The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Microclimate
2.2. Plant Material and Growing Media
2.3. Data Collection on Morphological Parameters
2.3.1. Determination of Leaf Color, Soluble Solid Content (SSC), Titratable Acidity (TA) and Ascorbic Acid
2.3.2. Determination of Total Phenolic
2.3.3. Determination of the Antioxidant Power [Ferric Reducing Ability of Plasma (FRAP)]
2.3.4. Determination of the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Scavenging Activity
2.3.5. Determination of ABTS-Based Scavenging Activity (2,2-Azinobis, 3-Ethyl-benzothiazoline-6-sulfonic Acid)
2.3.6. Total Glucosinolate Content
2.4. Statistical Analysis
3. Results
3.1. Plant Morphology and Leaf Chlorophyll Content
3.2. Fresh and Dry Plant Mass
3.3. Mineral Content
3.4. Leaf Color
3.5. Antioxidant and Antioxidant Activities in Microgreens
3.5.1. Ascorbic Acid Content
3.5.2. Total Phenols Content (TPC)
3.5.3. Total Glucosinolate Content
3.5.4. Ferric Reducing Ability of Plasma (FRAP)
3.5.5. DPPH 2.2-Diphenyl-1-picrylhyrazyl Radial Scavenging Activity
3.5.6. ABTS-Based Scavenging Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Treadwell, D.D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A new specialty crop. Univ. Fla. IFAS Ext. 2010, 2, 10–34. Available online: https://edis.ifas.ufl.edu (accessed on 17 September 2023). [CrossRef]
- Janovska, D.; Štočková, L.; Stehno, Z. Evaluation of buckwheat sprouts as microgreens. Acta Agric. Slov. 2010, 95, 157–162. [Google Scholar] [CrossRef]
- Samuoliene, G.; Brazaitytė, A.; Jankauskienė, J.; Viršilė, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskienė, S.; Sakalauskaitė, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Renna, M.; Di Gioia, F.; Leoni, B.; Mininni, C.; Santamaria, P. Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. J. Culin. Sci. Technol. 2017, 15, 126–142. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 51–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Pill, W.G. Advancing greenhouse establishment of radish, kale, and amaranth microgreens through seed treatments. Hortic. Environ. Biotechnol. 2005, 46, 363–368. [Google Scholar]
- Buck, J.W.; Walcott, R.R.; Beuchat, L.R. Recent trends in microbiological safety of fruits and vegetables. Plant Health Prog. 2003, 4, 25. [Google Scholar] [CrossRef]
- Xiao, Z.; Luo, Y.; Lester, G.E.; Kou, L.; Yang, T.; Wang, Q. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature packaging film and chlorine wash treatment. LWT Food Sci. Technol. 2014, 55, 551–558. [Google Scholar] [CrossRef]
- Reed, E.; Ferreira, C.M.; Bell, R.; Brown, E.W.; Zheng, J. Plant-microbe and abiotic factors influencing Salmonella survival and growth on alfalfa sprouts and Swiss chard microgreens. Appl. Environ. Microbiol. 2018, 28, 14–17. [Google Scholar] [CrossRef]
- Alloggia, F.P.; Bafumo, R.F.; Ramirez, D.A.; Maza, M.A.; Camargo, A.B. Brassicaceae microgreens. A novel and promissory source of sustainable bioactive compounds. Curr. Res. Food Sci. 2023, 6, 100480. [Google Scholar] [CrossRef]
- Mawlong, I.; Sujith Kumar, M.S.; Gurung, B.; Singh, K.H.; Singh, D. A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. Int. J. Food Prop. 2017, 20, 3274–3281. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional ingredients from Brassicaceae species: Overview and perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef]
- Tomas, M.; Zhang, L.; Zengin, G.; Rocchetti, G.; Capanoglu, E.; Lucini, L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res Int. 2021, 140, 110039. [Google Scholar] [CrossRef]
- Ebert, A.W. Sprouts and microgreens—Novel food sources for healthy diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; El-Nakhel, C.; Soteriou, G.A.; Graziani, G.; Kyratzis, A.; Antoniou, C.; Rouphael, Y. Preharvest nutrient deprivation reconfigures nitrate, mineral, and phytochemical content of microgreens. Foods 2021, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Manpoong, C.; Devadas, V.S.; Kartha, B.D.; Pandey, H.; Wangsu, M. Crop hydroponics, phyto-hydroponics, crop production, and factors affecting soilless culture. ACS Agric. Sci. Technol. 2022, 2, 1134–1150. [Google Scholar] [CrossRef]
- Thuong, V.T.; Minh, H.G. Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Res. Crops 2020, 21, 579–586. [Google Scholar] [CrossRef]
- Weber, C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 2017, 4, 7. [Google Scholar] [CrossRef]
- Demir, H.; Polat, E. Effects of different growing media on seedling quality and nutrient contents in cabbage (Brassica oleraceae var. capitata L.). J. Food Agric. Environ. 2014, 12, 1378–1381. Available online: http://world-food.net/.../e115.pdf (accessed on 17 September 2023).
