How to Diagnose Potassium Abundance and Deficiency in Tomato Leaves at the Early Cultivation Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Measurement Methods
2.2.1. Plant Growth of Tomato Plants
2.2.2. CO2 Exchange Rate of Tomato Leaves
2.2.3. Photosynthetic Induction Curve
2.2.4. Net CO2 Assimilation at a Given Time
2.2.5. Potassium Contents of Tomato Leaves
2.3. Data Statistics and Analysis
3. Results and Analysis
3.1. Diagnosis of Potassium Abundance and Deficiency Based on Plant Growth Morphology
3.1.1. Relationship between Plant Height and Potassium Supply in the Nutrient Solution
3.1.2. Relationship between Biomass Accumulation and Potassium Supply in the Nutrient Solution
3.2. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Characteristics of Tomato Leaves
3.2.1. Photosynthetic Characteristics of Tomato Leaves
3.2.2. Continuous CO2 Exchange Rate of Tomato Leaves
3.3. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Induction Characteristics of Tomato Leaves
3.3.1. Photosynthetic Induction Curves of Tomato Leaves with Different Potassium Contents in Leaves
3.3.2. First-Order Derivatives of Photosynthetic Induction Curves of Tomato Leaves with Different Potassium Content
3.3.3. Diagnosis of Potassium Abundance and Deficiency in Tomato Leaves
4. Discussion
4.1. Diagnosis of Potassium Abundance and Deficiency Based on Plant Growth Morphology
4.2. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Characteristics of Tomato Leaves
4.3. Diagnosis of Potassium Abundance and Deficiency Based on the Photosynthetic Induction Characteristics of Tomato Leaves
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef]
- Fageria, N.K.; Gheyi, H.R.; Morseira, A. Nutrient bioavailability in salt affected soils. J. Plant Nutr. 2011, 34, 945–962. [Google Scholar] [CrossRef]
- Battie-Laclau, P.; Laclau, J.P.; Beri, C.; Mietton, L.; Muniz, M.R.; Arenque, B.C.; DE Cassia Piccolo, M.; Jordan-Meille, L.; Bouillet, J.P.; Nouvellon, Y. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ. 2014, 37, 70–81. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyahu, U.; Ben-Gal, A.; Dag, A.; Shapira, O.; Schwartz, A. Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees. J. Plant Physiol. 2015, 177, 1–10. [Google Scholar] [CrossRef]
- Trubetskaya, A. Reactivity effects of inorganic content in biomass gasification: A Review. Energies 2022, 15, 3137. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Lebaudy, A.; Vavasseur, A.; Hosy, E.; Dreyer, I.; Leonhardt, N.; Thibaud, J.B.; Véry, A.A.; Simonneau, T.; Sentenac, H. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc. Natl. Acad. Sci. USA 2008, 105, 5271–5276. [Google Scholar] [CrossRef]
- Li, T.; Kromdijk, J.; Heuvelink, E.; van Noort, F.R.; Kaiser, E.; Marcelis, L.F. Effects of diffuse light on radiation use efficiency of two anthurium cultivars depend on the response of stomatal conductance to dynamic light intensity. Front. Plant Sci. 2016, 7, 56. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The physiology of potassium in crop production. Adv. Agron. 2014, 26, 203–233. [Google Scholar]
- Lu, Z.; Lu, J.F.; Pan, Y.H.; Lu, P.P.; Li, X.K.; Cong, R.H.; Ren, T. Physiological mechanisms in potassium regulation of plant photosynthesis. Plant Physiol. J. 2016, 52, 1773–1784. [Google Scholar]
- Leigh, R.A.; Jones, R.G.W. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 1984, 97, 1–13. [Google Scholar] [CrossRef]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef]
- Askegaard, M.; Eriksen, J.; Johnston, A.E. Sustainable management of potassium. In Managing Soil Quality: Challenges in Modern Agriculture; CABI Publishing: Wallingford, UK, 2004; pp. 85–102. [Google Scholar]
- Pujos, A.; Morard, P. Effects of potasssium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 1997, 189, 189–196. [Google Scholar] [CrossRef]
- Kanai, S.; Moghaieb, R.E.; El-Shemy, H.A.; Panigrahi, R.; Mohapatra, P.K.; Ito, J.; Nguyen, N.T.; Saneoka, H.; Fujita, K. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 2011, 180, 368–374. [Google Scholar] [CrossRef]
