A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Pilot Plots
2.2. Ground Measurements
2.3. Satellite Data
2.4. Data Processing
2.5. Relationships between Ground and Satellite Data through Regression Models
3. Results
3.1. Testing Ψstem and Ground Shaded Area Differences between Plots S and N
3.2. Vegetation Indices Analyses
3.3. Relating Ground to Satellite Data through Regression Models
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spagnoli, F. Ane Today—The Golden Pome: The Pomegranate from Its Deepest Roots to Modern Culture; American Society of Overseas Research (ASOR): Alexandria, VA, USA, 2019. [Google Scholar]
- Coltivazioni: Coltivazioni Legnose Fruttifere. Available online: http://dati.istat.it/Index.aspx?QueryId=33705 (accessed on 2 May 2022).
- Herrera, E.; Jiménez, R.; Aruoma, O.I.; Hercberg, S.; Sanchez-Garcia, I.; Fraga, C. Aspects of antioxidant foods and supplements in health and disease. Nutr. Rev. 2009, 67, S140–S144. [Google Scholar] [CrossRef] [PubMed]
- Cantele, C.; Rojo-Poveda, O.; Bertolino, M.; Ghirardello, D.; Cardenia, V.; Barbosa-Pereira, L.; Zeppa, G. In Vitro Bioaccessibility and Functional Properties of Phenolic Compounds from Enriched Beverages Based on Cocoa Bean Shell. Foods 2020, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Cantele, C.; Bertolino, M.; Bakro, F.; Giordano, M.; Jędryczka, M.; Cardenia, V. Antioxidant Effects of Hemp (Cannabis sativa L.) Inflorescence Extract in Stripped Linseed Oil. Antioxidants 2020, 9, 1131. [Google Scholar] [CrossRef] [PubMed]
- Cantele, C.; Tedesco, M.; Ghirardello, D.; Zeppa, G.; Bertolino, M. Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef]
- Malik, A.; Mukhtar, H. Prostate Cancer Prevention Through Pomegranate Fruit. Cell Cycle 2006, 5, 371–373. [Google Scholar] [CrossRef]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef]
- Moccia, S. Pomegranate: A Source of Active Compounds with a Health-Promoting Role. In Punica Granatum: Cultivation, Properties and Health Benefits; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; pp. 21–40. ISBN 978-1-5361-9821-8. [Google Scholar]
- Bajaj, K.K.; Kale, M.B.; Umare, M.D.; Wankhede, N.L.; Taksande, B.G.; Trivedi, R.V.; Umekar, M.J.; Upaganlawar, A.B. Potential Benefits and Effects of Pomegranate in Metabolic Disorders. In Punica Granatum: Cultivation, Properties and Health Benefits; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; pp. 193–222. ISBN 978-1-5361-9821-8. [Google Scholar]
- Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab. J. Chem. 2017, 10, S2675–S2684. [Google Scholar] [CrossRef]
- Gundogdu, M.; Yilmaz, H. Organic acid, phenolic profile and antioxidant capacities of pomegranate (Punica granatum L.) cultivars and selected genotypes. Sci. Hortic. 2012, 143, 38–42. [Google Scholar] [CrossRef]
- Rolle, L.; Giacosa, S.; Gerbi, V.; Bertolino, M.; Novello, V. Varietal Comparison of The Chemical, Physical, and Mechanical Properties of Five Colored Table Grapes. Int. J. Food Prop. 2013, 16, 598–612. [Google Scholar] [CrossRef]
- Lyu, Y.; Porat, R.; Yermiyahu, U.; Heler, Y.; Holland, D.; Dag, A. Effects of nitrogen fertilization on pomegranate fruit, aril and juice quality. J. Sci. Food Agric. 2020, 100, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Selahvarzi, Y.; Zamani, Z.; Fatahi, R.; Talaei, A.-R. Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar). Agric. Water Manag. 2017, 192, 189–197. [Google Scholar] [CrossRef]
- Parvizi, H.; Sepaskhah, A.R.; Ahmadi, S.H. Physiological and growth responses of pomegranate tree (Punica granatum L. cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agric. Water Manag. 2016, 163, 146–158. [Google Scholar] [CrossRef]
- Intrigliolo, D.; Nicolás, E.; Bonet, L.; Ferrer, P.; Alarcon, J.J.; Bartual, J. Water relations of field grown Pomegranate trees (Punica granatum) under different drip irrigation regimes. Agric. Water Manag. 2011, 98, 691–696. [Google Scholar] [CrossRef]
