Antioxidant and Cytotoxic Activities of Leaf and Stem Extracts of Barleria albostellata C.B. Clarke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Extract
Evaporation and Concentration
2.3. Total Flavonoid, Total Phenolic Content, and In Vitro Antioxidant Assay
2.3.1. Estimation of Total Flavonoid Content
2.3.2. Estimation of Total Phenolic Content
2.3.3. DPPH Scavenging Activity
2.3.4. Ferric (Fe3+) Reducing Antioxidant Power (FRAP) Assay
2.4. In Vitro Cytotoxicity/MTT Assays
2.4.1. Preparation of Sample
2.4.2. Cell Cultures
2.4.3. MTT (Cell Viability) Assay Protocol
2.5. Statistical Analysis
3. Results and Discussion
3.1. Percentage Yield of Extracts of B. albostellata
3.2. Evaluating the Total Flavonoid and Total Phenolic Content of Extracts
3.3. Antioxidant Screening of Extracts Using DPPH and FRAP Assays
In Vitro Cytotoxicity Effect of Extracts of B. albostellata
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, A.K. Antioxidants: New-generation therapeutic base for treatment of polygenic disorders. Curr. Sci. 2004, 86, 1092–1102. [Google Scholar]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) Revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Ziech, D.; Franco, R.; Georgakilas, A.G.; Georgakila, S.; Malamou-Mitsi, V.; Schoneveld, O.; Pappa, A.; Panayiotidis, M.I. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem.-Biol. Interact. 2010, 188, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Folorunsho, A.A.; Oluwafunke, A.B.; David, K.B.; Olayemi, A.A. Age-related changes in the expression of heat shock protein 70 and 90 on the gastric mucosa during gastric ulcer healing. Pharm. Biosci. J. 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Wibowo, J.P.; Elachouri, M.; Masumi, R.; Salehifard-Jouneghani, A.; Abolhasanzadeh, Z.; Lorigooini, Z. Battle between plants as antioxidants with free radicals in human body. J. Herbmed Pharmacol. 2020, 9, 191–199. [Google Scholar] [CrossRef]
- Yan, L.L.; Zaher, H.S. How do cells cope with RNA damage and its consequences? J. Biol. Chem. 2019, 294, 5158–15171. [Google Scholar] [CrossRef]
- Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 2014, 6, 462–477. [Google Scholar] [CrossRef]
- Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxidative Med. Cell. Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef]
- Madireddy, S.; Madireddy, S. Protection from the pathogenesis of neurodegenerative disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s diseases, through the mitigation of reactive oxygen species. J. Neurosci. Neurol. Disord. 2020, 3, 148–161. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef]
- Majumder, D.; Nath, P.; Debnath, R.; Maiti, D. Understanding the complicated relationship between antioxidants and carcinogenesis. J. Biochem. Mol. Toxicol. 2020, 35, e22643. [Google Scholar] [CrossRef] [PubMed]
- Jaouad, B.; Torsten, B. Exogenous antioxidants-Doubleedged swords in cellular redox state. Oxidative Med. Cell. Longev. 2010, 3, 28–37. [Google Scholar]
- Bhattacharya, S. Reactive oxygen species and cellular defense system. In Free Radicals in Human Health and Disease; Rani, V., Yadav, U.C.S., Eds.; Springer: New Delhi, India, 2015; p. 25. [Google Scholar]
- Göçer, H.; Gülçin, İ. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. Int. J. Food Sci. Nutr. 2011, 62, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Gülcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Formation of thiobarbituric acid reactive substances from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicals. FEBS Lett. 1981, 128, 347–352. [Google Scholar] [CrossRef]
