Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. oblongifolia under In Vitro Nanoparticles Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Gas Chromatography-Mass Spectrometry Analysis
2.3. AgNPs Treatment
2.4. ZnO NPs Treatment
2.5. Transmission Electron Microscopy (TEM)
2.6. DNA Isolation and Genetic Stability Assessment Using ISSR Markers
2.7. Electrophoretic Analysis of PCR-Amplified Products
2.8. Statistical Analyses
3. Results
3.1. GC-MS Analysis
3.2. Transmission Electron Microscopy (TEM)
3.3. Impacts of AgNPs on Shoot Growth
3.4. Impacts of ZnO NPs on Shoot Growth
3.5. Detection of Genetic Uniformity Using ISSR (PCR) Molecular Marker
3.6. Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agize, M.; Demissew, S.; Asfaw, Z. Ethnobotany of medicinal plants in Loma and Gena bosa districts (woredas) of dawro zone, southern Ethiopia. Topclass J. Herb. Med. 2013, 2, 194–212. [Google Scholar]
- Moglad, E.H.; Alhassan, M.S.; Koko, W.S.; Saadabi, A.M. In vitro antimicrobial activity of Sudanese medicinal plants. J. Med. Sci. 2012, 12, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Sasi Priya, S. Maerua oblongifolia–What do we really know? Overview, Progress and Perspectives. J. PeerScientist 2020, 2, e1000012. [Google Scholar]
- Rathore, M.S.; Shekhawat, N.S. Micropropagation of Maerua oblongifolia: A rare ornamental from semi arid regions of Rajasthan, India. J. Dev. Biol. Tissue Eng. 2011, 3, 92–98. [Google Scholar]
- Al-Qurainy, F.; Nadeem, M.; Khan, S.; Alansi, S.; Tarroum, M. Micropropagation and evaluation of genetic fidelity of Maerua oblongifolia (FORSSK.) A. RICH: A rare and medocinal plant from Saudi Arabia. J. Fresenius Environ. Bull. 2018, 27, 165–171. [Google Scholar]
- Tymoszuk, A.; Miler, N. Silver and gold nanoparticles impact on in vitro adventitious organogenesis in chrysanthemum, gerbera and Cape Primrose. Sci. Hortic. 2019, 257, 108766. [Google Scholar] [CrossRef]
- Shaikhaldein, H.O.; Al-Qurainy, F.; Nadeem, M.; Khan, S.; Tarroum, M.; Salih, A.M. Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci. Rep. 2020, 10, 17569. [Google Scholar] [CrossRef]
- Mehrian, S.K.; De Lima, R. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. Environ. Nanotechnol. Monit. Manag. 2016, 6, 184–193. [Google Scholar]
- Patlolla, A.K.; Berry, A.; May, L.; Tchounwou, P.B. Genotoxicity of silver nanoparticles in Vicia faba: A pilot study on the environmental monitoring of nanoparticles. Int. J. Environ. Res. Public Health 2012, 9, 1649–1662. [Google Scholar] [CrossRef] [Green Version]
- Shaikhaldein, H.O.; Al-Qurainy, F.; Khan, S.; Nadeem, M.; Tarroum, M.; Salih, A.M.; Gaafar, A.-R.Z.; Alshameri, A.; Alansi, S.; Alenezi, N.A. Biosynthesis and Characterization of ZnO Nanoparticles Using Ochradenus arabicus and Their Effect on Growth and Antioxidant Systems of Maerua oblongifolia. Plants 2021, 10, 1808. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 1908, 44, 223–270. [Google Scholar]
- Rohlf, F.J. NTSYS-PC Numerical Taxonomy and Multivariate Analysis System; Version 2.1, Exeter Software; Setauket: New York, NY, USA, 1998. [Google Scholar]
- Fujiwara-Tsujii, N.; Yamagata, N.; Takeda, T.; Mizunami, M.; Yamaoka, R. Behavioral responses to the alarm pheromone of the ant Camponotus obscuripes (Hymenoptera: Formicidae). Zool. Sci. 2006, 23, 353–358. [Google Scholar] [CrossRef]
