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Abstract: The prediction and early detection of physiological disorders based on the nutritional
conditions and stress of plants are extremely vital for the growth and production of crops. High-
throughput phenotyping is an effective nondestructive method to understand this, and numerous
studies are being conducted with the development of convergence technology. This study analyzes
physiological disorders in plant leaves using hyperspectral images and deep learning algorithms.
Data on seven classes for various physiological disorders, including normal, prediction, and the
appearance of symptom, were obtained for strawberries subjected to artificial treatment. The acquired
hyperspectral images were used as input for a convolutional neural network algorithm without
spectroscopic preprocessing. To determine the optimal model, several hyperparameter tuning and
optimizer selection processes were performed. The Adam optimizer exhibited the best performance
with an F1 score of ≥0.95. Moreover, the RMSProp optimizer exhibited slightly similar performance,
confirming the potential for performance improvement. Thus, the novel possibility of utilizing
hyperspectral images and deep learning algorithms for nondestructive and accurate analysis of the
physiological disorders of plants was shown.

Keywords: convolutional neural network; hyperspectral image; optimizer; phenotyping; physiological
disorder; early diagnosis

1. Introduction

Plant phenotyping can be used to diagnose physiological disorders in plants. Phys-
iological disorders related to plant stress or nutritional conditions significantly impact
the growth with irreversible changes in size and development and a change in form and
function [1]. These biotic and abiotic factors reduce productivity. Furthermore, since these
stimuli cause external changes, such as changes in color, shape, and the temperature of
leaves, and internal changes that affect various mechanisms, identifying symptoms in
advance, conducting observations before they occur, and early detection of symptoms are
essential [2].

Methods for identifying the symptoms of physiological disorders in plants can be
divided into two types: destructive and nondestructive methods. Although destructive
methods are mostly accurate, they are time consuming and the sample cannot be reused.
With the development of technology, various studies have utilized nondestructive methods.
Particularly, the application of image data, which is a representative nondestructive method,
is an analysis method that can be used in not only the laboratory but also remote sensing [3].
Among the various image data, hyperspectral images utilize the visible/near infrared
spectrum information for analysis, which is difficult to understand with general RGB
images; thus, various studies are utilizing hyperspectral images [4]. The spectrum method
is a fast and simple analysis method that enables the analysis of quality and quantity using
the entire spectrum or multiple wavelengths. Additionally, it is widely used in agriculture
because of its speed, efficiency, reproducibility, and convenience.
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Hyperspectral images have been extensively studied via traditional spectroscopic
analysis methods. Pandey et al. [5] confirmed the usefulness of hyperspectral imaging to
quantify the in vivo chemical properties of corn and soybeans. They acquired images for
stressed leaves and developed a partial least squares regression (PLSR) model to determine
its usefulness, but they determined that testing was required for various species and
stages. Hyperspectral imaging was also used to evaluate rice growth and nitrogen status
in a nondestructive way [6]. Furthermore, they used the PLSR model and claimed to
have satisfied the precision and accuracy required through the calibration and validation
process. Elvanidi et al. [7] argued the importance of the early detection of water deficit
stress. Changes in tomato crops for four different irrigation treatments were analyzed using
several statistical methods. Existing spectroscopic analysis methods were used to predict
not only the condition of crops but also various factors such as insect damage and nutrient
deficiency [8–11].

With the application of several convergence technologies and advanced algorithms
in agriculture, spectral imaging is becoming an essential element in smart agriculture [12].
Furthermore, application to most agricultural industries such as monitoring, job control,
and UAV utilization is being attempted, and research is being conducted to predict various
phenomena [13]. Especially, with the development of computing power, various machine
learning algorithms beyond traditional spectroscopic analysis are being applied. Rumpf
et al. [14] employed hyperspectral image data analysis using a vegetation index and support
vector machine algorithm for the early detection of diseases in sugar beet. They obtained
detection performance of 65–90%, showing the validity of the analysis. Additionally, they
combined the existing spectroscopic analysis method and machine learning algorithm to
detect diseases in glycyrrhiza seeds [15]. Various studies have also analyzed the application
of machine learning algorithms to hyperspectral images to replace or supplement existing
algorithms [16–18].