- García-Alonso, M.; de Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Evaluation of the antioxidant properties of fruits. Food Chem. 2004, 84, 13–18. [Google Scholar] [CrossRef]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araujo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Sylvie, D.D.; Anatole, P.C.; Cabral, B.P.; Veronique, P.B. Comparison of in vitro antioxidant properties of extracts from three plants used for medical purpose in Cameroon: Acalypha racemosa, Garcinia lucida and Hymenocardia lyrata. Asian Pac. J. Trop. Biomed. 2014, 4, S625–S632. [Google Scholar] [CrossRef]
- Kapadiya, D.B.; Dabhi, B.K.; Aparnathi, K.D. Spices and herbs as a source of natural antioxidants for food. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 280–288. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A.; Guler, G.O.; Cakmak, Y.S.; Yildiztugay, E. Antioxidant Properties of Methanolic Extract and Fatty Acid Composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz. Rec. Nat. Prod. 2011, 5, 123–132. [Google Scholar]
- Hassan, W.; Noreen, H.; Rehman, S.; Gul, S.; Amjad Kamal, M.; Paul Kamdem, J.; Zaman, B.; BT da Rocha, J. Oxidative stress and antioxidant potential of one hundred medicinal plants. Curr. Top. Med. Chem. 2017, 17, 1336–1370. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef]
- Adebiyi, O.E.; Olayemi, F.O.; Ning-Hua, T.; Guang-Zhi, Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 10–14. [Google Scholar] [CrossRef]
- Madikizela, B.; McGaw, L.J. In vitro cytotoxicity, antioxidant, and anti-inflammatory activities of Pittosporum viridiflorum Sims and Hypoxis colchicifolia Baker used traditionally against cancer in Eastern Cape, South Africa. South Afr. J. Bot. 2019, 126, 250–255. [Google Scholar] [CrossRef]
- Vongtau, H.O.; Abbah, J.; Chindo, B.A.; Mosugu, O.; Salawu, A.O.; Kwanashie, H.O.; Gamaniel, K.S. Central inhibitory effects of the methanol extract of Neorautanenia mitis root in rats and mice. Pharm. Biol. 2005, 43, 113–120. [Google Scholar] [CrossRef]
- Oluyemi, K.A.; Okwuonu, U.C.; Baxter, D.G.; Oyesola, T. Toxic effects of methanolic extract of Aspilia africana leaf on the estrous cycle and uterine tissues of Wistar rats. Int. J. Morphol. 2007, 25, 609–614. [Google Scholar] [CrossRef]
- Verpoorte, R. Pharmacognosy in the new millennium: Lead finding and biotechnology. J. Pharm. Pharmacol. 2000, 52, 253–262. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef]
- Tauchen, J.; Huml, L.; Bortl, L.; Doskocil, I.; Jarosova, V.; Marsik, P.; Frankova, A.; Clavo Peralta, Z.M.; Chuspe Zans, M.E.; Havlik, J.; et al. Screening of medicinal plants traditionally used in Peruvian Amazon for in vitro antioxidant and anticancer potential. Nat. Prod. Res. 2019, 33, 2718–2721. [Google Scholar] [CrossRef]
- Forman, D.; Ferlay, J. The Global and Regional Burden of Cancer. In World Cancer Report 2014; Stewart, B.W., Wild, C.P., Eds.; International Agency for Research on Cancer: Lyon, France, 2014; pp. 7250–7257. [Google Scholar]
- World Health Organization (WHO). Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 Million Deaths in 2018; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- Adeloye, D.; David, R.A.; Aderemi, A.V.; Iseolorunkanmi, A.; Oyedokun, A.; Iweala, E.E.; Omoregbe, N.; Ayo, C.K. An estimate of the incidence of prostate cancer in Africa: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0153496. [Google Scholar] [CrossRef]
- Madhuri, S.; Pandey, G. Some anticancer medicinal plants of foreign origin. Curr. Sci. 2009, 96, 779–783. [Google Scholar]
- CANSA. South African Cancer Statistics. 2017. Available online: https://www.cansa.org.za/files/2017/03/Fact-Sheet-Top-Ten-Cancers-per-Population-Group-in-SA-NCR-2012-web-Feb-2017.pdf (accessed on 16 May 2020).
- Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead Phytochemicals for anticancer drug development. Front. Plant Sci. 2016, 7, 1667. [Google Scholar] [CrossRef] [PubMed]
- Niraula, S.; Amir, E.; Vera-Badillo, F.; Seruga, B.; Ocana, A.; Tannock, I.F. Risk of incremental toxicities and associated costs of new anticancer drugs: A meta-analysis. J. Clin. Oncol. 2014, 32, 3634–3642. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, P.K. Pattern and impact of drugs targeted toward toxicity amelioration in patients receiving cancer chemotherapy. Perspect. Clin. Res. 2018, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Mehta, A. Anticancer potential of medicinal plants and their phytochemicals: A review. Braz. J. Bot. 2015, 38, 199–210. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Kuete, V.; Efferth, T. Potential of Central, Eastern and Western Africa medicinal plants for cancer therapy: Spotlight on resistant cells and molecular targets. Front. Pharmacol. 2017, 8, 343. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Burman, R.; Mansour, A.; Turki, Z.; Boulos, L.; Gullbo, J.; Göransson, U. The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: Discovery of an active cardiac glycoside from Urginea maritima. J. Ethnopharmacol. 2013, 145, 746–757. [Google Scholar] [CrossRef]
- Ouelbani, R.; Bensari, S.; Mouas, T.N.; Khelifi, D. Ethnobotanical investigations on plants used in folk medicine in the regions of Constantine and Mila (North-East of Algeria). J. Ethnopharmacol. 2016, 194, 196–218. [Google Scholar] [CrossRef]
- Kabbaj, F.Z.; Meddah, B.; Cherrah, Y.; El, M.; Faouzi, A. Ethnopharmacological profile of traditional plants used in Morocco by cancer patients as herbal therapeutics. Phytopharmacology 2012, 2, 243–256. [Google Scholar]
- Reddy, L.A.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther. 2003, 99, 1–13. [Google Scholar] [CrossRef]
- Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 2007, 9, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Gyllenhaal, C.; Soejarto, D.D. Biodiversity as a source of anticancer drugs. Curr. Drug Targets 2006, 7, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour. 2011, 1, 119–124. [Google Scholar]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Tariq, A.; Sadia, S.; Pan, K.; Ullah, I.; Mussarat, S.; Sun, F.; Abiodun, O.O.; Batbaatar, A.; Li, Z.; Song, D.; et al. A systematic review on ethnomedicines of anti-cancer plants. Phytother. Res. 2017, 31, 202–264. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Villarreal, M.L.; Luis, A.; Olivo, S.; Gomez-Sanchez, M.; Dominguez, F.; Carranca, A.G. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef]
- Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Sci. Writ. J. 2014, 2014, 721402. [Google Scholar] [CrossRef]
- Jain, R.; Jain, S.K. Screening of in vitro cytotoxic activity of some medicinal plants used traditionally to treat cancer in Chhattisgarh state, India. Asian Pac. J. Trop. Biomed. 2011, 1, S147–S150. [Google Scholar] [CrossRef]
- Mulla, S.K.; Swamy, P. Anticancer activity of ethanol and polyphenol extracts of Portulaca quadrifida Linn. on human colon cancer cell lines. Int. J. Pharma Bio Sci. 2012, 3, 488–498. [Google Scholar]
- Manglani, N.; Vaishnava, S.; Dhamodaran, P.; Sawarkar, H. In vitro and in vivo anticancer activity of leaf extract of Barleria grandiflora. Int. J. Pharm. Pharm. Res. 2014, 6, 7072. [Google Scholar]
- Choudhury, S.M.; Maity, P.; Bepari, M. Combined mixtures of Calotropis gigantea latex and Barleria lupulina leaf extracts ameliorate Dalton’s Ascitic Lymphoma induced cell Proliferation. Int. J. Eng. Sci. Res. Technol. 2015, 2, 2394–3386. [Google Scholar]
- Kumari, R.; Dubey, R.C. Phytochemical analysis and antibacterial and cytotoxic properties of Barleria lupulina Lindl. Extracts. J. Plant Pathol. Microbiol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Panchal, P.K.; Meena, S.K.; Singh, K.; Sharma, N. Anticancer and antimicrobial potential of Barleria prionitis leaves ethanol extract. Int. J. Pharm. Pharm. Sci. 2018, 10, 100–103. [Google Scholar] [CrossRef]
- Froneman, W.; Le Roux, L.N. Barleria albostellata. 2007. Available online: http://pza.sanbi.org/barleria-albostellata (accessed on 2 February 2019).
