Influence of Sunn Hemp Biomass Incorporation on Organic Strawberry Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Field Trial Establishment
2.2. Field Planting of Strawberry
2.3. Soil and Plant Tissue Analyses
2.4. Strawberry Growth and Yield Assessments
2.5. Statistical Analyses
3. Results and Discussion
3.1. Soil and Plant Tissue Analyses
3.2. Strawberry Plant Growth
3.3. Strawberry Fruit Yield
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Department of Agriculture. 2021 Certified Organic Survey. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/ (accessed on 25 August 2023).
- Muramoto, J.; Smith, R.F.; Shennan, C.; Klonsky, K.M.; Leap, J.; Ruiz, M.S.; Gliessman, S.R. Nitrogen contribution of legume/cereal mixed cover crops and organic fertilizers to an organic broccoli crop. HortScience 2011, 46, 1154–1162. [Google Scholar] [CrossRef]
- Parr, M.; Grossman, J.M.; Reberg-Horton, S.C.; Brinton, C.; Crozier, C. Roller-crimper termination for legume cover crops in North Carolina: Impacts on nutrient availability to a succeeding corn crop. Commun. Soil Sci. Plant Anal. 2014, 45, 1106–1119. [Google Scholar] [CrossRef]
- Ebelhar, S.A.; Frye, W.W.; Blevins, R.L. Nitrogen from legume cover crops for no-tillage corn. Agron. J. 1984, 76, 51–55. [Google Scholar] [CrossRef]
- Ranells, N.N.; Wagger, M.G. Nitrogen release from grass and legume cover crop monocultures and bicultures. Agron. J. 1996, 88, 777–882. [Google Scholar] [CrossRef]
- Ozores-Hampton, M. Developing a vegetable fertility program using organic amendments and inorganic fertilizers. HortTechnology 2012, 22, 743–750. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Natural Resource Conservation Service. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd331820.pdf (accessed on 19 January 2022).
- Garland, B.C.; Schroeder-Moreno, M.S.; Fernandez, G.E.; Creamer, N.G. Influence of summer cover crops and mycorrhizal fungi on strawberry production in the southeastern United States. HortScience 2011, 46, 985–991. [Google Scholar] [CrossRef]
- Portz, D.N.; Nonnecke, G.R. Rotation with cover crops suppresses weeds and increases plant density and yield of strawberry. HortScience 2011, 46, 1363–1366. [Google Scholar] [CrossRef]
- Desaeger, J. Meloidogyne Hapla, the northern root-knot nematode, in Florida strawberries and associated double-cropped vegetables. UF/IFAS Ext. 2019, ENY-070. Available online: https://edis.ifas.ufl.edu/publication/IN1224 (accessed on 31 October 2023). [CrossRef]
- Li, Y.; Hanlon, E.A.; Klassen, W.; Wang, Q.; Olczyk, T.; Ezenwa, I.V. Cover crop benefits for South Florida commercial vegetable producers. UF/IFAS Ext. 2022, SL-242. Available online: https://edis.ifas.ufl.edu/publication/SS461 (accessed on 31 October 2023). [CrossRef]
- Wang, Q.; Li, Y.; Klassen, W.; Hanlon, E.A. Sunn hemp-a promising cover crop in Florida. UF/IFAS Ext. 2022, SL-306. Available online: https://edis.ifas.ufl.edu/publication/TR003 (accessed on 31 October 2023). [CrossRef]
- Schomberg, H.H.; Martini, N.L.; Diaz-Perez, J.C.; Phatak, S.C.; Balkcom, K.S.; Bhardwaj, H.L. Potential for using sunn hemp as a source of biomass and nitrogen for the Piedmont and Coastal Plain regions of the southeastern USA. Agron. J. 2007, 99, 1448–1457. [Google Scholar] [CrossRef]
- Bhadha, J.H.; Xu, N.; Rabbany, A.; Amgain, N.R.; Capasso, J.; Korus, K.; Swanson, S. On-farm soil health assessment of cover-cropping in Florida. Sustain. Agric. Res. 2021, 10, 17–32. [Google Scholar] [CrossRef]
- Gaskin, J.; Cabrera, M.; Kissel, D. Predicting nitrogen release from cover crops: The cover crop nitrogen availability calculator. UGA Coop. Ext. 2016. Available online: https://extension.uga.edu/publications/detail.html?number=B1466 (accessed on 31 October 2023).