- Ahsan, T.; Chen, J.; Zhao, X.; Irfan, M.; Wu, Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express 2017, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keskın, D.; Ceyhan, N.; Uğur, A.; Dbeys, A.D. Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. J. Food Agric. Environ. 2012, 10, 99–102. [Google Scholar]
- Huang, L.; Zhu, X.; Zhou, S.; Cheng, Z.; Shi, K.; Zhang, C.; Shao, H. Phthalic acid esters: Natural sources and biological activities. Toxins 2021, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Varo-Arguello, W.E.; Camacho-Pérez, B.; Ríos-Leal, E.; Vazquez-Landaverde, P.A.; Ponce-Noyola, M.T.; Barrera-Cortés, J.; Sastre-Conde, I.; Rindernknecht-Seijas, N.F.; Poggi-Varaldo, H.M. Triphasic slurry bioreactors for the bioremediation of lindane-impacted soil under aerobic and anaerobic conditions. Environ. Eng. Manag. J. 2012, 11, 1811–1823. [Google Scholar]
- Lotfi, A.; Kottb, M.; Elsayed, A.; Shafik, H. Antifungal activity of some Mediterranean seaweed against Macrophomina phaseolina and Fusarium oxysporum in Vitro. Alfarama J. Basic Appl. Sci. 2021, 2, 81–96. [Google Scholar] [CrossRef]
- Salim, S.A. In vitro induction of callus from different explants ofterminalia arjuna (roxb.) Wight and arn. And detection of its active secondary metabolites using gc-ms analysis. Plant Arch. 2018, 18, 2519–2527. [Google Scholar]
- Csákÿ, A.G.; Molina, M.T. 1, 2-Bis (diphenylphosphino) benzene. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Pandey, A.K.; Sharma, S.; Pandey, M.; Alam, M.M.; Shaquiquzzaman, M.; Akhter, M. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem. 2016, 123, 476–486. [Google Scholar] [CrossRef]
- Erdönmez, D.; Kenar, N.; TÜRKMEN, K.E. Screening for anti-quorum sensing and anti-biofilm activity in Viscum album L. extracts and its biochemical composition. Trak. Univ. J. Nat. Sci. 2018, 19, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Etter, M.C.; Baures, P.W. Triphenylphosphine oxide as a crystallization aid. J. Am. Chem. Soc. 1988, 110, 639–640. [Google Scholar] [CrossRef]
- Farag, S.M.; Essa, E.E.; Alharbi, S.A.; Alfarraj, S.; El-Hassan, G.A. Agro-waste derived compounds (flax and black seed peels): Toxicological effect against the West Nile virus vector, Culex pipiens L. with special reference to GC–MS analysis. Saudi J. Biol. Sci. 2021, 28, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Gunathilaka, M.; Dissanayake, D.; Ranasinghe, P.; Samarakoon, K.; Peiris, L. Characterization of Bioactive Compounds From Marine Red Algae Gracillaria Edulis. In Proceedings of the 6th International Conference on Multidisciplinary Approaches (iCMA), Nugegoda, Sri Lanka, 26–27 November 2019. [Google Scholar]
- Momin, K.; Thomas, S. GC-MS analysis of antioxidant compounds present in different extracts of an endemic plant Dillenia scabrella (dilleniaceae) leaves and barks. Int. J. Pharm. Sci. Res 2020, 11, 2262–2273. [Google Scholar]
- Subramaniam, S.; Subramaniam, S. GC-MS Analysis of an Ayurvedic medicine “Modified Arjunarishta”. Int. J. Curr. Res. Chem. Pharm. Sci. 2017, 4, 46–50. [Google Scholar]