- Murphy, R.V.C.J.; Llort, K.F.; Pill, W.G. Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Tinyane, P.P.; Sivakumar, D.; Soundy, P. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci. Hortic. 2013, 161, 340–349. [Google Scholar] [CrossRef]
- Supapvanich, S.; Boon-Lha, K.; Mhernmee, N. Quality attribute changes in intact and fresh-cut during storage. Agric. Nat. Res. 2011, 45, 874–882. Available online: http://kasetsartjournal.ku.ac.th/ (accessed on 17 September 2023).
- Sousa, L.; Camacho, I.R. Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia 2015, 32, 303–315. [Google Scholar] [CrossRef]
- Javanmardia, J.; Kubota, J.K. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Technol. 2006, 41, 151–155. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Rockville, MD, USA, 2000; Volume 1. [Google Scholar]
- Poorshahabadi, L.; Mirdehghan, H.; Roosta, H.R. Comparison of minerals and bioactive compounds of six vegetable species in microgreen stage in hydroponic and soil production systems. J. Hortic. Sci. 2019, 33, 113–126. [Google Scholar] [CrossRef]
- Aryal, M.R.; Gosain, R.; Donato, A.; Yu, H.; Katel, A.; Bhandari, Y.; Dhital, R.; Kouides, P. Systematic review and meta-analysis of the efficacy and safety of apixaban compared to rivaroxaban in acute VTE in the real world. Blood Adv. 2019, 3, 2381–2387. [Google Scholar] [CrossRef]
- Mpai, M.; Jensen, T.Y.; Neugart, S. Nitrogen dose fertilization, plant growth and frost effects of nutrients content and phytonutrient content of broccoli. Food Chem. 2018, 120, 556–677. [Google Scholar] [CrossRef]
- Phahlane, M.W.; Jensen, S.E. Sparse methods for direction of arrival estimation and vegetables nutrition. Food Sci. 2021, 71, 59–81. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; Iowa State University Press: Ames, IA, USA, 1980. [Google Scholar]
- Thapa, R.; Willey, W. The quantitative relationships of between plant population and yield. J. Food Qual. 2019, 12, 21–36. [Google Scholar]
- Sinsiri, W.; Naris, M.; Arimatsu, P. Effect of paclobutrazol growth regulator on tuber production and starch quality of cassava (Manihot esculenta crantz). Asian J. Plant Sci. 2016, 15, 1–7. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Plant oxidative stress: Biology, physiology and mitigation. Plants 2022, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Marenco, R.; Antezana-Vera, S.; Nascimento, H. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica 2009, 47, 184–190. [Google Scholar] [CrossRef]
- Tokala, V.Y.; Mahajan, B.V.C. Calcium: An indispensable element affecting postharvest life of fruits and vegetables. Emerg. Postharvest Treat. Fruit Veg. 2019, 25, 59–83. Available online: https://www.researchgate.net/publication/328635302 (accessed on 18 September 2023).
- Storey, A. 6 ways to grow better microgreens. In Crops & Growing Science; Upstart University, Bright Agrotech, Plenty; Upstart University, Modern Farm Education, 2017. Available online: https://university.upstartfarmers.com/blog/6-ways-to-grow-better-microgreens (accessed on 17 September 2023).