- Lynch, M.J.; Mulvaney, M.J.; Hodges, S.C.; Thompson, T.L.; Thomason, W.E. Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti. Springerplus 2016, 5, 973. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.H.; Sipes, B.S.; Hooks, C.R.R.; Leary, J. Improving the status of sunn hemp as a cover crop for soil health and pests management. Hanai‘Ai Newsl. 2011. Available online: https://projects.sare.org/wp-content/uploads/946541V8-Wang-sunnhemp.pdf (accessed on 30 October 2023).
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure as nitrogen source for sweet corn in a warm–temperate environment. Agron. J. 2006, 98, 1173–1180. [Google Scholar] [CrossRef]
- Stallings, A.M.; Balkcom, K.S.; Wood, C.W.; Guertal, E.A.; Weaver, D.B. Nitrogen mineralization from ‘AU Golden’ sunn hemp residue. J. Plant Nutr. 2017, 40, 50–62. [Google Scholar] [CrossRef]
- Agehara, S.; Warncke, D.D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E.; Vigil, M.F. Nitrogen mineralization from organic residues. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef]
- Fan, X.H.; Li, Y.C. Nitrogen release from slow-release fertilizers as affected by soil type and temperature. Soil Sci. Soc. Am. J. 2010, 74, 1635–1641. [Google Scholar] [CrossRef]
- O’Connell, S.; Shi, W.; Grossman, J.M.; Hoyt, G.D.; Fager, K.L.; Creamer, N.G. Short-term nitrogen mineralization from warm-season cover crops in organic farming systems. Plant Soil 2015, 396, 353–367. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. Temperature and moisture effects on C and N mineralization from surface applied clover residue. Plant Soil 1997, 189, 127–137. [Google Scholar] [CrossRef]
- Florida Automated Weather Network. Available online: http://fawn.ifas.ufl.edu (accessed on 19 January 2022).
- Li, J.; Zhao, X.; Maltais-Landry, G.; Paudel, B.R. Dynamics of Soil Nitrogen Availability Following Sunn Hemp Residue Incorporation in Organic Strawberry Production Systems. HortScience 2021, 56, 138–146. [Google Scholar] [CrossRef]
- Agehara, S.; Hochmuth, G. Fertilization of strawberries in Florida. UF/IFAS Ext. 2023, CIR-1141. Available online: https://edis.ifas.ufl.edu/publication/CV003 (accessed on 31 October 2023). [CrossRef]
- Balkcom, K.S.; Reeves, D.W. Sunn-hemp utilized as a legume cover crop for corn production. Agron. J. 2005, 97, 26–31. [Google Scholar] [CrossRef]
- Miller, M.R.; Dittmar, P.J.; Vallad, G.E.; Ferrell, J.A. Nutsedge (Cyperus spp.) control in bell pepper (Capsicum annuum) using fallow-period weed management and fumigation for two years. Weed Technol. 2014, 28, 653–659. [Google Scholar] [CrossRef]
- Avila, L.; Scholberg, J.; Roe, N.; Cherr, C. Can sunn hemp decrease nitrogen fertilizer requirements of vegetable crops in the Southeastern United States? HortScience 2006, 41, 1005. [Google Scholar] [CrossRef]
- Osborne, S.L.; Riedell, W.E. Starter nitrogen fertilizer impact on soybean yield and quality in the northern Great Plains. Agron. J. 2006, 98, 1569–1574. [Google Scholar] [CrossRef]
- Touchton, J.T.; Rickerl, D.H. Soybean growth and yield responses to starter fertilizers. Soil Sci. Soc. Am. J. 1986, 50, 234–237. [Google Scholar] [CrossRef]
- Vetsch, J.A.; Randall, G.W. Corn production as affected by tillage system and starter fertilizer. Agron. J. 2002, 94, 532–540. [Google Scholar] [CrossRef]
- Agehara, S.; Santos, B.M.; Whidden, A.J. Nitrogen fertilization of strawberry cultivars: Is preplant starter fertilizer needed? Univ. Fl. IFAS Ext. 2007, HS1116. [Google Scholar] [CrossRef]