The most popular artificial intelligence algorithm in recent years is deep learning.
It improves performance by including a feature extraction process to obtain information
from the data in the algorithm and is in large part responsible for the increased demand
for artificial intelligence in various agricultural fields [19]. The application of deep learn-
ing algorithms to hyperspectral images has a strong aspect of trial, and convolutional
neural networks (CNNs), a deep learning method related to image processing, are being
applied [20]. Han et al. [21] developed a classifier based on peroxide values by combining
hyperspectral imaging and deep learning to evaluate nut quality. Their detection perfor-
mance was 93.48% for 2300 subimages, and they also analyzed the performance evaluation
of the classifier. One study employed deep learning to determine the degree of cold damage
of corn seedlings [22]. They employed preprocessing for hyperspectral images to simplify
the calculations and obtained a correlation of 0.8219 with the results of the chemical method,
proving the application potential.

In order to apply a new kind of data to the CNN algorithm, it is necessary to con-
sider various hyperparameters. Among several hyperparameters, the optimizer is the
factor that determines stability and speed in the training process. CNN is utilized for
various recognition of crops, especially in agriculture, and studies that attempt optimizer
analysis are being conducted. Transfer learning was used for identification and selection
of ripe fruits, and analysis was performed using several hyperparameters including an
optimizer [23]. In addition, a study was also conducted to find the optimal conditions
through comparison of six optimizers using public data on plant diseases [24]. Most of the
research utilizes RGB images, and various analyses on plant diseases and optimizers have
been performed [25–27].

Compared to the application of deep learning to RGB and spectral images in agri-
culture [28,29], the application of hyperspectral images exhibits some differences. Since
hyperspectral images contain more data than other images, they have large sizes and are
difficult to analyze. Thus, they are often used in a passive or limited way when applying a
new algorithm [30–32]. Accordingly, most studies employ hyperspectral images for simple
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classifications or employ multispectral images rather than hyperspectral images. Since
algorithms for hyperspectral image analysis are limited, various specific applications need
to be analyzed.

This study analyzes physiological disorders in plant leaves by applying a deep learn-
ing algorithm to hyperspectral data. Hyperspectral images of leaves were obtained for
strawberry seedlings artificially subjected to nutritional deficiency, a physiological disorder.
A deep learning algorithm was used to predict and diagnose nutritional deficiencies in
the images, and the effect on the optimizer was particularly closely examined. Notably,
the unique distinguishing features of this study are as follows: (1) hyperspectral images
applied to deep learning herein were not subjected to spectroscopic preprocessing. Existing
studies mainly used data wherein the number of wavelengths was limited and thus applied
various preprocessing methods to images. Although preprocessing methods are useful for
removing unnecessary data, they could remove useful data during the application of a new
algorithm; (2) an appropriate deep learning model was presented for full-spectrum hyper-
spectral images. Since the data of the deep learning algorithm used in agriculture mainly
comprise RGB images, utilizing existing models is difficult. Therefore, an appropriate
model was developed and selected for the data to be used; and (3) as it is a novel method,
analysis was performed to select the hyperparameters of the deep learning algorithm
suitable for the full-spectrum hyperspectral data. Comparison was performed focusing on
the optimizer, among the various hyperparameters.

2. Materials and Methods
2.1. Hyperspectral Imaging System
2.1.1. 3D Crop Extraction

Hyperspectral images were used to identify nutritional deficiencies, which are phys-
iological disorders in plants. A hyperspectral imaging system that is suitable for plants
was custom made (Figure 1). Using the system, top and side view images can be obtained
according to the growth status of crops, and the wavelength band of the camera was
configured in the 400–1000 nm band, which is often used for phenotyping [33]. Hyper-
spectral images were obtained using a line scan method called the push-broom method.
The system comprises a hyperspectral imaging camera (Pika L, Resonon Inc., Bozeman,
MT, USA), a camera lens (Schneider Xenoplan 1.4/17 mm, Bad Kreuznach, Germany),
a stepper motor for vertical and horizontal scanning, and four 12 V/45 W tungsten halogen
illuminators. Image data were acquired using the Spectronon Pro (Resonon Inc., Bozeman,
MT, USA) program.

Horticulturae 2022, 8, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. Hyperspectral imaging system designed for crop phenotyping: (A) hyperspectral image 
lab dark room environment and (B) system overview. 