- Balkwill, M.J.; Balkwill, K. A preliminary analysis of distribution patterns in a large, pantropical genus, Barleria L. (Acanthaceae). J. Biogeogr. 2002, 25, 95–110. [Google Scholar] [CrossRef]
- Amoo, S.O.; Finnie, J.F.; Van Staden, J. In vitro pharmacological evaluation of three Barleria species. J. Ethnopharmacol. 2009, 121, 274–277. [Google Scholar] [CrossRef]
- Yosook, C.; Panpisutchai, Y.; Chaichana, S.; Santisuk, T.; Reutrakul, V. Evaluation of anti-HSV-2 activities of Barleria lupulina and Clinacanthus nutans. J. Ethnopharmacol. 1999, 67, 179–187. [Google Scholar] [CrossRef]
- Wang, B.U.; Wu, M.; Perchellet, E.M.; Mcllvain, C.J.; Sperfslage, B.J.; Huang, X.; Tamura, M.; Stephany, H.A.; Hua, D.H.; Perchellet, J.P. A synthetic triptycene bisquinone, which blocks nucleoside transport and induces DNA fragmentation, retains its cytotoxic efficacy in daunorubicin-resistant HL-60 cell lines. Int. J. Oncol. 2001, 19, 1169–1178. [Google Scholar] [CrossRef]
- Jassim, S.A.A.; Naji, A.M. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol. 2003, 95, 412–427. [Google Scholar] [CrossRef]
- Suba, V.; Murugesan, T.; Arunachalam, G.; Mandal, S.C.; Saha, B.P. Anti-diabetic potential of Barleria lupulina extract in rats. Phytomedicine 2004, 11, 202–205. [Google Scholar] [CrossRef]
- Suba, V.; Murugesan, T.; Kumaravelrajan, R.; Mandal, S.C.; Saha, B.P. Antiinflammatory, analgesic and antiperoxidative efficacy of Barleria lupulina Lindl. extract. Phytother. Res. 2005, 19, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 2005, 101, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Gunjegaokar, S.M. Pharmacognostical and pharmacological profiling of Barleria prionitis Linn. J. Biol. Sci. Med. 2018, 4, 41–50. [Google Scholar]
- Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Lin, J.; Murthy, H.N. Phytochemical Composition and Antibacterial Activity of Barleria albostellata CB Clarke Leaf and Stem Extracts. Plants 2023, 12, 2396. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yao, H. Antioxidant activities of barley seeds extracts. Food Chem. 2007, 102, 732–737. [Google Scholar] [CrossRef]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Daniels, A.N.; Singh, M. Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine 2019, 14, 1387–1401. [Google Scholar] [CrossRef]
- Mosman, T. Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Vinken, M.; Blaauboer, B.J. In vitro testing of basal cytotoxicity: Establishment of an adverse outcome pathway from chemical insult to cell death. Toxicol. Vitr. 2017, 39, 104–110. [Google Scholar] [CrossRef]
- Abubakar, E.M.; Misau, S.; Modibbo, S.; Bala, G.L. Percentage yield and acute toxicity of the plant extracts of Ceiba pentandra grown in Bauchi State, North Eastern Nigeria. J. Pharmacogn. Phytochem. 2017, 6, 1777–1779. [Google Scholar]
- Chintalapani, S.; Swathi, M.S.; Mangamoori, L.N. Phytochemical screening and in vitro antioxidant activity of whole plant extracts of Sesuvium portulacastrum L. Asian J. Pharm. Clin. Res. 2018, 11, 1–6. [Google Scholar] [CrossRef]