- Bednarz, C.W.; Oosterhuis, D.M.; Evans, R.D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ. Exp. Bot. 1998, 39, 131–139. [Google Scholar] [CrossRef]
- Yue, S.; Meng, Q.; Zhao, R.; Li, F.; Chen, X.; Zhang, F.; Cui, Z. Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the north China plain. Agron. J. 2012, 104, 523–529. [Google Scholar] [CrossRef]
- Raveh, E. Citrus leaf nutrient status: A critical evaluation of guidelines for optimal yield in Israel. J. Plant Nutr. Soil Sci. 2013, 76, 420–428. [Google Scholar] [CrossRef]
- Li, B.; Liew, O.W.; Asundi, A.K. Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. J. Photochem. Photobiol. B Biol. 2006, 85, 131–139. [Google Scholar] [CrossRef]
- Peck, T.R.; Soltanpour, P.N.; Westerman, R.L. The principles of soil testing. In Soil Testing and Plant Analysis; Soil Science Society of America: Madison, WI, USA, 1990; pp. 1–9. [Google Scholar]
- Holger, D.; Todsen, T. Nitrogen fertilization of strawberries: Nmin, leaf dry matter, and leaf sap analyses as control methods. J. Plant Nutr. 1999, 22, 1679–1685. [Google Scholar]
- Sanchez, L.; Ermolenkov, A.; Biswas, S.; Septiningsih, E.M.; Kurouski, D. Raman spectroscopy enables non-invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice. Front. Plant Sci. 2020, 11, 573321. [Google Scholar] [CrossRef]
- Severtson, D.; Callow, N.; Flower, K.; Neuhaus, A.; Olejnik, M.; Nansen, C. Unmanned aerial vehicle canopy reflectance data detect potassium deficiency and green peach aphid susceptibility in canola. Precis. Agric. 2016, 17, 659–677. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W. Plant sensing and signaling in response to K+-deficiency. Mol. Plant 2010, 3, 280–287. [Google Scholar] [CrossRef]
- Hu, W.S.; Lu, Z.F.; Meng, F.J.; Li, X.; Cong, R.; Ren, T.; Sharkey, T.D.; Lu, J. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: The importance of leaf anatomy. New Phytol. 2020, 227, 1749–1763. [Google Scholar] [CrossRef]
- Xue, X.; Lu, J.; Ren, T.; Li, L.; Yousaf, M.; Cong, R.; Li, X. Positional difference in potassium concentration as diagnostic index relating to plant K status and yield level in rice (Oryzasativa L.). Soil Sci. Plant Nutr. 2016, 62, 31–38. [Google Scholar] [CrossRef]
- Laterre, R.; Pottier, M.; Remacle, C.; Boutry, M. Photosynthetic trichomes contain a specific Rubisco with a modified pH-dependent activity. Plant Physiol. 2017, 173, 2110–2120. [Google Scholar] [CrossRef]
- Lu, Z.; Xie, K.; Pan, Y.; Ren, T.; Lu, J.; Wang, M.; Shen, Q.; Guo, S. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy. Plant Cell Environ. 2019, 42, 2231–2244. [Google Scholar] [CrossRef]
- De Souza, A.P.; Wang, Y.; Orr, D.J.; Carmo-Silva, E.; Long, S.P. Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. New Phytol. 2020, 225, 2498–2512. [Google Scholar] [CrossRef]
- Zhang, Z.J.; He, D.X.; Niu, G.H.; Gao, R. Concomitance of photosynthetic pathways of CAM and C3 in medicinal Dendrobium officinale plants. J. Am. Soc. Hortic. Sci. 2014, 139, 290–298. [Google Scholar] [CrossRef]
- Locascio, S.J.; Hochmuth, G.J. Water melon production as influenced by lime, gypsum, and potassium. HortScience 2002, 37, 322–324. [Google Scholar] [CrossRef]
- Andrés, Z.; Pérez-Hormaeche, J.; Leidi, E.O.; Schlücking, K.; Steinhorst, L.; McLachlan, D.H.; Schumacher, K.; Hetherington, A.M.; Kudla, J.; Cubero, B.; et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc. Natl. Acad. Sci. USA 2014, 111, 1806–1814. [Google Scholar] [CrossRef]
- Isayenkov, S.; Isner, J.C.; Maathuis, F.J.M. Vacuolar ion channels: Roles in plant nutrition and signaling. FEBS Lett. 2010, 584, 1982–1989. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.M.; Salt, D.E.; Williams, L. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Çolpan, E.; Zengin, M.; Özbahçe, A. The effects of potassium on the yield and fruit quality components of stick tomato. Hortic. Environ. Biotechnol. 2013, 54, 20–28. [Google Scholar] [CrossRef]