- Maboko, M.M.; Du Plooy, C.P. Effect of plant spacing on yield of four leafy lettuce (Lactuca sativa L.) cultivars in a soilless production system. S. Afr. J. Plant Soil 2009, 23, 199–201. [Google Scholar]
- Dieleman, J.A.; Kruidhof, H.A.; Weerheim, K.; Leis, K. Led lighting strategies affect physiology and resilience to pathogens and pests in eggplant (Solanum melongena). Front. Plant Sci. 2020, 86, 79–98. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; EL-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Martínez, F.; Castillo, S.; Carmona, E.; Avilés, M. Dissemination of Phytophthora cactorum, cause of crown rot in strawberry, in open and closed soilless growing systems and the potential for control using slow sand filtration. Sci. Hortic. 2010, 125, 756–760. [Google Scholar] [CrossRef]
- Noguera, M.M.; Carey, E.E.; Rajashekar, C.B. Regulated water deficits improve phytochemical concentration in lettuce. J. Am. Soc. Hortic. Sci. 2016, 135, 223–229. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Kim, W.W.; Park, C.H.; Cho, D.H. Effect of artificial LED light and far infrared irradiation on phenolic compound, isoflavones and antioxidant capacity in soybean (Glycine max L.) sprout. Foods 2018, 7, 174. [Google Scholar] [CrossRef]
- Mustafa, A.; Aly, M.; Aljawad, M.S.; Dvorkin, J.; Solling, T.; Sultan, A.A. green and efficient acid system for carbonate reservoir stimulation. J. Petroleum Sci. Eng. 2021, 205, 108974. [Google Scholar] [CrossRef]
- Mampholo, M.B. Effect of Different Modified Atmosphere Packaging on Quality Retention of Selected Traditional Leafy Vegetables. Master’s Dissertation, Tshwane University of Technology, Pretoria, South Africa, 2014; pp. 76–82. [Google Scholar]
- Wang, T.T.; Choe, U.; Yu, L.L. The science behind microgreens as an exciting new food for the 21st century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef]
- Kasim, R.; Kasim, M.U. Biochemical and colour changes of fresh-cut treated with UV-C. Food Sci. Technol. 2014, 34, 547–551. [Google Scholar] [CrossRef]
- Gomez, C.; Izzo, L.G. Increasing efficiency of crop production with LEDs. Aims Agric. Food 2018, 3, 135–153. [Google Scholar] [CrossRef]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive oxygen species and antioxidants in postharvest vegetables and fruits. Int. J. Food Sci. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Kolota, E.; Balbierz, A. Effect of nitrogen fertilization on pre- and postharvest quality of scallop squash harvested at different stages of fruit maturity. Acta Hortic. 2015, 45, 101–125. [Google Scholar] [CrossRef]
- Madiwale, G.P.; Reddivari, L.; Holm, D.G.; Vanamala, J. Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of coloured-flesh potatoes against human colon cancer cell lines. J. Agric. Food Chem. 2011, 59, 8155–8166. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Pandino, G.; Mauro, R.; Mauromicale, G. Variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Ital. J Agron. 2009, 4, 181–189. [Google Scholar] [CrossRef]
- Riad, G.; Ghoname, A.; Ahmed, A.; El-Baky, M.A.; Hegazi, A. Cabbage nutritional quality as influenced by planting density and nitrogen fertilization. Fruit Veg. Cereal Sci. Biotechnol. 2009, 3, 68–74. Available online: https://www.researchgate.net/publication/277557271 (accessed on 17 September 2023).
- Ben Ammar, H.; Arena, D.; Treccarichi, S.; Di Bella, M.C.; Marghali, S.; Ficcadenti, N.; Lo Scalzo, R.; Branca, F. The Effect of Water Stress on the Glucosinolate Content and Profile: A Comparative Study on Roots and Leaves of Brassica oleracea L. Crops. Agronomy 2023, 13, 579. [Google Scholar] [CrossRef]
- Prasad, T.; Ketsa, S. Light during storage prevents loss of ascorbic acid, and increases glucose and fructose levels in Chinese kale (Brassica oleracea var. alboglabra). Postharvest Biol. Technol. 2010, 44, 312–315. [Google Scholar] [CrossRef]
- Delgado, J.; Mcevoy, F.; Barg, C. Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions. Postharvest Biol. Technol. 2016, 33, 51–59. [Google Scholar] [CrossRef]
- Kullaj, E. New insights on postharvest ecophysiology of fresh horticultural crops. In Eco-Friendly Technology for Postharvest Produce Quality; Academic Press: Cambridge, MA, USA, 2016; pp. 1–38. [Google Scholar] [CrossRef]
- Sharma, S.; Bhatt, P. Microgreens: A nutrients rich crop that can diversify the food system. Int. J. Pure Appl. Biosci. 2014, 6, 82–186. Available online: https://www.researchgate.net/profile/Pooja-Bhatt-5/publication/325395595_Microgreens_A_Nutrient_Rich_Crop_that_can_Diversify_Food_System/links/5d4ab74c4585153e59415b97/Microgreens-A-Nutrient-Rich-Crop-that-can-Diversify-Food-System (accessed on 19 September 2023).