The wavelength band that could be actually acquired through the system was 392.91–
1034.01 nm, and the wavelength resolution was 2.14 nm, which enabled detailed analysis. 
However, the generation of considerable noise at both ends of the measurable wavelength 
band due to the influence of the sensor itself needs to be considered. Since the spatial 
resolution of the image acquired through the device in this experimental environment was 
600 × 900 pixels, each hyperspectral image was in the form of a data cube called a hyper-
cube with 600 × 900 × 300 pixels, including 300 wavelength bands. For the hyperspectral 
images, scattering due to various light conditions is a problem; thus, a non-reflective black 
cover was installed throughout the imaging system space for stabilization. In this dark-
room, only the lighting provided by the imaging system was affected. 

2.1.2. Hyperspectral Image Calibration 
Image acquisition through the hyperspectral system required an additional calibra-

tion process. The calibration was divided into light stabilization, black and white balance, 
and focus and aspect ratio. First, light stabilization was performed while operating the 
hyperspectral system: the bulb was opened for 10 min to stabilize the emitted radiation. 
Next, the black and white balance process was performed to utilize the corrected relative 
reflectance by measuring two types of reference values. Two types of reference images 
were measured through the dark calibration, which was performed by blocking the cam-
era lens, and a standard Teflon plate that reflects about 99% of incident light was used for 
the white calibration. As shown in Equation (1), the relative reflectance was calculated 
using these two reference images and applied [34]. 

𝑅 = 𝐼 − 𝐼ௗ𝐼௪ − 𝐼ௗ (1) 

where 𝑅 is the calibrated reflectance image, 𝐼 is the raw image, 𝐼ௗ is the dark refer-
ence image, and 𝐼௪ is the white reference image. 

2.2. Data Acquisition and Plant Physiological Disorder Samples 
2.2.1. Target Crops and Physiological Disorders 

For the experiment, 36 seedlings of strawberry (Fragaria × ananassa) “Seolhyang” 
were used. In order to maintain independence, each seedling was grown in a soil cultiva-
tion environment using individual pots rather than a hydroponic environment sharing a 
root part, and the experiment was performed for about 60 days. The seedlings were di-
vided into 4 groups, and the amount of water given each day was varied. The groups were 
divided based on the normal amount of water supplied to crops according to the seedling 
growth and the amount of soil: 0, 0.5, 1, and 1.5 times. No nutrients other than water were 

Figure 1. Hyperspectral imaging system designed for crop phenotyping: (A) hyperspectral image
lab dark room environment and (B) system overview.



Horticulturae 2022, 8, 854 4 of 17

The wavelength band that could be actually acquired through the system was
392.91–1034.01 nm, and the wavelength resolution was 2.14 nm, which enabled detailed
analysis. However, the generation of considerable noise at both ends of the measurable
wavelength band due to the influence of the sensor itself needs to be considered. Since
the spatial resolution of the image acquired through the device in this experimental envi-
ronment was 600 × 900 pixels, each hyperspectral image was in the form of a data cube
called a hypercube with 600 × 900 × 300 pixels, including 300 wavelength bands. For the
hyperspectral images, scattering due to various light conditions is a problem; thus, a non-
reflective black cover was installed throughout the imaging system space for stabilization.
In this darkroom, only the lighting provided by the imaging system was affected.

2.1.2. Hyperspectral Image Calibration

Image acquisition through the hyperspectral system required an additional calibration
process. The calibration was divided into light stabilization, black and white balance,
and focus and aspect ratio. First, light stabilization was performed while operating the
hyperspectral system: the bulb was opened for 10 min to stabilize the emitted radiation.
Next, the black and white balance process was performed to utilize the corrected relative
reflectance by measuring two types of reference values. Two types of reference images
were measured through the dark calibration, which was performed by blocking the camera
lens, and a standard Teflon plate that reflects about 99% of incident light was used for the
white calibration. As shown in Equation (1), the relative reflectance was calculated using
these two reference images and applied [34].

Rc =
Ir − Id
Iw − Id

(1)

where Rc is the calibrated reflectance image, Ir is the raw image, Id is the dark reference
image, and Iw is the white reference image.