- Battie-Laclau, P.; Laclau, J.-P.; Piccolo, M.d.C.; Arenque, B.C.; Beri, C.; Mietton, L.; Muniz, M.R.A.; Jordan-Meille, L.; Buckeridge, M.S.; Nouvellon, Y.; et al. Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant Soil 2013, 371, 19–35. [Google Scholar] [CrossRef]
- Xu, F.; Wang, K.; Yuan, W.; Xu, W.; Shuang, L.; Kronzucker, H.J.; Chen, G.; Miao, R.; Zhang, M.; Ding, M.; et al. Overexpression of rice aquaporin OsPIP1;2 improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J. Exp. Bot. 2019, 70, 671–681. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhou, G.S.; He, Q.J.; Zhou, H. Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress. Agric. Water Manag. 2020, 241, 106330. [Google Scholar] [CrossRef]
- Badr, M.A.; Abou-Hussein, S.D.; El-tohamy, W.A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agric. Water Manag. 2016, 169, 90–97. [Google Scholar] [CrossRef]
- Hirasawa, T.; Ozawa, S.; Taylaran, R.; Ookawa, T. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod. Sci. 2010, 13, 53–57. [Google Scholar] [CrossRef]
- Von, C.S. Rubisco carboxylase/oxygenase: From the enzyme to the globe: A gas exchange perspective. J. Plant Physiol. 2020, 252, 153240. [Google Scholar]
- Thussagunpanit, J.; Jutamanee, K.; Kaveeta, L.; Chai-arree, W.; Pankean, P.; Homvisasevongsa, S.; Suksamrarn, A. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J. Plant Growth Regul. 2015, 34, 320–331. [Google Scholar] [CrossRef]
- Flexas, J.; Diaz-Espejo, A. Interspecific differences in temperature response of mesophyll conductance: Food for thought on its origin and regulation. Plant Cell Environ. 2015, 38, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Simkin, A.J.; López-Calcagno, P.E.; Raines, C.A. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 2019, 70, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Lu, Z.; Li, X.; Cong, R.; Ren, T.; Lu, J. Contributions of radiation interception and radiation-use efficiency to biomass decrease due to potassium starvation depend on potassium deficiency intensities. Acta Physiol. Plant. 2019, 41, 48. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Pellerin, S. Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency. Plant Soil 2008, 304, 157–168. [Google Scholar] [CrossRef]
- Walker, D.A. Photosynthetic induction phenomena and the light activation of ribulose diphosphate carboxylase. New Phytol. 1973, 72, 209–235. [Google Scholar] [CrossRef]
- Peaslee, D.E.; Moss, D.N. Photosynthesis in K- and Mg-deficient maize (Zea mays L.) leaves. Soil Sci. Soc. Am. J. 1966, 30, 220–223. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Pearcy, R.W. Photosynthetic responses to light variation in rainforest species. Oecologia 1986, 69, 517–523. [Google Scholar] [CrossRef]
- Naumburg, E.; Ellsworth, D.S. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in face. Oecologia 2000, 122, 163–174. [Google Scholar] [CrossRef]
- Hou, F.; Jin, L.-Q.; Zhang, Z.-S.; Gao, H.-Y. Systemic signaling in photosynthetic induction of Rumex K-1 (Rumex patientia × Rumex tianschaious) leaves. Plant Cell Environ. 2015, 38, 685–692. [Google Scholar] [CrossRef]
- Cao, K.F.; Booth, E.W. Leaf anatomical structure and photosynthetic induction for seedlings of five dipterocarp species under contrasting light conditions in a bornean heath forest. J. Trop. Ecol. 2001, 17, 163–175. [Google Scholar] [CrossRef]
- Ozturk, I.; Ottosen, C.O.; Ritz, C. The effect of temperature on photosynthetic induction under fluctuating light in chrysanthemum morifolium. Acta Physiol. Plant. 2013, 35, 1179–1188. [Google Scholar] [CrossRef]
- Naramoto, M.; Han, Q.; Kakubari, Y. The influence of previous irradiance on photosynthetic induction in three species grown in the gap and understory of a Fagus crenata forest. Photosynthetica 2001, 39, 545–552. [Google Scholar] [CrossRef]