- Jabbar, A.; Sirajuddin, M.; Iqbal, S.; Tariq, M.I.; Ahmad, M. Exploration of Antioxidant Activities of Potentially Bioactive Compounds in Trianthema portulacastrum Herb: Chemical Identification and Quantification by GC-MS and HPLC. ChemistrySelect 2019, 4, 925–935. [Google Scholar] [CrossRef]
- Seferoğlu, Z.; Hökelek, T.; Şahin, E.; Ertan, N. 3-(5-Ethyl-1, 3, 4-thiadiazol-2-yldiazenyl)-1-methyl-2-phenyl-1H-indole. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, o568–o570. [Google Scholar] [CrossRef]
- Hökelek, T.; Seferoğlu, Z.; Şahin, E.; Ertan, N. 1-Methyl-2-phenyl-1H-indole. Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, o1963–o1964. [Google Scholar] [CrossRef]
- Policegoudra, R.; Chattopadhyay, P.; Aradhya, S.; Shivaswamy, R.; Singh, L.; Veer, V. Inhibitory effect of Tridax procumbens against human skin pathogens. J. Herb. Med. 2014, 4, 83–88. [Google Scholar] [CrossRef]
- Penduka, D.; Basson, K.; Mayekiso, B.; Buwa, L.; Okoh, I. Gas chromatography-mass spectrometry characterisation of the anti-Listeria components of Garcinia kola seeds. Appl. Biochem. Microbiol. 2014, 50, 297–305. [Google Scholar] [CrossRef]
- Shaikh, M.N.; Mokat, D.N. Bioactive metabolites of rhizosphere fungi associated with Cymbopogon citratus (DC.) Stapf. J. Pharmacogn. Phytochem. 2017, 6, 2289–2293. [Google Scholar]
- Munín, J.; Quezada, E.; Cuiñas, A.; Campos-Toimil, M.; Uriarte, E.; Santana, L.; Viña, D. Synthesis, biological evaluation and structure–activity relationships of new phthalazinedione derivatives with vasorelaxant activity. Eur. J. Med. Chem. 2014, 82, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Khalil, E.-G.A.M.; Berghot, M.A.; Gouda, M.A. Design, synthesis and antibacterial activity of new phthalazinedione derivatives. J. Serb. Chem. Soc. 2011, 76, 329–339. [Google Scholar] [CrossRef]
- Balachandar, R.; Navaneethan, R.; Biruntha, M.; Kumar, K.K.A.; Govarthanan, M.; Karmegam, N. Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Mater. Lett. 2022, 311, 131572. [Google Scholar] [CrossRef]
- Soror, S.; Fahim, A.M.; Elabbady, S.; Nassar, E.; Aboelnaga, A. Synthesis, antimicrobial activities, docking studies and computational calculations of new bis-1, 4-phenylene-1 H-1, 2, 3-triazole derivatives utilized ultrasonic energy. J. Biomol. Struct. Dyn. 2021, 1–18. [Google Scholar] [CrossRef]
- Sani, H.L.; Malami, I.; Hassan, S.W.; Alhassan, A.M.; Halilu, M.E.; Muhammad, A. Effects of standardized stem bark extract of Mangifera indica L. in wistar rats with 2, 4-dinitrophenylhydrazine-induced haemolytic anaemia. Pharmacogn. J. 2015, 7, 89–96. [Google Scholar] [CrossRef]
- Rice, K.C.; Boone, B.J.; Rubin, A.B.; Rauls, T. Synthesis, antimalarial activity, and phototoxicity of some benzo [h] quinoline-4-methanols. J. Med. Chem. 1976, 19, 887–892. [Google Scholar] [CrossRef]
- Madhavan, V.; Shukla, A.K.; Murali, A.; Usha, M.; Yoganarasimhan, S. Antipyretic activity studies of two botanical sources of the drug Murva. Traditional Asian Medicine 2010, 5, 171–180. [Google Scholar]
- Baka, Z.A. Antifungal activity of six Saudi medicinal plant extracts against five phyopathogenic fungi. Arch. Phytopathol. Plant Prot. 2010, 43, 736–743. [Google Scholar] [CrossRef]