2.2. Data Acquisition and Plant Physiological Disorder Samples
2.2.1. Target Crops and Physiological Disorders

For the experiment, 36 seedlings of strawberry (Fragaria × ananassa) “Seolhyang” were
used. In order to maintain independence, each seedling was grown in a soil cultivation
environment using individual pots rather than a hydroponic environment sharing a root
part, and the experiment was performed for about 60 days. The seedlings were divided into
4 groups, and the amount of water given each day was varied. The groups were divided
based on the normal amount of water supplied to crops according to the seedling growth
and the amount of soil: 0, 0.5, 1, and 1.5 times. No nutrients other than water were given,
and consequently, the plants exhibited physiological disorders due to nutritional deficiency;
hyperspectral image data of the leaves were obtained. The degree of physiological disorder
was not related to the amount of water supplied; the amount of water was varied simply to
afford various conditions and obtain varying responses.

A plant cultivation system was used to ensure that all conditions other than the
amount of water were the same. In this system, temperature (10–30 ◦C), humidity (20–90%),
illuminance (0–20,000 lux), and light source color were adjustable. The experiment was con-
ducted at temperature of 20 ◦C, humidity of 60%, and illumination of 8000 lux (07:00–19:00).
Furthermore, environmental control was not a direct part of the physiological disorder phe-
nomenon, like the amount of water. However, the purpose was to avoid problems caused
by diseases and insects other than moisture and nutritional deficiencies. Subsequently,
several physiological disorder phenomena were confirmed (Figure 2).

The physiological disorders in the leaves of strawberry seedlings were classified into
seven categories. Nitrogen (N) is essential for stem and leaf growth and fruit development.
In case of deficiency, the color of mature leaves becomes pale and changes to yellow and
red without changes in size [35]. For boron (B) deficiency, the leaves were grouped together
with N because it displayed yellowing in the early stage. Accordingly, three classifications
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were made: early prediction, early yellowing, and late. In case of potassium (K) deficiency,
browning occurs at the edge of the leaf and gradually progresses inward. Lastly, in the
case of magnesium (Mg) deficiency, it appears around the leaf and gradually burns to
the leaf veins. The leaf overall appears bright yellowish-white and displays necrosis [36].
Potassium and magnesium deficiencies were grouped and divided into two categories:
early prediction and symptomatic. Accordingly, classification analysis was performed for
seven categories: normal, wilt, N and B deficiencies with 3 classes, and K and Mg with
2 classes.
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leaves, and (C) browning of leaves.

2.2.2. Data Preprocessing

Figure 3 shows the overall workflow of this study. Strawberry seedlings with various
physiological disorders were photographed through the hyperspectral imaging system.
Here, the hyperspectral camera was calibrated before shooting, as discussed above. For
the acquired hyperspectral images, a process was performed to obtain information on the
desired part, and the data were divided in a manner applicable to the training algorithm.
Thus, a model was established, and the final performance evaluation was performed.
MATLAB R2019a (The MathWorks Inc., Natick, MA, USA), Spectronon Pro, and Python 3.6
were used for the processing.
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Figure 3. Overall workflow for data processing and analysis.

In each acquired hyperspectral image, various growth data were mixed. The entire
seedling could be healthy, but a leaf might exhibit a single physiological disorder. In
some cases, several phenomena were simultaneously observed on a leaf. Accordingly,
a sub-image selection process was required according to the class group condition to be
diagnosed in an image. Figure 4 provides an example of this process. A small area was
designated for the part of the leaf exhibiting specific symptoms, and the images were
separately saved. Predictive data were obtained by checking the healthy leaf image of the
previous time for the same point based on the symptom onset time. Each sub-image had
the form of a data cube with 16 × 16 × 300 pixels.
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Figure 4. Example of obtaining subimages corresponding to each class from hyperspectral images
of leaves.

A relatively large amount of training data is required for deep learning analysis, which
is the algorithm employed herein. Accordingly, a large number of subimages were acquired,
and the number of data acquired for the seven classes is shown in Table 1. A class number
was assigned to each physiological disorder class, and the data were randomly divided
and used with a ratio of 9:1 for training and testing. To avoid overfitting problems and
consider variance, the training data were randomly mixed while creating the model and
then divided into training and validation data. Subsequently, the total data were divided
with a ratio of 7:2:1 for training, validation, and testing.

