Black Soldier Fly (Hermetia illucens) Frass on Sweet-Potato (Ipomea batatas) Slip Production with Aquaponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Plants, Fish, and BSFL Frass
2.2. Aquaponic Systems and Experimental Design
2.3. Water Quality Analysis
2.4. Aquaponic Sampling
2.5. Mineral and Sugar Analysis
2.6. Statistical Analysis
3. Results
3.1. Frass Characteristics
3.2. Water Quality and Chemistry
3.3. Fish Growth
3.4. Sweetpotato Slip Production and Mineral Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.K. A compreshensive review of sweet potato (Ipomoea batatas (L.) Lam): Revisiting the associated health benefits. Trends Food Sci. Technol. 2021, 115, 512–529. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; López-Yerena, A.; Jaime-Rodríguez, C.; González-Coria, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Romanyá, J.; Pérez, M. Sweet potato is not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing. Antioxidants 2022, 11, 1648. [Google Scholar] [CrossRef]
- Clark, C.A.; Valverde, R.A.; Fuentes, S.; Salazar, L.F.; Moyer, J.W. Research for improved management of sweetpotato pests and diseases: Cultivar decline. Acta Hortic. 2002, 583, 103–112. [Google Scholar] [CrossRef]
- Loebenstein, G. Chapter two—Control of sweet potato virus diseases. Adv. Virus Res. 2015, 91, 33–45. [Google Scholar] [PubMed]
- Tedesco, D.; Moreira, B.R.D.A.; Barbosa Júnior, M.R.; Maeda, M.; Silva, R.P.D. Sustainable management of sweet potatoes: A review on practices, strategies, and opportunities in nutrition-sensitive agriculture, energy security, and quality of life. Agric. Syst. 2023, 210, 103693. [Google Scholar] [CrossRef]
- Jiang, C.; Pesic-VanEsbroeck, Z.; Osborne, J.A.; Schultheis, J.R. Factors affecting greenhouse sweetpotato slip production. Int. J. Veg. Sci. 2017, 23, 185–194. [Google Scholar] [CrossRef]
- Hager, J.; Bright, L.A.; Dusci, J.; Tidwell, J. Aquaponics Production Manual. A Practical Handbook for Growers; Kentucky State University: Frankfort, KY, USA, 2021. [Google Scholar]
- Romano, N.; Francis, S.; Islam SPowell, A.; Fischer, H. Aquaponics substantially improved sweetpotato (Ipomoea batatas) slip production compared to soil but decreased phenol and antioxidant capacity. Aquac. Int. 2022, 30, 2603–2610. [Google Scholar] [CrossRef]
- Fischer, H.; Romano, N.; Sinha, A.K. Conversion of spent coffee and donuts by black soldier fly (Hermetia illucens) larvae into potential resources for animal and plant farming. Insects 2021, 12, 332. [Google Scholar] [CrossRef]
- Beesigamukama, D.; Subramanian, S.; Tanga, C.M. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Sci. Rep. 2002, 12, 7182. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Nuku-Adeku, C.; Pierre-Olivier, M.; Little, D.C. Integrating insect frass biofertilisers into sustainable peri-urban agro-food systems. J. Insects Food Feed 2020, 6, 315–322. [Google Scholar] [CrossRef]
- Agustiyani, D.; Agandi, R.; Nugroho, A.A.; Antonius, S. The effect of application of compost and frass from black soldier fly larvae (Hermetia illucens L.) on growth of pakchoi (Brassica rapa L.). IOP Conf. Ser. Earth Environ. Sci. 2020, 762, 012036. [Google Scholar] [CrossRef]
- Romano, N.; Fischer, H.; Powell, A.; Sinha, A.K.; Islam, S.; Deb, U.; Francis, S. Applications of black soldier fly (Hermetia illucens) larvae frass on sweetpotato slip production, mineral content and benefit-cost analysis. Agronomy 2022, 12, 928. [Google Scholar] [CrossRef]