- Grauzdytė, D.; Pukalskas, A.; Viranaicken, W.; El Kalamouni, C.; Venskutonis, P.R. Protective effects of Phyllanthus phillyreifolius extracts against hydrogen peroxide induced oxidative stress in HEK293 cells. PLoS ONE 2018, 13, e0207672. [Google Scholar] [CrossRef]
- Amoo, S.O.; Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. South Afr. J. Bot. 2011, 77, 435–445. [Google Scholar] [CrossRef]
- Ren, L.; Wang, F.; Xu, Z.; Chan, W.M.; Zhao, C.; Xue, H. GABAA receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem. Pharmacol. 2010, 79, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E., Jr.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [PubMed]
- Sawarkar, H.A.; Kashyap, P.P.; Kaur, C.D. RBC Haemolysis prevention and antioxidant activity of Barleria prionitis. Chiang Mai J. Sci. 2018, 45, 888–896. [Google Scholar]
- Maryam, Z.; Farrukh, A.; Iqbal, A. The in vitro antioxidant activity and total phenolic content of four Indian medicinal plants. Int. J. Pharm. Pharm. Sci. 2009, 1, 88–95. [Google Scholar]
- Kapoor, A.; Shukla, S.; Kaur, R.; Kumar, R.; Lehra, K.S.; Kapoor, S. Preliminary phytochemical screening and antioxidant activity of whole plant of Barleria prionitis Linn. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 410–419. [Google Scholar]
- Afanasiev, I.B.; Dorozhko, A.I.; Brodshi, A.V.; Kostyak, V.A.; Potaporitch, A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 1989, 38, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Makhafola, T.J.; Elgorashi, E.E.; McGaw, L.J.; Verschaeve, L.; Eloff, J.N. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement. Altern. Med. 2016, 16, 490. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.K.; Dubey, M.K.; Das, S.; Verma, A.R.; Rao, C.V. A comparative study on total phenolic content, reducing power and free radical scavenging activity of aerial parts of Barleria prionitis. Int. J. Phytomed. 2010, 2, 155–159. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, S.; Kumar, A.; Goel, K.K.; Dubey, R.C. Antibacterial, antioxidant and immuno-modulatory properties in extracts of Barleria lupulina Lindl. BMC Complement. Altern. Med. 2017, 17, 484. [Google Scholar] [CrossRef]
- Samak, G.; Shenoy, R.P.; Manjunatha, S.M.; Vinayak, K.S. Superoxide and hydroxyl radical scavenging actions of botanical extracts of Wagetea spicata. Food Chem. 2009, 115, 631–634. [Google Scholar] [CrossRef]
- Manian, R.; Anusuya, N.; Siddhuraju, P.; Manian, S. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem. 2008, 107, 1000–1007. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Manjula, M.S.; Ganthi, A.S. In-vitro antioxidant and anti-inflammatory potential of ethanol extracts (root and aerial parts) of Barleria noctiflora. Ann. Plant Sci. 2018, 7, 1997–2001. [Google Scholar]
- Tepe, B.; Donmez, E.; Unlu, M.; Candan, F.; Daferera, D.; Vardar-Unlu, G.; Polissiou, M.; Sokmen, A. Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem. 2004, 84, 519–525. [Google Scholar] [CrossRef]