Table 1. Number of samples in the training, validation, and test categories for physiological disorders.

Symptom Class Abbr. Training Validation Test Total

Normal Nor 404 120 60 584
Wilt Wilt 390 104 58 552

N, B deficiency prediction NBpr 329 98 45 472
N, B deficiency Stage 1 NBd1 438 121 65 624
N, B deficiency Stage 2 NBd2 289 73 38 400

K, Mg deficiency prediction KMpr 311 85 52 448
K, Mg deficiency KMd 453 133 54 640

Total 2614 734 372 3720

2.3. Deep Learning-Based Diagnosis Technology
2.3.1. Diagnosis Model

Several traditional preprocessing methods exist for hyperspectral image analysis.
Normalization and Savitzky–Golay filtering methods are used to minimize the spectrum
noise generated from sensors, and multiplicative scattering correction and standard normal
variate methods are employed for scattering correction. Additionally, since the number of
channels corresponding to a wavelength is very large, the wavelength selection algorithm
has been employed to remove the correlation between channels. However, the method
employed herein utilizes raw subimages without performing traditional preprocessing
methods. Data simplification with existing methods reduces the amount of calculations
by only using data that are advantageous for analysis; however, considerable data can be
discarded in this process [37]. Thus, a method utilizing the entire image without discarding
information was employed herein.
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Deep learning, an algorithm applied with neural networks, differs from existing
machine learning algorithms; it includes feature extraction in the algorithm and exhibits
good performance. Among the various deep learning methods, CNN has been widely
applied in problems related to image analysis and in various studies related to plants [38].

CNN mimics human visual neurons, particularly their activation by stimuli only in
the receptive field, a limited area of the field of view. Local information about the entire
data is acquired using a small filter or kernel for the input data. Advantageously, the same
filter can be used to obtain the local information required for image analysis while reducing
the number of parameters. In contrast to the fact that the existing algorithms for analyzing
hyperspectral images require several preprocessing methods, CNN can beneficially perform
analysis using relatively few preprocessing algorithms. Figure 5 shows the CNN structure.
The hyperspectral imaging data to be used as input and the CNN model comprising three
types of layers can be confirmed. To remove the influence of the changes in the position
and size of the object in the input image, a convolution operation that extracts features
using a filter and a pooling operation that is a compression process were performed. These
two types of operations were performed several times, and finally, the output emerges
through the layer corresponding to the classification [39].
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2.3.2. CNN Architecture

Figure 6 shows the model architecture used herein. To examine the effect of the
optimizer on the diagnosis of physiological disorders in the full-spectrum hyperspectral
image, the other hyperparameters of the CNN were kept the same. Four convolutional and
pooling layers of the model were employed, and two fully connected layers were used as a
classifier. Generally, the convolutional and pooling layers were alternately positioned; thus,
they were similarly arranged. The convolution layer, where the input data first enters, had
the same channels as the hyperspectral image size, and the number of channels decreased
with increasing layer depth. A small kernel size of the convolution process was employed
as it is advantageous, and max pooling was used for pooling. Since the fully connected
layer had a general neural network structure, it required an extremely large number of
parameters compared to the other layers. Many parameters increase the likelihood of
overfitting. Thus, dropout was applied between the layers to avoid overfitting and to afford
a robust model in terms of speed. ReLU was used for the overall activation function, and
the Softmax function was used only for the last classifier. Normalized data were used as
inputs to ensure fast training and a certain range of values. Additionally, in the training
process, an appropriate batch size was set to increase the efficiency, and an early stopping
condition was added to prevent unnecessary training execution.
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2.3.3. Utilized Optimizer

Deep learning utilizes abundant data and complex models for training; therefore,
it consumes a lot of time for training. Particularly, the hyperspectral image used herein
had 300 channels, compared to the general RGB image with 3 channels; thus, it took a
long time for training. In addition to time, several hyperparameters need to be selected
to reach the accuracy targeted by the algorithm. Changing the optimizer, which is a
CNN hyperparameter, implies updating the weights in the training process to increase
the training speed and performance. To identify the optimal algorithm suitable for the
data to be used, training was performed using four optimizers and an appropriate model
was selected.