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods. 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Kevers, S.; Li, C.; Zhao, Y.; Li, Y.; Sun, C. Cabbage (Brassica oleracea L. Var. Capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac. J. Cancer Prev. 2017, 14, 6657–6662. [Google Scholar]
Chemical Property | ||||
---|---|---|---|---|
Composition | Unit | Promix Organic | Hygromix | TS1 Fine 876 |
Calcium | mg/L | 3.90 | 61.16 | 156.32 |
Magnesium | mg/L | 3.62 | 40.17 | 16.57 |
Potassium | mg/L | 87.73 | 32.77 | 105.18 |
Nitrogen | % | 0.76 | 0.93 | 1.26 |
Iron | µg/L | 650.00 | 450.00 | 1520.00 |
Zinc | µg/L | 22.00 | 47.90 | 275.60 |
Sulphate (SO4) | mg/L | 9.84 | 101.55 | 337.44 |
Phosphate (PO4) | mg/L | 2.73 | 113.31 | 78.25 |
Manganese | µg/L | 20.00 | 80.00 | 180.00 |
Copper | µg/L | 35.20 | 107.30 | 8.74 |
Nitrate | mg/L | 18.59 | 56.17 | 42.71 |
Ammonium | mg/L | 0.66 | 1.21 | 3.77 |
Chlorine | mg/L | 105.23 | 10.14 | 8.74 |
Bicarbonate | mg/L | 26.56 | 35.42 | 40.48 |
Carbonate | mg/L | 0.00 | 0.00 | 0.00 |
Boron | µg/L | 25.30 | 80.50 | 88.80 |
pH | - | 6.84 | 6.18 | 5.43 |
Electrical conductivity (EC) | mS/m | 58.90 | 82.90 | 129.00 |
C:N | - | 33.2:1 | 28.5:1 | 42.7:1 |
Physical property | ||||
Dry matter | % | 40.65 | 87.63 | 53.51 |
Moisture | % | 59.35 | 12.37 | 46.49 |
Air-filled porosity (AFP) | % | 13.62 | 10.91 | 26.62 |
Ash | % | 56.62 | 54.44 | 7.45 |
Water-holding capacity (WHC) | % | 74.6 | 47.0 | 55.9 |
Treatments | Plant Height (mm) | Leaf Chlorophyll (spad) | Stem Diameter (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | |
TS1 × 4D | 37.8 ± 5.2 c | 38.65 ± 3.87 d | 22.29 ± 4.28 e | 34.56 ± 2.24 a | 41.56 ± 7.02 a | 34.56 ± 2.23 a | 1.08 ± 0.09 b | 1.13 ± 0.13 b | 1.18 ± 01.4 a |
TS1 × 8D | 37.3 ± 4.8 c | 40.44 ± 3.77 cd | 37.80 ± 5.12 c | 31.86 ± 3.05 bc | 38.98 ± 7.85 a | 29.52 ± 5.17 bcd | 1.07 ± 0.10 b | 1.09 ± 0.10 d | 1.01 ± 0.27 bc |
TS1 × 12D | 38.0 ± 3.4 bc | 48.15 ± 5.13 a | 39.93 ± 7.08 b | 32.02 ± 3.22 b | 38.44 ± 4.92 ab | 29.91 ± 3.65 bcd | 0.98 ± 0.05 e | 1.10 ± 0.10 c | 1.08 ± 0.09 b |
H × 4D | 22.3 ± 4.3 d | 26.48 ± 4.56 f | 24.02 ± 4.51 d | 29.52 ± 5.17 cde | 29.38 ± 8.38 d | 31.86 ± 3.05 b | 1.01 ± 0.27 c | 0.89 ± 0.13 f | 1.07 ± 0.10 bc |
H × 8D | 24.0 ± 4.5 d | 27.48 ± 3.32 f | 38.02 ± 3.36 c | 29.02 ± 5.97 cde | 34.50 ± 7.51 c | 29.02 ± 5.97 cd | 0.84 ± 0.90 f | 0.97 ± 0.08 d | 0.84 ± 0.09 d |
H × 12D | 24.7 ± 5.1 d | 32.99 ± 1.74 e | 40.38 ± 7.08 b | 31.04 ± 5.38 bcd | 33.69 ± 6.35 c | 28.92 ± 3.44 cd | 0.80 ± 0.12 g | 0.93 ± 0.10 e | 1.00 ± 0.10 bc |
P × 4D | 39.9 ± 7.1 bc | 41.93 ± 7.24 bc | 24.67 ± 5.09 d | 29.91 ± 3.65 bcde | 39.03 ± 4.58 ab | 32.02 ± 3.22 ab | 1.18 ± 0.14 a | 1.31 ± 0.14 a | 1.02 ± 0.14 b |