- Van Vuuren, S.; Viljoen, A. The in vitro antimicrobial activity of toothbrush sticks used in Ethiopia. South Afr. J. Bot. 2006, 72, 646–648. [Google Scholar] [CrossRef] [Green Version]
- Moglad, E.; Abdalla, O.; Algadir, H.A.; Koko, W.; Saadabi, A. In vitro antimicrobial activity and cytotoxicity of Maerua oblongifolia. Int. J. Med. Med. Sci. 2014, 1, 32–37. [Google Scholar]
- Hamad, M.S.; Kabbashi, A.S.; Madani, I.A. Chemtaxonomic Relationship of Roots Phenolic Compounds for Selected Species of Four Families Recently Grouped in Brassicales by APGIII. World 2017, 2, 140–144. [Google Scholar]
- Madhavan, V.; Munisamy, U.; Yoganarasimhan, S.; Gurudeva, M.; Rajamanickam, D.; Saravanan, S.; Mythreyi, R. Pharmacognostical studies on the roots of Maerua oblongifolia (Forsk.) A. Rich.(Capparaceae). Asian J. Tradit. Med. 2012, 7, 29–38. [Google Scholar]
- Castro-González, C.G.; Sánchez-Segura, L.; Gómez-Merino, F.C.; Bello-Bello, J.J. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: Transport and accumulation. Sci. Rep. 2019, 9, 10372. [Google Scholar] [CrossRef] [PubMed]
- Nghia, L.T.; Tung, H.T.; Huy, N.P.; Luan, V.Q.; Nhut, D.T. The effects of silver nanoparticles on growth of Chrysanthemum morifolium Ramat. cv." Jimba" in different cultural systems. Vietnam J. Sci. Technol. 2017, 55, 503. [Google Scholar] [CrossRef]
- Sadak, M.S. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull. Natl. Res. Cent. 2019, 43, 38. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H.; Bangerth, F. Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J. Exp. Bot. 1989, 40, 405–412. [Google Scholar] [CrossRef]
- Tondey, M.; Kalia, A.; Singh, A.; Dheri, G.S.; Taggar, M.S.; Nepovimova, E.; Krejcar, O.; Kuca, K. Seed priming and coating by nano-scale zinc oxide particles improved vegetative growth, yield and quality of fodder maize (Zea mays). Agronomy 2021, 11, 729. [Google Scholar] [CrossRef]
- Mazumder, J.A.; Khan, E.; Perwez, M.; Gupta, M.; Kumar, S.; Raza, K.; Sardar, M. Exposure of biosynthesized nanoscale ZnO to Brassica juncea crop plant: Morphological, biochemical and molecular aspects. Sci. Rep. 2020, 10, 8531. [Google Scholar] [CrossRef]
- Faizan, M.; Bhat, J.A.; Chen, C.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P.; Yu, F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. 2021, 161, 122–130. [Google Scholar] [CrossRef]
- Del Buono, D.; Di Michele, A.; Costantino, F.; Trevisan, M.; Lucini, L. Biogenic ZnO nanoparticles synthesized using a novel plant extract: Application to enhance physiological and biochemical traits in maize. Nanomaterials 2021, 11, 1270. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv. 2017, 7, 36492–36505. [Google Scholar] [CrossRef] [Green Version]
- Rohela, G.K.; Jogam, P.; Shabnam, A.A.; Shukla, P.; Abbagani, S.; Ghosh, M.K. In vitro regeneration and assessment of genetic fidelity of acclimated plantlets by using ISSR markers in PPR-1 (Morus sp.): An economically important plant. Sci. Hortic. 2018, 241, 313–321. [Google Scholar] [CrossRef]
- Shanmugam, C.; Gunasekaran, D.; Duraisamy, N.; Nagappan, R.; Krishnan, K. Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system. RSC Adv. 2015, 5, 71174–71182. [Google Scholar]