- Patel, R.; Patel, A.; Desai, S.; Nagee, A. Study of secondary metabolites and antioxidant properties of leaves, stem and root among Hibiscus rosa-sinensis cultivars. Asian J. Exp. Biol. Sci. 2012, 3, 719–725. [Google Scholar]
- Herrera-Calderon, O.; Alvarado-Puray, C.; Arroyo-Acevedo, J.L.; Rojas-Armas, J.P.; Chumpitaz-Cerrate, V.; Hañari-Quispe, R.; Valenzuela-Herrera, R. Phytochemical screening, total phenolic content, antioxidant, and cytotoxic activity of five Peruvian plants on human tumor cell lines. Pharmacogn. Res. 2018, 10, 161–165. [Google Scholar] [CrossRef]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [PubMed]
- Vasanth, S.; Bupesh, G.; Siva Vijayakumar, T.; Balachandar, V.; Rajan Gunasekaran, D. Evaluation of in vitro antidiabetic and antioxidant potential of Barleria cristata leaves extracts. Asian J. Pharm. Clin. Res. 2018, 11, 287–290. [Google Scholar] [CrossRef]
- Sujatha, A.P.; Doss, A.; Muthukumarasamy, S.; Mohan, V.R. Study of antioxidant activity of Barleria courtrallica. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2018, 4, 513–521. [Google Scholar]
- Houghton, P.J.; Howes, M.-J.; Lee, C.C.; Steventon, G. Uses and abuses of in vitro tests in ethnopharmacology: Visualizing an elephant. J. Ethnopharmacol. 2007, 110, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.C.; Chang, C.T.; Chao, W.W.; Lin, C.F.; Chou, S.T. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 2002, 50, 2454–2458. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, G.N.; Shrivastava, B.; Jadhav, H.R. Evaluation of antioxidant potential of Barleria prionitis leaf and stem. Am. J. Phytomedicine Clin. Ther. 2014, 2, 1177–1186. [Google Scholar]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Rumbaoa, R.G.O.; Cornago, D.F.; Geronimo, I.M. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem. 2009, 113, 1133–1138. [Google Scholar] [CrossRef]
- Motadi, L.R.; Choene, M.S.; Mthembu, N.N. Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci. Rep. 2020, 10, 12924. [Google Scholar] [CrossRef] [PubMed]
- Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species. Res. Pharm. Sci. 2014, 9, 91–96. [Google Scholar] [PubMed]
- Sawarkar, H.A.; Kashyap, P.P.; Pandey, A.K.; Singh, M.K.; Kaur, C.D. Antimicrobial and cytotoxic activities of Barleria prionitis and Barleria grandiflora: A comparative study. Bangladesh J. Pharmacol. 2016, 11, 802–809. [Google Scholar] [CrossRef]
- Alonso-Carrillo, N.; de los Ángeles Aguilar-Santamaría, M.; Vernon-Carter, E.J.; Jiménez-Alvarado, R.; Cruz-Sosa, F.; Román-Guerrero, A. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Ind. Crops Prod. 2017, 103, 213–221. [Google Scholar] [CrossRef]
- Sammar, M.; Abu-Farich, B.; Rayan, I.; Falah, M.; Rayan, A. Correlation between cytotoxicity in cancer cells and free radical-scavenging activity: In vitro evaluation of 57 medicinal and edible plant extracts. Oncol. Lett. 2019, 18, 6563–6571. [Google Scholar] [CrossRef] [PubMed]