P × 8D | 40.4 ± 7.1 b | 43.52 ± 7.33 b | 37.34 ± 4.75 c | 28.92 ± 3.44 de | 36.40 ± 5.53 bc | 31.04 ± 5.38 bc | 1.00 ± 0.10 d | 1.10 ± 0.13 c | 0.80 ± 0.12 d |
P × 12D | 47.7 ± 6.2 a | 47.97 ± 4.77 a | 47.72 ± 6.24 a | 27.65 ± 2.78 e | 33.60 ± 7.67 c | 27.65 ± 2.78 d | 1.02 ± 0.14 c | 1.08 ± 0.17 c | 0.98 ± 0.05 c |
LSD 0.05 | 2.41 *** | 3.05 *** | 1.52 *** | 2.46 *** | 3.0 *** | 2.61 *** | 0.01 *** | 0.02 *** | 0.09 *** |
Treatment | Fresh Plant Mass (g/m2) | Dry Plant Mass (g/m2) | ||||
---|---|---|---|---|---|---|
Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | |
TS1 × 4D | 500.43 ± 43.23 e | 387.76 ± 22.52 f | 313.14 ± 11.04 e | 119.98 ± 5.06 e | 86.33 ± 5.06 e | 74.62 ± 7.60 d |
TS1 × 8D | 1006.7 ± 14.11 c | 532.63 ± 15.41 c | 443.37 ± 50.62 c | 159.49 ± 5.06 c | 109.7 ± 8.77 b | 106.8 ± 6.70 b |
TS1 × 12D | 1246.7 ± 83.75 b | 752.12 ± 93.87 b | 462.39 ± 38.35 b | 184.37 ± 4.38 b | 122.9 ± 4.38 a | 109.7 ± 8.77 b |
H × 4D | 338.01 ± 8.779 f | 165.34 ± 11.04 h | 114.13 ± 4.389 i | 102.42 ± 6.70 f | 64.38 ± 2.53 g | 59.99 ± 2.53 f |
H × 8D | 700.90 ± 128.9 d | 269.24 ± 58.45 g | 146.32 ± 32.94 h | 147.79 ± 14.11 d | 80.48 ± 12.6 f | 67.31 ± 10.13 e |
H × 12D | 1062.3 ± 178.8 c | 449.22 ± 88.37 e | 181.44 ± 20.74 g | 181.44 ± 9.13 b | 106.8 ± 9.13 c | 74.62 ± 4.38 d |
P × 4D | 579.45 ± 68.99 e | 383.37 ± 142.74 f | 286.80 ± 164.3 f | 121.45 ± 6.70 d | 84.86 ± 9.13 e | 73.16 ± 12.67 d |
P × 8D | 955.51 ± 38.35 c | 503.36 ± 128.45 d | 378.98 ± 136.1 d | 158.03 ± 4.38 c | 102.4 ± 11.0 d | 92.18 ± 15.20 c |
P × 12D | 1805.6 ± 45.69 a | 803.33 ± 148.02 a | 687.73 ± 105.3 a | 200.46 ± 11.04 a | 124.3 ± 11.0 a | 133.1 ± 9.13 a |
LSD 0.05 | 5.91 *** | 4.72 *** | 2.19 *** | 5.51 *** | 2.9 *** | 2.93 *** |
Treatment | N (%) | Ca (%) | Mg (%) | K (%) | P (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | |
TS1× 4D | 2.03 ± 0.10 ab | 2.61 ± 0.17 a | 2.51 ± 0.13 a | 2.45 ± 0.26 c | 3.67 ± 0.16 bc | 3.56 ± 0.37 ab | 0.72 ± 0.04 abc | 0.67 ± 0.01 a | 0.88 ± 0.12 ab | 1.31 ± 0.20 a | 2.32 ± 0.21 a | 1.52 ± 0.22 a | 0.28 ± 0.00 g | 0.33 ± 0.01 g | 0.23 ± 0.01 c |
TS1 × 8D | 2.19 ± 0.02 a | 2.17 ± 0.14 ab | 1.88 ± 0.00 ab | 1.84 ± 0.04 d | 2.32 ± 0.12 d | 2.66 ± 0.06 cd | 0.69 ± 0.02 bcd | 0.59 ± 0.01 b | 0.70 ± 0.02 ab | 1.45 ± 0.05 a | 2.10 ± 0.03 ab | 1.34 ± 0.10 b | 0.33 ± 0.01 f | 0.36 ± 0.00 fg | 0.23 ± 0.00 c |
TS1×12D | 2.30 ± 0.04 a | 2.09 ± 0.00 ab | 1.87 ± 0.12 b | 1.48 ± 0.04 e | 1.74 ± 0.21 e | 2.16 ± 0.13 d | 0.65 ± 0.03 cd | 0.64 ± 0.00 a | 0.72 ± 0.08 ab | 1.51 ± 0.00 a | 1.94 ± 0.00 abc | 1.23 ± 0.03 bc | 0.36 ± 0.00 e | 0.37 ± 0.00 f | 0.24 ± 0.01 c |