- Sreelekshmi, R.; Siril, E.; Muthukrishnan, S. Role of biogenic silver nanoparticles on hyperhydricity reversion in Dianthus chinensis L. an in vitro model culture. J. Plant Growth Regul. 2022, 41, 23–39. [Google Scholar] [CrossRef]
- Martín, C.; Kremer, C.; González, I.; González-Benito, M.E. Influence of the cryopreservation technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 122, 185–195. [Google Scholar] [CrossRef]
- Fouda, M.S.; Hendawey, M.H.; Hegazi, G.A.; Sharada, H.M.; El-Arabi, N.I.; Attia, M.E.; Soliman, E.R. Nanoparticles induce genetic, biochemical, and ultrastructure variations in Salvadora persica callus. J. Genet. Eng. Biotechnol. 2021, 19, 27. [Google Scholar] [CrossRef]
- Lee, S.; Chung, H.; Kim, S.; Lee, I. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut. 2013, 224, 1668. [Google Scholar] [CrossRef]
- Singh, N.; Manshian, B.; Jenkins, G.J.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef]
- Kedziorek, D.A.; Muja, N.; Walczak, P.; Ruiz-Cabello, J.; Gilad, A.A.; Jie, C.C.; Bulte, J.W. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2010, 63, 1031–1043. [Google Scholar] [CrossRef] [Green Version]
- Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.-M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446–465. [Google Scholar] [CrossRef]
Compounds | RT | % | Bioactivity | References | |
---|---|---|---|---|---|
1 | p-Methoxybenzylazidoformate | 4.381 | 1.13 | Unknown | |
2 | Undecane | 9.59 | 1.88 | Alarm pheromone of the ant Componotus obscuripes | [14] |
3 | Eicosane | 9.669 | 2.02 | Antifungal and Antibacterial activities | [15] |
4 | Cyclotrisiloxane hexamethyl | 11.02 | 2.32 | Antimicrobial activities | [16] |
5 | Phthalic Acid Esters | 30.88 | 2.69 | Antimicrobial, allelopathic, Insecticidal activities | [17] |
6 | Cyclononasiloxane octadecamethyl | 38.50 | 1.36 | Antifouling, Antimicrobial and antioxidant activities | [15] |
7 | Piperidine, 1-(5-trifluoromethyl-2-pyridyl)-4-(1H-pyrrol-1-yl)- | 39.6 | 1.52 | Antibacterial activities | [18] |
8 | Phenol, 2,2’-methylenebis [6-(1,1-dimethylethyl)-4-methyl- | 40.41 | 6.99 | Antibacterial activity | [19] |
9 | Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- | 40.54 | 1.70 | Anti-bacteria1activity | [20] |
10 | 1,2-Bis(diphenylphosphino)benzene | 40.89 | 4.94 | Antileukemia activity | [21] |
11 | 4,5-Dihydrooxazole-5-one, 2-methyl-4-[2,3,4-methozxybenzylidnen]- | 41.1 | 11.75 | Antimalarial agents | [22] |
12 | Propiophenone, 2’-(trimethylsiloxy)- | 41.24 | 3.99 | Antibacterial activity | [23] |
13 | Triphenylphosphine oxide | 41.55 | 16.36 | Crystallization aid | [24] |
14 | Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- | 42.07 | 4.16 | Anti-diabetic activities | [25] |
15 | 1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-tetrahydro-, isopropyl ester | 42.2 | 1.61 | Anti-diabetic activities | [26] |
16 | 1, 2-Benzisothiazol-3-amine tbdms, | 42.40 | 1.17 | Antimicrobial and antioxidant activities | [27] |
17 | 1-Methyl-3-phenylindole | 43.37 | 1.58 | Used in colorimetric assay of lipid peroxidation | [20] |
18 | Trimethyl [4-(2-methyl-4-oxo-2-pentyl)phenoxy]silane | 43.58 | 5.51 | Antioxidant, antibacteria1, anti-inflammatory | [28] |
19 | 5-Methyl-2-trimethylsilyloxy-acetophenone | 43.69 | 1.34 | Antioxidant activity | [29] |