- Bai, K.-D.; Liao, D.-B.; Jiang, D.-B.; Cao, K.-F. Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees 2008, 22, 449–462. [Google Scholar] [CrossRef]
- Tomimatsu, H.; Tang, Y. Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior. Oecologia 2012, 169, 869–878. [Google Scholar] [CrossRef]
- Li, Y.Y. Effect of potassium on photosynthetic induction of leaves under drought condition. Plant Physiol. Commun. 1995, 31, 178–181. [Google Scholar]
- Terry, N.; Ulrich, A. Effects of potassium deficiency on photosynthesis and respiration of leaves of sugar-beet under conditions of low sodium supply. Plant Physiol. 1973, 51, 1099–1101. [Google Scholar] [CrossRef]
- Luo, F.; Zhang, T.; Gong, X.J.; Du, X.; Ma, W.W. Effects of different fertilization ways on the contents of N, P, K in new shoots and photobiological characters of tea tree. Chin. J. Appl. Ecol. 2014, 25, 3499–3506. [Google Scholar]
- Kim, T.H.; Böhmer, M.; Hu, H.; Nishimura, N.; Schroeder, J.I. Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 2010, 61, 561–591. [Google Scholar] [CrossRef]
Fertilizers | K1 | K4 | K8 | K16 |
---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | |
KNO3 | 101 | 404 | 808 | 808 |
K2SO4 | 0 | 0 | 0 | 696 |
Ca(NO3)2·4H2O | 1771 | 1416 | 944 | 944 |
MgSO4·7H2O | 492 | 492 | 492 | 492 |
NH4H2PO4 | 153 | 153 | 153 | 153 |
Growth Period | Correlation Equation | R2 | Maximum Value Point (mmol/L) |
---|---|---|---|
Seedling period | y = −0.0798X2 + 2.2998X + 5.3718 | 0.9990 | 14.41 |
Flowering period | y = −0.3073X2 + 7.6114X + 22.316 | 0.9727 | 12.39 |
Fruit-set period | y = −0.4474X2 + 10.286X + 50.652 | 0.9665 | 11.50 |
Mature period | y = −0.1931X2 + 5.8245X + 52.508 | 0.8856 | 15.08 |
Growth Periods | Treatments | Net Photosynthetic Rate | Stomatal Conductivity | Intercellular CO2 Concentration | Transpiration Rate |
---|---|---|---|---|---|
μmol/m2 s | mol/m2 s | μmol/mol | mmol/m2 s | ||
Seedling Period | K1 | 9.0 ± 2.0 c | 0.151 ± 0.075 c | 364 ± 30 a | 3.08 ± 1.07 b |
K4 | 13.3 ± 3.1 b | 0.246 ± 0.061 b | 375 ± 8 a | 4.62 ± 0.84 ab | |
K8 | 14.4 ± 1.2 ab | 0.272 ± 0.097 ab | 366 ± 36 a | 4.57 ± 1.15 ab | |
K16 | 15.8 ± 1.2 a | 0.333 ± 0.036 a | 379 ± 13 a | 5.66 ± 0.36 a | |
Flowering Period | K1 | 11.7 ± 2.1 c | 0.233 ± 0.018 c | 389 ± 15 ab | 2.77 ± 0.14 c |
K4 | 13.1 ± 1.1 bc | 0.229 ± 0.049 c | 373 ± 14 b | 2.79 ± 0.41 c | |
K8 | 13.4 ± 0.4 b | 0.295 ± 0.059 b | 392 ± 17 a | 3.45 ± 0.50 b | |
K16 | 16.7 ± 1.0 a | 0.387 ± 0.035 a | 392 ± 8 a | 4.14 ± 0.20 a | |
Fruit-set Period | K1 | 12.8 ± 0.4 c | 0.390 ± 0.095 b | 407 ± 14 a | 6.60 ± 0.89 a |
K4 | 14.6 ± 1.4 b | 0.409 ± 0.077 ab | 401 ± 11 a | 6.15 ± 0.77 a | |
K8 | 16.1 ± 0.9 a | 0.445 ± 0.043 a | 399 ± 4 a | 6.79 ± 0.66 a | |
K16 | 15.1 ± 1.1 ab | 0.429 ± 0.081 a | 401 ± 12 a | 6.79 ± 0.79 a | |
Mature Period | K1 | 11.0 ± 3.4 c | 0.304 ± 0.046 b | 388 ± 34 a | 4.15 ± 1.8 b |
K4 | 14.9 ± 3.0 b | 0.371 ± 0.078 a | 377 ± 9 a | 4.88 ± 0.94 b | |
K8 | 16.4 ± 2.1 ab | 0.376 ± 0.097 a | 371 ± 35 a | 4.85 ± 1.30 b | |
K16 | 17.6 ± 2.2 a | 0.388 ± 0.063 a | 386 ± 12 a | 6.23 ± 0.25 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; He, D.; Wang, J.; Mao, H. How to Diagnose Potassium Abundance and Deficiency in Tomato Leaves at the Early Cultivation Stage. Horticulturae 2023, 9, 1225. https://doi.org/10.3390/horticulturae9111225
Song J, He D, Wang J, Mao H. How to Diagnose Potassium Abundance and Deficiency in Tomato Leaves at the Early Cultivation Stage. Horticulturae. 2023; 9(11):1225. https://doi.org/10.3390/horticulturae9111225
Chicago/Turabian StyleSong, Jinxiu, Dongxian He, Jianfeng Wang, and Hanping Mao. 2023. "How to Diagnose Potassium Abundance and Deficiency in Tomato Leaves at the Early Cultivation Stage" Horticulturae 9, no. 11: 1225. https://doi.org/10.3390/horticulturae9111225
APA StyleSong, J., He, D., Wang, J., & Mao, H. (2023). How to Diagnose Potassium Abundance and Deficiency in Tomato Leaves at the Early Cultivation Stage. Horticulturae, 9(11), 1225. https://doi.org/10.3390/horticulturae9111225