H × 4D | 1.99 ± 0.64 abc | 2.45 ± 0.09 a | 1.51 ± 0.14 c | 3.28 ± 0.89 b | 3.80 ± 0.02 bc | 3.04 ± 0.41 bc | 0.76 ± 0.44 ab | 0.76 ± 0.05 a | 0.91 ± 0.33 a | 1.02 ± 0.36 b | 1.92 ± 0.09 abc | 1.13 ± 0.20 c | 0.50 ± 0.10 a | 0.84 ± 0.07 a | 0.58 ± 0.08 ab |
H × 8D | 1.09 ± 0.07 c | 2.07 ± 0.47 ab | 1.23 ± 0.19 c | 2.49 ± 0.04 c | 3.51 ± 1.00 d | 2.56 ± 0.53 cd | 0.25 ± 0.00 e | 0.75 ± 0.28 a | 0.62 ± 0.32 ab | 0.63 ± 0.02 c | 1.73 ± 0.35 bc | 0.95 ± 0.21 d | 0.42 ± 0.00 c | 0.77 ± 0.04 b | 0.50 ± 0.10 ab |
H × 12D | 1.51 ± 0.15 cd | 1.72 ± 0.31 b | 1.46 ± 0.09 c | 2.66 ± 0.15 c | 3.30 ± 0.75 c | 2.82 ± 0.38 c | 0.29 ± 0.02 e | 0.65 ± 0.23 a | 0.53 ± 0.37 b | 0.67 ± 0.02 c | 1.52 ± 0.30 cd | 0.87 ± 0.29 d | 0.46 ± 0.02 b | 0.69 ± 0.02 d | 0.51 ± 0.09 ab |
P × 4D | 1.35 ± 0.06 d | 1.96 ± 0.40 ab | 2.28 ± 0.71 ab | 3.20 ± 0.27 b | 4.40 ± 0.61 a | 4.14 ± 0.69 a | 0.62 ± 0.00 d | 0.67 ± 0.00 a | 0.70 ± 0.01 ab | 0.55 ± 0.07 c | 1.11 ± 0.08 d | 0.87 ± 0.02 d | 0.39 ± 0.06 d | 0.73 ± 1.06 c | 0.64 ± 0.01 a |
P × 8D | 1.29 ± 0.02 d | 1.64 ± 0.00 b | 1.54 ± 0.12 c | 3.32 ± 0.16 b | 3.67 ± 0.51 bc | 3.54 ± 0.14 ab | 0.72 ± 0.04 abc | 0.76 ± 0.02 a | 0.74 ± 0.02 ab | 0.60 ± 0.05 c | 1.12 ± 0.00 d | 0.73 ± 0.16 e | 0.38 ± 0.02 de | 0.67 ± 0.07 d | 0.51 ± 0.14 ab |
P × 12D | 1.61 ± 0.36 bc | 1.54 ± 0.05 b | 1.44 ± 0.11 c | 3.90 ± 1.00 a | 3.95 ± 0.35 b | 3.43 ± 0.34 b | 0.80 ± 0.10 a | 0.86 ± 0.02 a | 0.75 ± 0.02 ab | 0.74 ± 0.03 c | 1.13 ± 0.05 d | 0.69 ± 0.04 e | 0.47 ± 0.03 b | 0.64 ± 0.04 e | 0.43 ± 0.02 bc |
LSD 0.05 | 0.5 ** | 0.72 ** | 0.63 ** | 0.22 ** | 0.3 *** | 0.61 *** | 0.09 ** | 0.27 * | 0.35 * | 0.2 ** | 0.48 ** | 0.14 *** | 0.02 *** | 0.03 *** | 0.2 * |
Treatment | L* | C | h° | ||||||
---|---|---|---|---|---|---|---|---|---|
Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | |
TS1 × 4D | 25.78 ± 0.01 cd | 26.9 ± 4.27 a | 15.85 ± 3.88 d | 24.55 ± 1.30 e | 19.26 ± 0.47 b | 18.17 ± 2.67 c | 120.60 ± 0.45 a | 123.64 ± 1.52 a | 121.37 ± 1.09 a |
TS1 × 8D | 23.90 ± 3.89 bc | 21.94 ± 3.65 bc | 21.34 ± 2.80 bc | 25.77 ± 2.69 de | 21.77 ± 1.55 a | 24.87 ± 3.67 bc | 120.54 ± 0.73 a | 120.37 ± 0.30 bc | 118.39 ± 0.58 b |
TS1 × 12D | 30.31 ± 8.56 ab | 24.78 ± 3.77 ab | 21.54 ± 1.42 bc | 31.06 ± 4.25 a | 22.03 ± 0.75 a | 24.77 ± 1.67 bc | 118.55 ± 0.26 ab | 121.18 ± 1.26 abc | 119.42 ± 2.12 ab |
H × 4D | 30.9 ± 6.91 a | 23.95 ± 1.62 ab | 22.37 ± 3.77 bc | 30.71 ± 4.81 ab | 20.87 ± 1.17 b | 22.17 ± 2.67 bc | 116.28 ± 1.46 b | 118.77 ± 1.80 bc | 114.27 ± 1.73 e |
H × 8D | 26.21 ± 1.77 bc | 18.99 ± 4.09 cd | 24.05 ± 1.42 b | 28.37 ± 2.47 bc | 20.32 ± 1.12 b | 23.47 ± 1.67 bc | 115.85 ± 0.26 b | 118.46 ± 1.35 c | 114.98 ± 0.69 de |