• Stochastic Gradient Descent

Stochastic gradient descent (SGD), which is an algorithm that complements gradient
descent (GD), is the most widely used optimizer for deep learning. It utilizes the gradient
value and the learning rate to update the weights to minimize the value of the cost function,
J(θ) in Equation (2). It is a form of moving after determining the direction and moving
distance with respect to the current position of the weight value. Stochastic gradient
descent does not use the entire training data but only uses a part of the data to perform
the calculation.

θt+1 = θt − η∇θ J(θ) (2)

It performs complementation through momentum because training proceeds very
slowly when the gradient is very small [40]. Momentum is a way of providing inertia to
the progress of SGD; i.e., remembering the way it moved before and making an additional
move in that direction. Equation (3) expresses the movement vector that was used for the
update after remembering the past movement.

vt = γvt−1 + η∇θt J(θt) (3)

• Adaptive Gradient

Adaptive gradient (AdaGrad) is an algorithm that changes the learning rate from the
GD method to solve the following problem: if the learning rate is small, the training time
is long, and if the learning rate is too large, it diverges [41]. In other words, if the process
changes multiple times, the learning rate increases, and if the process change is small, the
learning rate decreases to aid the training speed θ. In the process of updating θ, the learning
rate was changed by dividing it by Gt, the gradient value used in the previous process in
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Equation (4). When training progresses for a long time, the learning rate becomes so small
that it barely moves and sometimes stops extremely early, which is disadvantageous.

Gt = Gt−1 +∇θt J(θt)⊗∇θt J(θt) (4)

• Root Mean Square Propagation

Root Mean Square Propagation (RMSProp) is a method for solving the quick slow
down and premature stoppage problems of AdaGrad [42]. Adaptive gradient simply
utilizes all the gradient values in the past, whereas RMSProp uses the latest gradients while
relatively maintaining them. Here, a new hyperparameter called attenuation rate (γ) was
used, and it is included as an exponential average rather than a sum in Equation (5).

Gt = γGt−1 + (1− γ)∇θt J(θt)⊗∇θt J(θt) (5)

• Adaptive Moment Estimation

Adaptive moment estimation (Adam) is an algorithm that combines momentum and
RMSProp methods [42]. Similar to the momentum method, the value of the gradient so
far is used, and it is stored as an exponential decaying average method. Then, using
the RMSProp method, it is stored as an exponentially decreasing average of the squared
gradients of the past. Further, since m and v are initialized to 0, a process is performed to
prevent them from being biased to 0 at the beginning of training. Adam is the algorithm
for updating the weights using the values that have undergone such a correction process,
and the equation for θ update is as shown in Equation (6).

θt+1 = θt −
η√

v̂t + ε
m̂t (6)

2.3.4. Performance Evaluation Index

The performance evaluation index used to create several models based on hyperpa-
rameters and compare the results is as follows. A confusion matrix refers to a table for
comparing the actual and predicted values to measure the prediction performance through
training. According to this table, the classification result is divided into four types: true
positive (TP), false positive (FP), false negative (FN), and true negative (TN). Accuracy,
which is a term often used in everyday life, refers to the proportion of parts that the model
correctly classifies as described in Equation (7). Precision and recall are used to perform
evaluations in terms of models and data, respectively, as shown in Equations (8) and (9).
Finally, the F1 score shown in Equation (10) utilizes the harmonic mean value of precision
and recall.

Accuracy =
TP + TN

TP + FN + FP + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 Score =
2× Precision× Recall

Precision + Recall
(10)

3. Results and Discussion
3.1. Model Learning Time and Accuracy

To apply the CNN algorithm to hyperspectral images, several model hyperparameters
were determined but some required tuning. Since this was a new type of data, no prior value
existed. Thus, tuning was attempted through several iterations based on the existing values.
Additionally, the size, number, and activation functions of the kernel of the convolutional
layer mentioned in the CNN architecture were considered. The epoch at which training
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was completed was identified through several random training processes, and the value
that was sufficiently exceeded was determined as the overall epoch value. Based on this
epoch value, early stopping was performed with patience of 300 using the validation loss
to prevent overfitting. This served to terminate the training by ignoring the residual epoch
if there was no improvement in the loss value during the subsequent 300 training sessions
based on the loss value at a specific point in time. In the course of training, the best model
of each optimizer was determined by noting the optimal model parameters through the
validation loss value. Furthermore, each optimizer had its own hyperparameter, and it was
modified according to the training and an appropriate value was used.