- Volschenk, T. Effect of water deficits on pomegranate tree performance and fruit quality—A review. Agric. Water Manag. 2021, 246, 106499. [Google Scholar] [CrossRef]
- Conesa, M.R.; Falagán, N.; de la Rosa, J.M.; Aguayo, E.; Domingo, R.; Pastor, A.P. Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes. Agric. Water Manag. 2016, 163, 9–18. [Google Scholar] [CrossRef]
- Galindo, A.; Calín-Sánchez, A.; Griñán, I.; Rodríguez, P.; Cruz, Z.; Girón, I.; Corell, M.; Martínez-Font, R.; Moriana, A.; Carbonell-Barrachina, A.; et al. Water stress at the end of the pomegranate fruit ripening stage produces earlier harvest and improves fruit quality. Sci. Hortic. 2017, 226, 68–74. [Google Scholar] [CrossRef]
- Lipan, L.; Collado-González, J.; Wojdyło, A.; Domínguez-Perles, R.; Gil-Izquierdo, A.; Corell, M.; Moriana, A.; Cano-Lamadrid, M.; Carbonell-Barrachina, A. How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds? Food Chem. 2021, 339, 127756. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. A New Index for Assessing Tree Vigour Decline Based on Sentinel-2 Multitemporal Data. Application to Tree Failure Risk Management. Remote Sens. Lett. 2021, 12, 58–67. [Google Scholar]
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy 2021, 11, 555. [Google Scholar] [CrossRef]
- Orusa, T.; Mondino, E.B. Exploring Short-Term Climate Change Effects on Rangelands and Broad-Leaved Forests by Free Satellite Data in Aosta Valley (Northwest Italy). Climate 2021, 9, 47. [Google Scholar] [CrossRef]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Mondino, E.B. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens. 2020, 12, 3542. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Observ. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Jopia, A.; Zambrano, F.; Pérez-Martínez, W.; Vidal-Páez, P.; Molina, J.; Mardones, F.D.L.H. Time-Series of Vegetation Indices (VNIR/SWIR) Derived from Sentinel-2 (A/B) to Assess Turgor Pressure in Kiwifruit. ISPRS Int. J. Geo-Inf. 2020, 9, 641. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Sarvia, F.; Gomarasca, M.A. Supporting Insurance Strategies in Agriculture by Remote Sensing: A Possible Approach at Regional Level. In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 186–199. [Google Scholar]
- Shrestha, R.; Di, L.; Yu, E.G.; Kang, L.; Shao, Y.-Z.; Bai, Y.-Q. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef]
- Sarvia, F.; Xausa, E.; De Petris, S.D.; Cantamessa, G.; Borgogno-Mondino, E. A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy 2021, 11, 110. [Google Scholar] [CrossRef]
- Kanjir, U.; Djurić, N.; Veljanovski, T. Sentinel-2 Based Temporal Detection of Agricultural Land Use Anomalies in Support of Common Agricultural Policy Monitoring. ISPRS Int. J. Geo-Inf. 2018, 7, 405. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, S.; Zand-Parsa, S.; Niyogi, D. Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. Int. J. Remote Sens. 2021, 42, 1893–1916. [Google Scholar] [CrossRef]
- Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through WorldView-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [Google Scholar] [CrossRef]
- Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards. Remote Sens. 2018, 10, 1615. [Google Scholar] [CrossRef]
- D’Urso, G.; Maltese, A.; Palladino, M.E.O. Based Estimation of Transpiration and Crop Water Requirements for Vineyards: A Case Study in Southern Italy. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI; SPIE: Bellingham, WA, USA, 2014; Volume 9239, pp. 257–265. [Google Scholar]
- Quintano, C.; Fernández-Manso, A.; Shimabukuro, Y.E.; Pereira, G. Spectral unmixing. Int. J. Remote Sens. 2012, 33, 5307–5340. [Google Scholar] [CrossRef]
- Dardanelli, G.; Maltese, A.; Pipitone, C.; Pisciotta, A.; Brutto, M.L. NRTK, PPP or Static, That Is the Question. Testing Different Positioning Solutions for GNSS Survey. Remote Sens. 2021, 13, 1406. [Google Scholar] [CrossRef]
- Sentinel-2—Missions Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 3 August 2022).