H × 12D | 21.86 ± 1.41 c | 24.62 ± 3.24 ab | 31.7 ± 7.35 a | 25.35 ± 1.78 de | 21.78 ± 1.18 a | 29.07 ± 4.67 ab | 117.33 ± 1.28 b | 118.96 ± 0.95 bc | 115.09 ± 0.59 cde |
P × 4D | 24.18 ± 1.40 cd | 20.32 ± 4.23 c | 16.75 ± 2.13 d | 27.69 ± 1.68 cd | 19.85 ± 1.15 b | 22.47 ± 2.67 bc | 116.66 ± 1.46 b | 122.01 ± 2.12 ab | 115.94 ± 2.03 cde |
P × 8D | 24.02 ± 7.16 cd | 15.53 ± 4.70 e | 20.39 ± 6.39 c | 26.74 ± 4.52 cde | 18.99 ± 1.19 b | 25.07 ± 6.67 bc | 117.57 ± 1.07 b | 119.56 ± 1.59 bc | 117.35 ± 3.39 bcd |
P × 12D | 21.63 ± 1.84 d | 16.14 ± 3.19 de | 16.02 ± 4.27 d | 25.44 ± 0.40 de | 21.65 ± 1.15 a | 35.57 ± 22.67 a | 117.19 ± 0.89 b | 119.66 ± 0.56 bc | 117.52 ± 2.68 bc |
LSD 0.05 | 4.21 ** | 3.44 ** | 3.05 *** | 2.48 ** | 1.51 * | 8.52 * | 2.9 * | 3.11 * | 2.52 ** |
Treatment | Ascorbic Acid (mg/100 g FW) | Total Phenols (mg GAE/100 g FW) | Total Glucosinolate (µmol/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | |
TS1 × 4D | 3.20 ± 0.58 b | 4.41 ± 0.32 ab | 2.68 ± 0.40 cde | 553.23 ± 24.93 b | 500.83 ± 53.54 a | 332.94 ± 19.50 d | 38.32 ± 0.06 b | 25.95 ± 0.62 bc | 24.81 ± 0.97 d |
TS1 × 8D | 2.98 ± 0.89 b | 4.08 ± 0.13 c | 2.63 ± 0.89 de | 546.50 ± 33.67 b | 390.60 ± 26.20 c | 384.46 ± 86.76 b | 39.51 ± 0.13 ab | 25.96 ± 1.72 bc | 23.23 ± 0.44 e |
TS1 × 12D | 2.97 ± 0.87 b | 3.62 ± 049 cd | 2.53 ± 0.48 e | 590.07 ± 143.94 a | 341.88 ± 65.28 e | 461.94 ± 75.12 a | 39.27 ± 0.65 b | 25.21 ± 1.16 cd | 27.82 ± 0.65 b |
H × 4D | 6.51 ± 2.76 a | 5.20 ± 0.78 a | 4.38 ± 0.56 a | 375.92 ± 54.73 d | 350.71 ± 45.73 de | 312.88 ± 23.54 e | 45.61 ± 0.51 a | 28.10 ± 0.65 abc | 39.83 ± 0.96 a |
H × 8D | 2.97 ± 0.47 b | 4.20 ± 0.30 b | 3.28 ± 0.51 bc | 314.11 ± 38.10 g | 358.43 ± 63.35 d | 335.10 ± 35.56 d | 35.03 ± 2.67 b | 28.93 ± 1.58 ab | 39.51 ± 0.75 a |
H × 12D | 2.60 ± 1.00 b | 3.46 ± 0.50 cd | 3.17 ± 0.30 bcd | 500.89 ± 25.34 c | 338.78 ± 46.42 f | 316.09 ± 72.22 e | 40.26 ± 0.23 ab | 30.24 ± 1.48 a | 22.87 ± 1.66 e |
P × 4D | 2.63 ± 0.64 b | 2.87 ± 1.20 de | 3.77 ± 0.10 b | 343.00 ± 35.56 e | 422.94 ± 57.55 b | 353.76 ± 23.46 c | 35.98 ± 0.31 b | 22.04 ± 0.24 d | 24.57 ± 1.32 d |
P × 8D | 2.32 ± 0.46 b | 2.46 ± 1.07 e | 2.98 ± 0.08 cde | 334.92 ± 31.05 f | 317.79 ± 33.00 g | 389.37 ± 72.12 b | 36.22 ± 0.31 b | 26.63 ± 0.44 bc | 26.32 ± 0.24 c |
P × 12D | 2.28 ± 0.20 b | 2.07 ± 0.44 e | 2.41 ± 0.50 e | 314.63 ± 39.28 g | 336.21 ± 28.00 f | 333.99 ± 32.46 d | 35.31 ± 0.56 b | 25.72 ± 3.12 bc | 24.02 ± 0.53 de |
LSD 0.05 | 2.9 * | 0.9 *** | 0.6 ** | 6.75 *** | 8.92 *** | 5.61 *** | 6.2 * | 3.42 ** | 1.48 *** |
Treatment | ABTS IC50 (µg/mL) | DPPH IC50 (µg/mL) | FRAP mMTEAC/g | ||||||
---|---|---|---|---|---|---|---|---|---|
Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | Radish | Cabbage | Rocket | |