20 | 1H-Indole, 1-methyl-2-phenyl- | 43.84 | 1.38 | Antibacterial, antifungal, antitubercular and antitumor properties | [30,31] |
21 | Tetrasiloxane, decamethyl- | 44.01 | 1.44 | Antifungal activity | [32] |
22 | 4-Methyl-2-trimethylsilyloxy-acetophenone | 44.26 | 1.54 | Anti-Listeria activity | [33] |
23 | Benzene, 2-[(tert-butyldimethylsilyl)oxy]-1-isopropyl-4-methyl- | 44.37 | 2.43 | Antibacterial activity | [34] |
24 | 1,4-Phthalazinedione, 2,3-dihydro-6-nitro- | 44.47 | 1.37 | Derivatives have vasorelaxant activity and antibacterial activity | [35,36] |
25 | Methyltris(trimethylsiloxy)silane | 44.51 | 1.95 | Antibacterial activity | [37] |
26 | Silane, 1,4-phenylenebis[trimethyl- | 44.83 | 4.40 | Antimicrobial | [38] |
27 | 2,4,6-Cycloheptatrien-1-one, 3,5-bis-trimethylsilyl- | 44.99 | 6.03 | Anti-anaemic | [39] |
28 | Benzo [h] quinoline, 2,4-dimethyl- | 52.4 | 5.43 | Antimalarial activity | [40] |
Primer Name | Primer Sequence | Total Number of Amplified DNA Bands | Number of Monomorphic Bands per Primer | Number of Polymorphic Bands per Primer | Percent of Monomorphism |
---|---|---|---|---|---|
UBC-7 | 5’-AGA GAG AGA GAG AGA GT-3′ | 8 | 8 | 0 | 100 |
UBC-12 | 5’-GAG AGA GAG AGA GAG AA-3′ | 7 | 6 | 1 | 100 |
UBC-17 | 5`-CTC TCT CTC TCT CTC TG-3′ | 8 | 7 | 1 | 100 |
UBC-20 | 5`-CAC ACA CAC ACA CAC AA-3′ | 6 | 6 | 0 | 100 |
UBC-21 | 5`-GTG TGT GTG TGT GTG TC-3′ | 9 | 9 | 0 | 100 |
UBC-24 | 5`-GTG TGT GTG TGT GTG TT-3′ | 7 | 7 | 0 | 100 |
Total | 5`-TCT CTC TCT CTC TCT CG-3′ | 45 | 43 | 2 | 95.5 |
Prim Name | Primer Sequence | Total Number of Amplified DNA Bands | Number of Monomorphic Bands per Primer | Number of Polymorphic Bands per Primer | Percent of Monomorphism |
---|---|---|---|---|---|
UBC-7 | 5’-AGA GAG AGA GAG AGA GT-3′ | 8 | 8 | 0 | 100 |
UBC-12 | 5’-GAG AGA GAG AGA GAG AA-3′ | 7 | 6 | 1 | 100 |
UBC-17 | 5`-CTC TCT CTC TCT CTC TG-3′ | 8 | 8 | 0 | 100 |
UBC-20 | 5`-CAC ACA CAC ACA CAC AA-3′ | 6 | 6 | 0 | 100 |
UBC-21 | 5`-GTG TGT GTG TGT GTG TC-3′ | 9 | 9 | 0 | 100 |
UBC-24 | 5`-GTG TGT GTG TGT GTG TT-3′ | 7 | 7 | 0 | 100 |
Total | 5`-TCT CTC TCT CTC TCT CG-3′ | 45 | 44 | 1 | 97.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikhaldein, H.O.; Al-Qurainy, F.; Tarroum, M.; Khan, S.; Nadeem, M.; Salih, A.M. Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. oblongifolia under In Vitro Nanoparticles Exposure. Horticulturae 2022, 8, 610. https://doi.org/10.3390/horticulturae8070610
Shaikhaldein HO, Al-Qurainy F, Tarroum M, Khan S, Nadeem M, Salih AM. Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. oblongifolia under In Vitro Nanoparticles Exposure. Horticulturae. 2022; 8(7):610. https://doi.org/10.3390/horticulturae8070610
Chicago/Turabian StyleShaikhaldein, Hassan O., Fahad Al-Qurainy, Mohamed Tarroum, Salim Khan, Mohammad Nadeem, and Abdalrhaman M. Salih. 2022. "Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. oblongifolia under In Vitro Nanoparticles Exposure" Horticulturae 8, no. 7: 610. https://doi.org/10.3390/horticulturae8070610
APA StyleShaikhaldein, H. O., Al-Qurainy, F., Tarroum, M., Khan, S., Nadeem, M., & Salih, A. M. (2022). Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. oblongifolia under In Vitro Nanoparticles Exposure. Horticulturae, 8(7), 610. https://doi.org/10.3390/horticulturae8070610