (such as chitinases (PR3)), others are antimicrobial
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proteins (such as defensins), phytoalexins, antifungal proteins, etc. [72,73]. Specific PR
proteins are activated based on the type of pathogen. Biotrophic pathogens activate the
SA pathway and related PR genes (PR1, PR2, and PR5), while necrotrophic pathogens
stimulate the JA pathway and activate the JA marker PR genes (PR3, PR4, and PR12) [74].
In these circumstances, the expression of the PR5, one of the marker genes of the salicylic
acid-related pathway, and PR3 (Chitinase/Chi3), which encodes a basic chitinase involved
in the ethylene/jasmonic acid-mediated signaling pathway, were evaluated under FytoSol
or INA treatment. According to the results, PR5 gene expression was induced with the INA
treatment [64], but FytoSol downregulated its expression (Figure 4B). On the contrary, the
PR3 gene expression was extensively upregulated with the application of FytoSol (6-fold
change), but INA did not induce the PR3 gene expression (Figure 4A). FytoSol is one of
the combinations of COS-OGA [34] and chitosan oligomers are the outcomes of the chitin
deacetylation and hydrolysis [75]. Chitin is a major component of most fungal cell walls.
When the pathogen attack occurs, plants recognize and respond to chitin with chitinases
and some pathogenesis-related proteins and induce the plant defense responses [76–78].
Khan et al. [58] found that plant chitinases provide strong antifungal effects; transgenic
potato plants over-express endo-chitinase and increase disease resistance against A. solani.
Similar results were obtained with the transgenic tomato that expressed the rice chitinase
gene [79]. As a second component of the structure, pectin-derived oligogalacturonides
(OGA) are the products of the degraded pectin wall structure upon pathogen invasion that
also induces plant defense response [80,81]. While FytoSol already has promising potential
with chemical composition, the fracture of the composition is important for induction.

In this study, comparisons of the two different defense inducers provided an under-
standing of the function of these elicitors as well as plant defense responses against the
necrotrophic pathogen A. solani. In conclusion, INA-regulated defense activation did not
provide effective protection against A. solani. On the contrary, FytoSol showed promis-
ing effects as a plant defense elicitor against A. solani without a direct toxic effect on the
pathogen [35]. While studies showed that mostly JA- and ET-related defense responses
act against necrotrophic pathogens and SA-related defenses act against biotrophs [46],
recent studies also provided controversial information to claim that SA-, ET-, and JA-
related defense responses involve widespread transcriptional reprogramming against A.
solani [48,61,82]. In this study, FytoSol’s defense induction activity seemed to target PR3
induction against A. solani. Furthermore, the mode-of-action of FytoSol might be through
downregulation of some of the key genes of the SA pathway, including WRKY70, PR5,
SABP2, and PRB1-2, which might antagonistically affect defense responses to necrotrophic
pathogens. Our findings are also consistent with previous research [35]. Moreover, van
Aubel et al. [33] stated that the application of FytoSol efficiently protects the plant against
P. infestans by keeping the SA pathway under control; Singh et al. [34] showed its pro-
tective activity against root-knot nematode Meloidogyne graminicola infection in rice. This
information provides valuable input for its usage in agricultural fields.

5. Conclusions

Early blight is one of the most common and destructive diseases in the tomato, mostly
caused by Alternaria solani. Fungicides are prominent in controlling A. solani; however, their
application creates a high risk to the environment and human health (and could lead to the
development of resistant strains). In this study, as an alternative to pesticides, the preventive
roles of two defense elicitors (FytoSol and INA) against EB disease and the molecular basis
of plant induction through elicitor applications were investigated. Based on the results,
pronounced protection was provided with FytoSol, although INA did not achieve any of
it. The molecular bases of these results reflect their differences in the activation of plant
defenses and provide us with valuable information. With that information, future research
may elucidate the complex mechanisms of plant responses against different pathogens
and may help in the design of ideal plant defense elicitors—extending the use of defense
elicitors as alternatives to pesticides in agriculture.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8060484/s1, Figure S1: The effects of FytoSol on
growth parameters; plant height (PH) first and second measurements, stem diameter first and second
measurements, plant fresh (PFW) and dry (PDW) weights on uninfected tomato plants; Table S1: List
of tomato genes and corresponding primers used for the gene expression analysis. References [83–85]
are citied in the Supplementat Materials.
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