Table 2 presents the overall summary of the model creation and results for diagnosing
the plant physiological disorders using the full-spectrum hyperspectral imaging data. The
four optimizers used in the analysis were SGD with momentum, Adagrad, RMSProp,
and Adam, and their characteristics were as follows. Among the four optimizers, Adam
exhibited the best results. Although the overall training time was slower than that of
RMSProp, it showed superior performance compared to other optimizers in classification
accuracy. No significant difference was noted in terms of the speed for one epoch in the
training process. RMSProp performed slightly similarly to Adam, and Adagrad was found
to have poor performance and to take a very long time to train compared to the previous
two optimizers. Especially, in most cases, SGD was not properly trained, and it was found
that the performance of the SGD was not good because the classification results appeared
randomly even after training.

Table 2. Optimization speed and plant physiological disorder classification accuracy for the optimizer.

Optimizer Time (s) Epochs s/Epoch
Accuracy

Train Validation Test

SGD 6794.2 10,000 0.679 0.169 0.1761 0.145
Adagrad 1509.2 2246 0.672 0.935 0.918 0.933
RMSProp 513.4 753 0.682 0.951 0.957 0.957

Adam 724.7 1075 0.674 0.982 0.978 0.981

3.2. Analysis According to the Optimizers
3.2.1. Adagrad

Figure 7 depicts the graph of the training process for the Adagrad optimizer. In the
graph, training loss, validation loss, training accuracy, and validation accuracy are exam-
ined for the epoch at the time. Compared to the other optimizers, the loss value gradually
decreased and the accuracy increased without any exceptional values. Training proceeded
with the default epoch set to 10,000, demonstrating progress beyond the 2000 epoch. Over-
all, the performance increase based on the number of learning processes proceeds relatively
slowly. Presumably this phenomenon occurs because the learning rate is very low as the
training progresses for a long time due to the characteristic of Adagrad to automatically
update the learning rate. When looking at the results of the graph and other optimizers, it
is interpreted that the improvement stopped as it no longer occurred due to the decrease
in speed rather than premature termination due to overfitting. Furthermore, performance
improvement can be expected if the early termination condition is relaxed or not used at all,
but since the performance increase would not be greater than the time and cost involved, it
was stopped as it was. Accordingly, Adagrad is usually used as an optimizer for simple
problems, and the cause can be directly identified.

Figure 8 shows the test set evaluated using the model judged to be the best through
Adagrad training, and the results are displayed as a confusion matrix. Since the clas-
sification performance for the test set was 93.33%, it can be seen that the classification
was done properly to some extent. It showed perfect prediction for the NBd2 class. Wilt,
NBd1, and KMpr classes showed relatively poor performance. Generally, if the training is
insufficient, the performance of the class, which is relatively difficult to classify, is poor, or
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the random distribution result can be checked for a large number of classes. In this case, it
can be said that the former was the case. However, as shown in the performance graph,
it was difficult to significantly improve the performance through additional training and
changing hyperparameters.
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3.2.2. RMSProp

Figure 9 shows the graph of the training process for the RMSProp optimizer. As the
optimizer exhibiting the best classification performance after Adam, a relatively ideal and
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stable graph was obtained in terms of classification accuracy. The training part, which
rapidly increased at the beginning and slightly increased after a certain point, and the
validation part, which displayed a similar shape to the training graph and decreased in
the latter part, can be confirmed in the graph. In the loss graph, bouncing can be seen
in many parts, which is interpreted as a case of jumping from a better local minima to a
bad local minima during the training process. Although the adjustment of the learning
rate value was necessary, no significant change in accuracy was noted; thus, it seemed
to escape the bad local minima to some extent. If the epoch was ≥300, no significant
performance improvement was noted. Therefore, if the early stopping part was a little tight,
a significantly faster model with similar performance was afforded. It was determined that
this fact can be advantageously used when training additional data to improve the model.
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Figure 10 shows the test set evaluation results of the optimal model for the RMSProp
optimizer. Since the classification performance was 95.70%, a confusion matrix with good
results was yielded. Compared to the results of Adagrad, which had a relatively large
misclassification in three classes, the number of classes was the same, but the overall
prediction error was greatly improved. However, the NBpr class showed poor performance
compared to the results of Adagrad. Overall, both the explanatory power of the data and
the predictive explanatory power of the model were found to be good.