- Romano, N.; Powell, A.; Islam, S.; Fischer, H.; Renukdas, N.; Sinha, A.K.; Francis, S. Supplementing aquaponics with black soldier fly (Hermetia illucens) larvae frass tea: Effects on the production and composition of sweetpotato slips and sweet banana peppers. Aquaculture 2022, 555, 738160. [Google Scholar] [CrossRef]
- Romano, N.; Islam, S. Productivity and elemental/chlorophyll composition of collard greens in an aquaponic system at different combinations of media and black soldier fly (Hermetia illucens) larvae frass supplementations. Aquac. Res. 2023, 2023, 3308537. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Cheseto, X.; Ekesi, S.; Dicke, M.; van Loon, J.J.A. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomol. Exper. Appl. 2020, 168, 472–481. [Google Scholar] [CrossRef]
- Fischer, H.; Romano, N. Fruit, vegetable, and starch mixtures on the nutritional quality of black soldier fly (Hermetia illucens) larvae and resulting frass. J. Insects Food Feed 2021, 7, 319–327. [Google Scholar] [CrossRef]
- Geletu, T.T.; Zhao, J. Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture. Hydrobiologia 2023, 850, 2425–2445. [Google Scholar] [CrossRef]
- Lim, C.E.; Webster, C.D. Nutrient requirements. In Tilapia, Biology, Culture, and Nutrition; Lim, C., Webster, C.D., Eds.; Haworth Press: Binghamton, NY, USA, 2006; pp. 469–501. [Google Scholar]
- Fischer, H.; Romano, N.; Jones, J.; Howe, J.; Renukdas, N.; Sinha, A.K. Comparing water quality/bacterial composition and productivity of largemouth bass Micropterus salmoides juveniles in a recirculating aquaculture system versus aquaponics as well as plant growth/mineral composition with or without media. Aquaculture 2021, 538, 736554. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International, 18th, 211st ed.; Cunniff, P.A., Ed.; AOAC International: Arlington, VA, USA, 2006. [Google Scholar]
- Tucker, M.R. Essential Plant Nutrients: Their Presence in North Carolina Soils and Role in Plant Nutrition; North Carolina Agronomic Services Division, Department of Agriculture and Consumer Services: Raleigh, NC, USA, 1999. [Google Scholar]
- Yang, T.; Kim, H.-J. Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water 2020, 12, 1259. [Google Scholar] [CrossRef]
- Romano, N.; Datta, S.N.; Pande, G.S.J.; Sinha, A.K.; Yamamoto, F.Y.; Beck, B.H.; Webster, C.D. Dietary inclusions of black soldier fly (Hermetia illucens) larvae frass enhanced production of channel catfish (Ictalurus punctatus) juveniles, stevia (Stevia rebaudiana), and lavender (Lavaridula angustifolia) in an aquaponic system. Aquaculture 2023, 575, 739742. [Google Scholar] [CrossRef]
- Al-Zahrani, M.S.; Hassanien, H.A.; Alsaade, F.W.; Wahsheh, H.A.M. Effect of stocking density on sustainable growth performance and water quality of Nile tilapia-spinach in NFT aquaponic system. Sustainability 2023, 15, 6935. [Google Scholar] [CrossRef]
- Birolo, M.; Bordignon, F.; Trocino, A.; Fasulato, L.; Pascual, A.; Godoy, S.; Nicoletto, C.; Maucier, C.; Xicato, G. Effects of stocking density on the growth and flesh quality of rainbow trout (Onchorynchus mykiss) reared in a low-tech aquaponic system. Aquaculture 2020, 529, 735653. [Google Scholar] [CrossRef]
- Bordignon, F.; Gasco, L.; Birolo, M.; Trocino, A.; Caimi, C.; Ballarin, C.; Bortoletti, M.; Nicoletto, C.; Maucieri, C. Performance and fillet traits of rainbow trout (Onchorynchus mykiss) fed different levels of Hermetia illucens meal in a low-tech aquaponic system. Aquaculture 2022, 546, 737279. [Google Scholar] [CrossRef]