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, e1353691. [Google Scholar] [CrossRef]
- Thompson, C.N.; Guo, W.; Sharma, B.; Ritchie, G.L. Using Normalized Difference Red Edge Index to Assess Maturity in Cotton. Crop Sci. 2019, 59, 2167–2177. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crop. Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Novello, V.; Lessio, A.; de Palma, L. Describing the spatio-temporal variability of vines and soil by satellite-based spectral indices: A case study in Apulia (South Italy). Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 68, 42–50. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34, L06407. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, M.A.; Crespi, M.; Fratarcangeli, F.; Giannone, F.; Realini, E. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method. ISPRS J. Photogramm. Remote Sens. 2008, 63, 427–440. [Google Scholar] [CrossRef]
- De Petris, S.; Sarvia, F.; Borgogno-Mondino, E. About Tree Height Measurement: Theoretical and Practical Issues for Uncertainty Quantification and Mapping. Forests 2022, 13, 969. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv. French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef]
- Galindo, A.; Rodríguez, P.; Mellisho, C.; Torrecillas, E.; Moriana, A.; Cruz, Z.; Conejero, W.; Moreno, F.; Torrecillas, A. Assessment of discretely measured indicators and maximum daily trunk shrinkage for detecting water stress in pomegranate trees. Agric. For. Meteorol. 2013, 180, 58–65. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Grégoire, J.-M. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sens. Environ. 2002, 82, 198–207. [Google Scholar] [CrossRef]
Date | Irrigation of Plot N (m3 ha−1) | Irrigation of Plot S (m3 ha−1) | Rainfall (mm) |
---|---|---|---|
23 June | 0.0 | 0.0 | 0.0 |
28 June | 21.2 | 12.6 | 0.0 |
1 July | 21.2 | 12.7 | 0.0 |
4 July | 19.1 | 11.4 | 0.0 |
7 July | 19.2 | 11.5 | 0.0 |
9 July | 19.2 | 11.4 | 0.0 |
11 July | 19.3 | 11.4 | 0.0 |
13 July | 19.1 | 11.5 | 0.0 |
15 July | 19.2 | 11.4 | 0.0 |
17 July | 19.2 | 11.3 | 0.0 |
18 July | 0.0 | 0.0 | 20.2 |
19 July | 0.0 | 0.0 | 38.2 |
20 July | 0.0 | 0.0 | 3.5 |
22 July | 16.3 | 9.6 | 0.0 |
24 July | 16.1 | 9.5 | 0.0 |
26 July | 18.2 | 10.9 | 0.0 |
28 July | 19.2 | 11.4 | 0.0 |
30 July | 19.3 | 11.3 | 0.0 |
1 August | 31.5 | 32.0 | 0.0 |
3 August | 32.0 | 31.8 | 0.0 |
5 August | 32.4 | 32.6 | 0.0 |
7 August | 31.8 | 31.5 | 0.0 |
9 August | 30.0 | 32.0 | 0.0 |
11 August | 32.5 | 32.2 | 0.0 |
13 August | 32.0 | 31.5 | 0.0 |
Spectral Band | Central Wavelength (nm) | Band Width (nm) | GSD (m) |
---|---|---|---|
B1 (Aerosol) | 443 | 20 | 60 |
B2 (Blue) | 490 | 65 | 10 |
B3 (Green) | 560 | 35 | 10 |
B4 (Red) | 665 | 30 | 10 |
B5 (Red Edge 5) | 705 | 15 | 20 |
B6 (Red Edge 6) | 740 | 15 | 20 |
B7 (Red Edge 7) | 783 | 20 | 20 |
B8 (Near Infrared) | 842 | 115 | 10 |
B8A (Near-Infrared Plateau) | 885 | 20 | 20 |
B9 (Water Vapor) | 945 | 20 | 60 |
B10 (Cirrus) | 1380 | 30 | 60 |
B11 (Short-Wave Infrared 1) | 1610 | 90 | 20 |
B12 (Short-Wave Infrared 2) | 2019 | 180 | 20 |
Radiometric resolution | 12 bit | ||