3.2.3. Adam

Figure 11 displays the graph of the training process for the Adam optimizer. Adam
had a slower training speed than RMSProp, but was the optimizer that showed the best
classification performance. The overall appearance of the graph is similar to that for the
RMSProp, but it was confirmed that the splashing part of the loss was significantly reduced.
Since Adam combines the ideas of the previous optimizers, the strengths and weaknesses
of all optimizers were revealed together. In terms of model creation, the loss using the error
calculation is a more important factor than accuracy. Additionally, in many cases, the time
taken for training was not taken into consideration. Therefore, considering all aspects, it is
judged that Adam was the most suitable optimizer.
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Figure 12 shows the test set evaluation results of the optimal model for the Adam
optimizer. Almost perfect classification was confirmed in all classes except for the wilt
class. Three of the data of the wilt class were classified as normal class in all optimizers,
and another two were found to show the same misclassification in Adam and RMSProp. In
view of the classification form of this similar trend, it is judged that these misclassification
data were difficult to classify by analysis using simple hyperspectral image cropping.
Accordingly, it is expected that more accurate classification will be possible only when
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additional feature information such as wavelength combination and texture identification
is included.
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3.3. Best Model Performance Evaluation

The Adam optimizer, which exhibited the best performance under the same conditions,
was compared using a performance index (Table 3). Based on the weighted average, which
is the average calculated by giving weights to the data of each class, it showed performance
over 0.98. All classes except for the wilt class, which included data that were difficult to
classify, afforded F1 scores of ≥0.98. As confirmed in the confusion matrix, both precision,
which refers to the explanatory power of the model, and recall, which denotes explanation
in terms of the true label data, showed similarly good performance. Although the RMSProp
optimizer showed good performance, it was inferior to the Adam optimizer in all indices
except learning speed.

Table 3. Performance evaluation index according to plant physiological disorders.

Class (Abbr.) Precision Recall F1 Score

Normal (Nor) 0.95 1.00 0.98
Wilt (Wilt) 1.00 0.91 0.95

N, B deficiency prediction (NBpr) 1.00 1.00 1.00
N, B deficiency Stage 1 (NBd1) 0.97 1.00 0.98
N, B deficiency Stage 2 (NBd2) 1.00 1.00 1.00

K, Mg deficiency prediction (KMpr) 0.98 0.98 0.98
K, Mg deficiency (KMd) 0.98 0.98 0.98

Macro avg. 0.98 0.98 0.98

Weighted avg. 0.98 0.98 0.98
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There have been several studies using hyperspectral images to detect and diagnose the
onset of diseases in crop leaves [14,38,43]. However, when using various machine learning
algorithms including deep learning, a small dataset was used or the existing spectral prepro-
cessing method was used as it is. In this study, analysis using deep learning was performed
on a sufficient amount of hyperspectral images without any special preprocessing on
strawberry leaves, and the results showed similar performance to previous studies through
the selection of optimal hyperparameters. In addition to the symptoms examined in this
analysis, good performance can be expected if a large number of well-labeled training data
can be secured. Although the result is good enough in terms of symptom prediction, it is
judged that performance improvement is possible if additional non-destructive features
other than spectral images, subimage size change, and transfer learning application are
considered for more complete classification.

4. Conclusions

In this study, full-spectrum hyperspectral images were used to diagnose the phys-
iological disorders in strawberry leaves. The model was created by applying the CNN
algorithm without special spectroscopic preprocessing, and an optimal model was obtained
through hyperparameter tuning and the performance evaluation of the optimizers. Adam,
which afforded an F1 score of ≥0.95, was the best optimizer. In the case of RMSProp,
the performance was slightly insufficient, but the applicability was identified in terms of
training speed. During the diagnosis of physiological disorders, if environmental data, such
as temperature, humidity, and soil moisture, and simple image analysis are additionally
considered, more diverse analyses will be possible. Moreover, if a horticultural base is
considered and applied to the hyperspectral image classification, the explanatory power
of the model results could be increased. These results are expected to be applied to smart
agriculture and utilized for high-throughput phenotypic analysis.
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