- Nuwansi, K.K.T.; Verma, A.K.; Prakash, C.; Tiwari, V.K.; Chandrakant, M.H.; Shete, A.P.; Prabhata, G.P.W.A. Effect of water flow on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Iponopa aquatica) in recirculating aquaponic system. Aquac. Int. 2016, 24, 385–393. [Google Scholar] [CrossRef]
- Fierro-Sañudo, J.F.; Rodriguez-Montes de Oca, G.A.; León-Cañedo, J.A.; Alacrón-Silvas, S.G.; Mariscal-Lagarda, M.M.; Díaz-Valdés Páez-Osuna, F. Production and management of shrimp (Penaeus vannamei) in co-culture with basil (Ocimum basilicum) using two sources of low-salinity water. Lat. Am. J. Aquat. Res. 2017, 46, 63–71. [Google Scholar] [CrossRef]
- Azaza, M.S.; Khiari, N.; Dhraief, M.N.; Aloui, N.; Kraiem, M.M.; Elfeki, A. Growth performance, oxidative stress indices and hepatic carbohydrate metabolic enzymes activities of juvenile Nile tilapia, Oreochromis niloticus L., in response to dietary starch to protein ratios. Aquac. Res. 2015, 46, 14–27. [Google Scholar] [CrossRef]
- El-Naggar, K.; Mohamed, R.; El-Katcha, M.I.; Abdo, S.E.; Soltan, M.A. Plant ingredient diet supplemented with lecithin as fish meal and fish oil alternative affects growth performance, serum biochemical, lipid metabolism and growth-related gene expression in Nile tilapia. Aquac. Res. 2021, 52, 6308–6321. [Google Scholar] [CrossRef]
- Qin, Y.; Naumovski, N.; Ranadheera, C.S.; D’Cunha, N.M. Nutrition-related health outcomes of sweet potato (Ipomoea batatas) consumption: A systematic review. Food Biosci. 2022, 50, 102208. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M.; Figueiredo-Silva, C.; Zeid, S.M.S.; Makled, S.O. Metal-amino acid complexes (Zn, Se, Cu, Fe, and Mn) as a replacement of inorganic trace minerals in commercial diets for Nile tilapia (Oreochromis niloticus) reared under field conditions: Effects on growth, feed efficiency, gut microbiota, intestinal histology, and economic return. Aquaculture 2023, 567, 739223. [Google Scholar]
EFD | FV | |
---|---|---|
Moisture | 5.23 | 85.95 |
Crude protein | 32.13 | 9.32 |
Crude lipid | 8.47 | 3.28 |
Crude ash | 7.64 | 14.52 |
Crude fiber | 4.31 | 9.27 |
% | mg/kg | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | S | Na | Fe | Mn | Zn | Cu | B | |
EFD frass | 4.64 | 2.54 | 2.95 | 5.28 | 0.44 | 0.75 | 13,561 | 463 | 87 | 200 | 30.7 | 23 |
FV frass | 3.37 | 1.16 | 4.12 | 6.38 | 0.38 | 0.50 | 11,815 | 295 | 63 | 104 | 22.2 | 33 |
Parameter | EFD | FV |
---|---|---|
Temperature (°C) | 27.3 ± 0.05 | 27.5 ± 0.09 |
Dissolved oxygen (mg/L) | 5.14 ± 0.33 | 5.47 ± 0.01 |
pH | 7.49 ± 0.01 b | 7.54 ± 0.01 a |
Hardness (mg/L) | 45.5 ± 0.14 | 49.3 ± 0.27 |
TAN 1 (mg/L) | 0.34 ± 0.00 | 0.31 ± 0.02 |
Nitrite (mg/L) | 0.08 ± 0.04 | 0.03 ± 0.00 |
Nitrate (mg/L) | 42.08 ± 0.41 | 42.08 ± 0.12 |
Response | EFD | FV |
---|---|---|
Length (cm) | 21.23 ± 0.19 | 20.95 ± 0.29 |
Final weight (g) | 197.3 ± 4.6 | 188.9 ± 8.0 |
Weight gain (%) 1 | 332.6 ± 13.8 | 311.8 ± 13.4 |
SGR 2 | 3.00 ± 0.56 | 2.89 ± 0.42 |
Feed intake (g/fish) | 164.6 ± 5.8 | 159.7 ± 2.3 |
FCR 3 | 1.09 ± 0.06 | 1.12 ± 0.04 |
Treatments | Response Variables | |||||
---|---|---|---|---|---|---|
Frass | Harvest | Length (cm) | Weight (g) | Diameter (mm) | Nodes/Slip | Nodes/Length |
EFD | 1 | 31.15 | 912.7 | 4.37 | 7.69 | 0.263 |
2 | 27.75 | 259.7 | 3.21 | 8.88 | 0.343 | |
3 | 50.18 | 1029.7 | 3.10 | 9.35 | 0.213 | |
4 | 29.52 | 381.7 | 3.06 | 8.69 | 0.333 | |
5 | 39.89 | 644.6 | 2.97 | 10.33 | 0.300 | |
6 | 22.23 | 205.1 | 2.90 | 8.78 | 0.420 | |
7 | 31.03 | 633.3 | 2.88 | 11.14 | 0.397 | |
FV | 1 | 30.28 | 758.7 | 4.24 | 7.57 | 0.260 |
2 | 31.81 | 486.6 | 3.30 | 8.88 | 0.310 | |
3 | 48.03 | 1102.9 | 3.11 | 9.49 | 0.213 | |
4 | 30.30 | 413.7 | 3.24 | 8.74 | 0.310 | |