- Tuntiwachwuttikul, P.; Pancharoen, O.; Taylor, W.C. Iridoid glucosides of Barleria lupulina. Phytochemistry 1998, 49, 163–166. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Manapradit, N.; Poeaim, S.; Charoenying, P. Cytotoxicity and antimicrobial activities of leaf extracts from Barleria strigosa. Int. J. Agric. Technol. 2015, 11, 551–561. [Google Scholar]
Crude Extract | Leaves | Stem | Leaves | Stem | Leaves | Stems |
---|---|---|---|---|---|---|
Dried Extract Yield (g) | Percentage Yield (%) | Color | ||||
Hexane | 0.139 | 0.194 | 1.39 | 1.94 | Dark yellow | Light yellow |
Chloroform | 0.265 | 0.219 | 2.65 | 2.19 | Dark green | Light green |
Methanol | 1.678 | 0.938 | 16.78 | 9.38 | Dark brown | Light yellow |
Crude Extracts | Total Flavonoid (mg QE/g DW) | |
---|---|---|
Leaves | Stem | |
Hexane | 11.22 ± 0.22 | 31.79 ± 0.59 |
Chloroform | 34.38 ± 0.28 | 36.20 ± 0.685 |
Methanol | 42.39 ± 1.14 | 37.10 ± 0.95 |
Crude Extracts | Total Phenols (mg GAE/g DW) | |
---|---|---|
Leaves | Stem | |
Hexane | 1.15 ± 0.56 | 1.06 ± 0.03 |
Chloroform | 2.51 ± 0.27 | 1.25 ± 0.28 |
Methanol | 6.05 ± 0.09 | 2.93 ± 0.73 |
Extract | DPPH (µg/mL) | |
---|---|---|
Leaves | Stems | |
Hexane | 61.53 | 697.75 |
Chloroform | 44.99 | 73.38 |
Methanol | 16.95 | 14.27 |
Ascorbic acid | 4.03 | 1.50 |
Extract | FRAP (µg/mL) | |
---|---|---|
Leaves | Stems | |
Hexane | 1.20 × 1020 | 9.12 × 1017 |
Chloroform | >90,000 | 1.05 × 1015 |
Methanol | >15,000 | >58,000 |
Gallic acid | 14.96 | 14.90 |
Extracts | Cytotoxicity (µg/mL) | ||
---|---|---|---|
Cell Lines | Leaves | Stems | |
HEK293 | Hexane | 294.44 | 95.28 |
Chloroform | 210.86 | 110.15 | |
Methanol | 116.15 | 96.61 | |
HeLa | Hexane | 220.80 | 376.70 |
Chloroform | 143.55 | 165.58 | |
Methanol | 98.86 | 232.27 | |
MCF-7 | Hexane | 194.98 | 63.10 |
Chloroform | 181.97 | 102.33 | |
Methanol | 239.88 | 102.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Daniels, A.N.; Magyar-Tábori, K.; Mendler-Drienyovszki, N. Antioxidant and Cytotoxic Activities of Leaf and Stem Extracts of Barleria albostellata C.B. Clarke. Horticulturae 2023, 9, 1226. https://doi.org/10.3390/horticulturae9111226
Gangaram S, Naidoo Y, Dewir YH, Singh M, Daniels AN, Magyar-Tábori K, Mendler-Drienyovszki N. Antioxidant and Cytotoxic Activities of Leaf and Stem Extracts of Barleria albostellata C.B. Clarke. Horticulturae. 2023; 9(11):1226. https://doi.org/10.3390/horticulturae9111226
Chicago/Turabian StyleGangaram, Serisha, Yougasphree Naidoo, Yaser Hassan Dewir, Moganavelli Singh, Aliscia Nicole Daniels, Katalin Magyar-Tábori, and Nóra Mendler-Drienyovszki. 2023. "Antioxidant and Cytotoxic Activities of Leaf and Stem Extracts of Barleria albostellata C.B. Clarke" Horticulturae 9, no. 11: 1226. https://doi.org/10.3390/horticulturae9111226
APA StyleGangaram, S., Naidoo, Y., Dewir, Y. H., Singh, M., Daniels, A. N., Magyar-Tábori, K., & Mendler-Drienyovszki, N. (2023). Antioxidant and Cytotoxic Activities of Leaf and Stem Extracts of Barleria albostellata C.B. Clarke. Horticulturae, 9(11), 1226. https://doi.org/10.3390/horticulturae9111226