Temporal resolution | 5 days |
Spectral Index Name | Formula |
---|---|
Normalized Difference Vegetation Index | NDVI = |
Normalized Difference Red-Edge Index | NDRE = |
Normalized Difference Water Index | NDWI = |
Plot | t-Test p-Value | Mean | Standard Deviation | Max Ψstem | Min Ψstem | |
---|---|---|---|---|---|---|
23 June 2021 | N | 0.120 | −1.41 | 0.09 | −1.18 | −1.58 |
S | −1.47 | 0.07 | −1.30 | −1.66 | ||
28 July 2021 | N | 0.450 | −1.36 | 0.11 | −1.12 | −1.52 |
S | −1.40 | 0.08 | −1.24 | −1.58 | ||
7 August 2021 | N | 0.050 | −1.18 | 0.17 | −0.82 | −1.42 |
S | −1.35 | 0.17 | −1.06 | −1.64 | ||
12 August 2021 | N | 0.008 | −1.07 | 0.12 | −0.78 | −1.23 |
S | −1.22 | 0.08 | −1.01 | −1.38 | ||
Global | N | 0.008 | −1.25 | 0.18 | −0.78 | −1.58 |
S | −1.36 | 0.15 | −1.01 | −1.66 |
NDVIM | NDVIU | ||||
Survey | Plot | t-Test p-Value | Mean | t-Test p-Value | Mean |
23 June 2021 | N | 0.67 | 0.28 | 0.95 | 0.44 |
S | 0.28 | 0.44 | |||
28 July 2021 | N | 0.18 | 0.29 | 0.18 | 0.39 |
S | 0.27 | 0.35 | |||
07 August 2021 | N | 0.35 | 0.35 | 0.11 | 0.60 |
S | 0.34 | 0.53 | |||
12 August 2021 | N | 0.83 | 0.36 | 0.44 | 0.62 |
S | 0.36 | 0.59 | |||
Global | N | 0.62 | 0.32 | 0.23 | 0.52 |
S | 0.32 | 0.49 | |||
NDREM | NDREU | ||||
Plot | t-test p-Value | Mean | t-test p-Value | Mean | |
23 June 2021 | N | 0.58 | 0.17 | 0.64 | 0.24 |
S | 0.17 | 0.25 | |||
28 July 2021 | N | 0.21 | 0.17 | 0.21 | 0.22 |
S | 0.15 | 0.18 | |||
7 August 2021 | N | 0.25 | 0.24 | 0.12 | 0.39 |
S | 0.21 | 0.31 | |||
12 August 2021 | N | 0.63 | 0.24 | 0.33 | 0.40 |
S | 0.23 | 0.34 | |||
Global | N | 0.29 | 0.21 | 0.13 | 0.32 |
S | 0.19 | 0.28 | |||
NDWIM | NDWIU | ||||
Plot | t-test p-Value | Mean | t-test p-Value | Mean | |
23 June 2021 | N | 0.00 | −0.53 | 0.00 | −0.54 |
S | −0.49 | −0.47 | |||
28 July 2021 | N | 0.51 | −0.50 | 0.56 | −0.42 |
S | −0.49 | −0.41 | |||
7 August 2021 | N | 0.07 | −0.62 | 0.06 | −0.67 |
S | −0.59 | −0.60 | |||
12 August 2021 | N | 0.06 | −0.62 | 0.05 | −0.66 |
S | −0.59 | −0.59 | |||
Global | N | 0.06 | −0.57 | 0.03 | −0.59 |
S | −0.54 | −0.53 |
Predictor | τ1 | τ2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | r | R2 | a | b | r | R2 | |||||
Value | SEa | Value | SEb | Value | SEa | Value | SEb | |||||
B2M | −51.30 | 4.24 | −1.19 | 0.26 | −0.84 | 0.70 | −106.55 | 10.97 | −0.75 | 0.67 | −0.77 | 0.59 |
B3M | −43.38 | 2.89 | −25 | 0.27 | −0.88 | 0.78 | −91.65 | 7.68 | 1.35 | 0.72 | −0.83 | 0.69 |
B4M | n/a | n/a | n/a | n/a | n/a | n/a | −84.08 | 6.07 | 3.49 | 0.77 | −0.87 | 0.75 |
B5M | −24.44 | 2.77 | −0.26 | 0.45 | −0.74 | 0.55 | n/a | n/a | n/a | n/a | n/a | n/a |
B6M | −24.43 | 3.45 | 1.13 | 0.76 | −0.66 | 0.44 | −69.50 | 5.62 | 8.16 | 1.24 | −0.84 | 0.70 |
B7M | −24.04 | 3.48 | 1.57 | 0.84 | −0.65 | 0.42 | −68.07 | 5.85 | 9.34 | 1.14 | −0.82 | 0.68 |
B8M | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
B8AM | −24.65 | 3.71 | 2.56 | 0.98 | −0.65 | 0.43 | −70.92 | 6.52 | 11.70 | 1.73 | −0.81 | 0.65 |
B11M | −28.54 | 3.66 | 4.87 | 1.17 | −0.70 | 0.49 | −84.47 | 4.47 | 19.86 | 1.42 | −0.92 | 0.85 |
B12M | −30.26 | 3.83 | 2.98 | 0.91 | −0.70 | 0.49 | −84.33 | 5.92 | 13.02 | 1.41 | −0.87 | 0.76 |