5 | 42.85 | 649.9 | 2.98 | 10.08 | 0.273 | |
6 | 29.68 | 299.3 | 2.89 | 9.50 | 0.367 | |
7 | 31.41 | 828.5 | 2.95 | 11.59 | 0.393 | |
Pooled SE | 4.44 | 138.7 | 0.12 | 0.45 | 0.026 | |
Main effects of means | ||||||
EFD | 33.11 | 581.0 | 3.21 | 9.27 | 0.324 | |
FV | 34.91 | 648.5 | 3.24 | 9.40 | 0.304 | |
1 | 30.72 bc | 835.7 a | 4.31 a | 7.63 d | 0.262 bc | |
2 | 29.78 c | 373.2 c | 3.25 b | 8.88 bc | 0.327 ab | |
3 | 49.11 a | 1066.3 a | 3.10 bc | 9.40 bc | 0.213 c | |
4 | 29.91 c | 397.7 bc | 3.15 bc | 8.72 cd | 0.322 b | |
5 | 41.37 ab | 647.3 ab | 2.97 bc | 10.20 a | 0.287 b | |
6 | 25.95 c | 252.2 c | 2.89 c | 9.14 bc | 0.393 a | |
7 | 31.22 bc | 730.9 ab | 2.91 c | 11.36 a | 0.395 a | |
ANOVA Source, Pr > F | ||||||
Frass | 0.638 | 0.694 | 0.792 | 0.777 | 0.463 | |
Harvest | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
F × H | 0.818 | 0.922 | 0.881 | 0.907 | 0.838 |
Treatments | Macronutrients (mg/g) | Micronutrients (mg/g) | Sugar (mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Harvest | Frass | P | K | Ca | Mg | Na | Fe | Mn | Zn | Soluble | Insoluble |
First | EFD | 9.47 | 109.24 | 7.49 | 10.94 | 0.071 | 0.121 | 0.137 | 0.071 | 30.08 | 26.20 |
FV | 9.50 | 109.80 | 7.47 | 11.17 | 0.090 | 0.118 | 0.134 | 0.090 | 37.63 | 35.29 | |
Last | EFD | 9.79 | 92.73 | 6.71 | 10.78 | 0.175 | 0.148 | 1.500 | 0.175 | 8.83 | 5.55 |
FV | 9.17 | 90.95 | 6.89 | 10.46 | 0.187 | 0.142 | 1.499 | 0.187 | 13.55 | 6.01 | |
Pooled SE | 0.385 | 8.36 | 0.165 | 0.21 | 0.047 | 0.006 | 0.014 | 0.015 | 4.25 | 4.83 | |
First | 9.48 | 109.52 | 7.48 a | 11.05 | 0.080 b | 0.120 b | 0.135 b | 0.080 b | 33.86 a | 30.75 a | |
Last | 9.48 | 91.84 | 6.80 b | 10.62 | 0.181 a | 0.145 a | 1.499 a | 0.181 a | 11.19 b | 5.78 b | |
EFD | 9.63 | 100.99 | 7.10 | 10.86 | 0.123 | 0.134 | 0.819 | 0.123 | 49.46 | 15.87 | |
FV | 9.33 | 100.38 | 7.18 | 10.82 | 0.138 | 0.130 | 0.816 | 0.138 | 25.59 | 20.65 | |
ANOVA Source, Pr > F | |||||||||||
Time | 0.934 | 0.062 | 0.003 | 0.071 | 0.035 | 0.004 | <0.001 | <0.001 | <0.001 | <0.001 | |
Frass | 0.456 | 0.456 | 0.646 | 0.837 | 0.165 | 0.528 | 0.860 | 0.324 | 0.096 | 0.422 | |
T X F | 0.427 | 0.752 | 0.558 | 0.893 | 0.537 | 0.826 | 0.893 | 0.774 | 0.757 | 0.506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, N.; Webster, C.; Datta, S.N.; Pande, G.S.J.; Fischer, H.; Sinha, A.K.; Huskey, G.; Rawles, S.D.; Francis, S. Black Soldier Fly (Hermetia illucens) Frass on Sweet-Potato (Ipomea batatas) Slip Production with Aquaponics. Horticulturae 2023, 9, 1088. https://doi.org/10.3390/horticulturae9101088
Romano N, Webster C, Datta SN, Pande GSJ, Fischer H, Sinha AK, Huskey G, Rawles SD, Francis S. Black Soldier Fly (Hermetia illucens) Frass on Sweet-Potato (Ipomea batatas) Slip Production with Aquaponics. Horticulturae. 2023; 9(10):1088. https://doi.org/10.3390/horticulturae9101088
Chicago/Turabian StyleRomano, Nicholas, Carl Webster, Surjya Narayan Datta, Gde Sasmita Julyantoro Pande, Hayden Fischer, Amit Kumar Sinha, George Huskey, Steven D. Rawles, and Shaun Francis. 2023. "Black Soldier Fly (Hermetia illucens) Frass on Sweet-Potato (Ipomea batatas) Slip Production with Aquaponics" Horticulturae 9, no. 10: 1088. https://doi.org/10.3390/horticulturae9101088
APA StyleRomano, N., Webster, C., Datta, S. N., Pande, G. S. J., Fischer, H., Sinha, A. K., Huskey, G., Rawles, S. D., & Francis, S. (2023). Black Soldier Fly (Hermetia illucens) Frass on Sweet-Potato (Ipomea batatas) Slip Production with Aquaponics. Horticulturae, 9(10), 1088. https://doi.org/10.3390/horticulturae9101088