TS1 × 4D | 450.03 ± 11.08 e | 496.62 ± 5.60 c | 1275.32 ± 25.37 a | 586.49 ± 33.55 f | 479.06 ± 10.09 g | 1018.75 ± 11.31 c | 6.9 ± 0.2 a | 6.0 ± 0.8 b | 5.8 ± 2.3 b |
TS1 × 8D | 457.93 ± 6.229 d | 466.34 ± 4.78 d | 1107.94 ± 81.77 b | 661.48 ± 5.869 e | 667.68 ± 6.521 b | 807.45 ± 11.61 g | 6.6 ± 0.1 b | 5.5 ± 0.4 c | 3.2 ± 0.2 d |
TS1 × 12D | 578.95 ± 41.50 a | 463.28 ± 14.1 d | 989.33 ± 54.12 c | 556.91 ± 4.982 g | 525.46 ± 13.22 e | 767.08 ± 18.96 i | 5.6 ± 0.1 c | 5.4 ± 0.1 c | 2.4 ± 0.1 e |
H × 4D | 432.14 ± 4.090 f | 435.03 ± 7.18 e | 996.07 ± 20.36 c | 671.67 ± 26.08 d | 433.80 ± 5.508 h | 1037.22 ± 30.22 b | 6.7 ± 0.4 ab | 7.0 ± 1.0 a | 4.4 ± 0.4 c |
H × 8D | 466.16 ± 15.33 c | 441.17 ± 9.74 e | 960.20 ± 5.909 d | 864.64 ± 21.42 a | 568.18 ± 17.22 c | 979.83 ± 10.55 e | 4.0 ± 0.2 e | 6.7 ± 0.6 a | 6.8 ± 0.6 a |
H × 12D | 461.29 ± 14.14 d | 466.03 ± 8.74 d | 910.52 ± 18.17 e | 800.03 ± 6.238 b | 982.79 ± 31.55 a | 1367.06 ± 12.88 a | 3.1 ± 0.4 f | 5.9 ± 1.7 b | 3.4 ± 0.2 d |
P × 4D | 518.35 ± 5.329 b | 523.95 ± 5.90 a | 855.28 ± 5.148 f | 530.87 ± 15.64 h | 544.24 ± 29.05 d | 981.36 ± 23.22 d | 5.6 ± 0.2 c | 5.8 ± 2.6 b | 1.7 ± 0.0 ef |
P × 8D | 460.13 ± 25.54 d | 388.35 ± 6.58 f | 836.06 ± 21.09 g | 741.72 ± 17.18 c | 511.81 ± 12.48 f | 784.04 ± 26.21 h | 5.1 ± 0.2 d | 5.4 ± 1.2 c | 1.6 ± 0.2 ef |
P × 12D | 371.20 ± 12.94 g | 506.30 ± 0.96 b | 699.62 ± 10.84 h | 561.92 ± 18.54 g | 563.62 ± 2.886 c | 871.09 ± 13.33 f | 4.9 ± 0.2 d | 5.4 ± 4.3 c | 1.2 ± 0.1 f |
LSD 0.05 | 4.5 *** | 6.2 *** | 7.5 *** | 6.1 *** | 5.5 *** | 5.8 *** | 0.2 *** | 0.3 ** | 0.8 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
L. L. Ntsoane, M.; E. Manhivi, V.; Shoko, T.; Seke, F.; M. Maboko, M.; Sivakumar, D. The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities. Horticulturae 2023, 9, 1218. https://doi.org/10.3390/horticulturae9111218
L. L. Ntsoane M, E. Manhivi V, Shoko T, Seke F, M. Maboko M, Sivakumar D. The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities. Horticulturae. 2023; 9(11):1218. https://doi.org/10.3390/horticulturae9111218
Chicago/Turabian StyleL. L. Ntsoane, Manyasha, Vimbainashe E. Manhivi, Tinotenda Shoko, Faith Seke, Martin M. Maboko, and Dharini Sivakumar. 2023. "The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities" Horticulturae 9, no. 11: 1218. https://doi.org/10.3390/horticulturae9111218
APA StyleL. L. Ntsoane, M., E. Manhivi, V., Shoko, T., Seke, F., M. Maboko, M., & Sivakumar, D. (2023). The Phytonutrient Content and Yield of Brassica Microgreens Grown in Soilless Media with Different Seed Densities. Horticulturae, 9(11), 1218. https://doi.org/10.3390/horticulturae9111218