NDVIM | n/a | n/a | n/a | n/a | n/a | n/a | 37.79 | 3.54 | −19.10 | 1.15 | 0.80 | 0.64 |
NDREM | 11.05 | 1.84 | −6.43 | 0.38 | 0.6 | 0.36 | n/a | n/a | n/a | n/a | n/a | n/a |
NDWIM | −14.97 | 1.10 | −12.58 | 0.62 | −0.86 | 0.74 | −27.03 | 3.51 | −22.13 | 1.97 | −0.69 | 0.48 |
Predictor | τ3 | τ4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | r | R2 | a | b | r | R2 | |||||
Value | SEa | Value | SEb | Value | SEa | Value | SEb | |||||
B2U | −25.83 | 1.78 | −1.35 | 0.11 | −0.87 | 0.77 | −58.04 | 6.27 | −1.95 | −0.40 | −0.76 | 0.57 |
B3U | −22.03 | 1.29 | −0.83 | 0.12 | −0.91 | 0.82 | −52.08 | 4.48 | −0.56 | 0.43 | −0.84 | 0.70 |
B4U | n/a | n/a | n/a | n/a | n/a | n/a | −47.89 | 3.66 | −0.72 | 0.37 | −0.85 | 0.72 |
B5U | −11.65 | 1.30 | −1.04 | 0.21 | −0.74 | 0.55 | n/a | n/a | n/a | n/a | n/a | n/a |
B6U | −10.44 | 1.67 | −0.24 | 0.42 | −0.61 | 0.38 | −36.80 | 3.05 | 3.80 | 0.76 | −0.84 | 0.70 |
B7U | −10.20 | 1.67 | −0.01 | 0.46 | −0.61 | 0.37 | −35.75 | 3.14 | 4.65 | 0.87 | −0.84 | 0.67 |
B8U | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
B8AU | −10.94 | 1.81 | 0.44 | 0.54 | −0.60 | 0.36 | −37.69 | 3.55 | 5.92 | 1.06 | −0.80 | 0.64 |
B11U | −13.74 | 1.56 | 1.29 | 0.47 | −0.74 | 0.55 | −44.85 | 2.21 | 8.11 | 0.66 | −0.93 | 0.86 |
B12U | −15.27 | 1.44 | 0.54 | 0.32 | −0.80 | 0.64 | −44.68 | 2.82 | 4.57 | 0.61 | −0.90 | 0.81 |
NDVIU | n/a | n/a | n/a | n/a | n/a | n/a | 15.27 | 1.53 | −12.90 | 0.80 | 0.78 | 0.61 |
NDREU | 5.14 | 0.82 | −4.33 | 0.23 | 0.67 | 0.44 | n/a | n/a | n/a | n/a | n/a | n/a |
NDWIU | −7.45 | 0.54 | −6.94 | 0.31 | −0.86 | 0.75 | −14.38 | 2.15 | −13.20 | 1.22 | −0.64 | 0.41 |
Predictor | ||||||||
---|---|---|---|---|---|---|---|---|
MAE (MPa) | NMAE (%) | MAE (MPa) | NMAE (%) | MAE (MPa) | NMAE (%) | MAE (MPa) | NMAE (%) | |
B2 | 0.131 | −10.0 | n/a | n/a | 0.172 | −13.2 | n/a | n/a |
B3 | 0.106 | −8.1 | n/a | n/a | 0.131 | −10.1 | 0.261 | −20.0 |
B4 | n/a | n/a | 0.139 | −10.7 | n/a | n/a | 0.257 | −19.8 |
B6 | n/a | n/a | 0.175 | −13.5 | n/a | n/a | 0.256 | −19.7 |
B11 | n/a | n/a | 0.113 | −8.7 | n/a | n/a | 0.149 | −11.5 |
B12 | n/a | n/a | 0.142 | −10.9 | n/a | n/a | 0.188 | −14.4 |
NDWI | 0.130 | −9.9 | n/a | n/a | 0.192 | −14.7 | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgogno-Mondino, E.; Farbo, A.; Novello, V.; Palma, L.d. A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data. Horticulturae 2022, 8, 759. https://doi.org/10.3390/horticulturae8090759
Borgogno-Mondino E, Farbo A, Novello V, Palma Ld. A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data. Horticulturae. 2022; 8(9):759. https://doi.org/10.3390/horticulturae8090759
Chicago/Turabian StyleBorgogno-Mondino, Enrico, Alessandro Farbo, Vittorino Novello, and Laura de Palma. 2022. "A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data" Horticulturae 8, no. 9: 759. https://doi.org/10.3390/horticulturae8090759
APA StyleBorgogno-Mondino, E., Farbo, A., Novello, V., & Palma, L. d. (2022). A Fast Regression-Based Approach to Map Water Status of Pomegranate Orchards with Sentinel 2 Data. Horticulturae, 8(9), 759. https://doi.org/10.3390/horticulturae8090759