- Cantliffe, D.J.; Castellanos, J.Z.; Paranjpe, A.V. Yield and quality of greenhouse-grown strawberries as affected by nitrogen level in coco coir and pine bark media. Proc. Fla. State Hortic. Soc. 2007, 120, 157–161. [Google Scholar]
- Santos, B.M.; Ramirez-Sanchez, M. Effects of preplant nitrogen fertilizer sources on strawberry. Proc. Fla. State Hortic. Soc. 2009, 122, 240–242. [Google Scholar] [CrossRef]
- Santos, B.M. Effects of preplant nitrogen and sulfur fertilizer sources on strawberry. HortTechnology 2010, 20, 193–196. [Google Scholar] [CrossRef]
- Fernandez, G.E.; Butler, L.M.; Louws, F.J. Strawberry growth and development in an annual plasticulture system. HortScience 2001, 36, 1219–1223. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.; Warman, P.R.; Rupasinghe, H.P. The effects of organic and conventional nutrient amendments on strawberry cultivation: Fruit yield and quality. J. Sci. Food Agric. 2008, 88, 2669–2675. [Google Scholar] [CrossRef]
N (kg/ha) | P (kg/ha) | K (kg/ha) | Organic Fertilizer and Ratio (Based on Weight) | |
---|---|---|---|---|
Pre-plant fertilization 1 | ||||
Full N rate | 84.0 | 45.5 | 21.4 | MicroSTART60: Howard Organic Bone Meal = 3:2 |
Reduced N rate | 19.8 | 38.8 | 5.6 | Jobe’s Organics Bone Meal: MicroSTART60 = 2:1 |
In-season fertigation 2 | 152.2 | 0.0 | 253.6 | GATOR 96002 Organic Liquid 3N-0P-5.0K |
Whole-season fertilization 3 | ||||
Full N rate | 236.2 | 45.5 | 275.0 | Pre-plant fertilization at the full rate plus fertigation |
Reduced N rate | 172.0 | 38.8 | 259.2 | Pre-plant fertilization at the reduced rate plus fertigation |
Before Sunn Hemp Incorporation | |||||||||||||
OM | CEC | TN | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | B | |
Treatment | (%) | (meq/100 g) | (%) | (mg/kg) | |||||||||
Management (M) | |||||||||||||
SF w/full N | 0.77 | 3.8 | 0.04 | 35.9 | 10.4 a | 453.6 | 56.1 | 17.4 | 8.0 | 2.1 | 0.3 | 0.1 | 0.1 |
SH w/full N | 0.76 | 3.7 | 0.05 | 35.1 | 8.8 b | 460.8 | 52.9 | 11.0 | 9.5 | 1.9 | 0.3 | 0.1 | 0.1 |
SH w/reduced N | 0.79 | 3.8 | 0.07 | 35.9 | 8.8 b | 471.4 | 53.5 | 11.6 | 8.3 | 1.7 | 0.3 | 0.1 | 0.1 |
Significance | NS | NS | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | NS |
After Strawberry Final Harvest | |||||||||||||
OM | CEC | TN | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | B | |
Treatment | (%) | (meq/100 g) | (%) | (mg/kg) | |||||||||
Management (M). | |||||||||||||
SF w/full N | 0.67 | 4.5 | 0.19 a | 50.6 | 76.5 | 588.5 | 31.3 | 14.2 | 7.3 | 2.0 | 0.8 | 0.2 | 0.2 |
SH w/full N | 0.78 | 4.9 | 0.15 b | 45.9 | 94.1 | 661.3 | 32.4 | 6.7 | 6.9 | 1.9 | 0.8 | 0.2 | 0.2 |
SH w/reduced N | 0.74 | 4.9 | 0.15 b | 49.2 | 89.3 | 664.1 | 33.8 | 7.9 | 7.0 | 2.3 | 1.0 | 0.2 | 0.2 |
Significance | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Cultivar (C) | |||||||||||||
Strawberry Festival | 0.73 | 4.7 | 0.16 | 47.8 | 80.3 b | 622.8 | 32.1 | 10.9 | 7.1 | 2.1 | 0.8 | 0.2 | 0.2 |
Camino Real | 0.73 | 4.8 | 0.16 | 49.3 | 93.0 a | 653.1 | 32.8 | 8.3 | 7.0 | 2.0 | 0.9 | 0.2 | 0.2 |
Significance | NS | NS | NS | NS | ** | NS | NS | NS | NS | NS | NS | NS | NS |
M × C interaction | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Early Season | |||||||||||
N | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | B | |
Treatment | (g/100 g) | (mg/kg) | |||||||||
Management (M) | |||||||||||
SF w/full N | 3.18 | 0.47 | 1.75 | 1.41 | 0.57 | 0.21 | 73.6 | 45.3 | 16.3 | 3.4 | 30.3 |
SH w/full N | 3.20 | 0.44 | 1.85 | 1.41 | 0.58 | 0.21 | 72.6 | 46.0 | 15.0 | 3.6 | 31.4 |
SH w/reduced N | 3.15 | 0.44 | 1.83 | 1.46 | 0.59 | 0.20 | 69.4 | 39.0 | 14.4 | 3.5 | 30.9 |
Significance | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Cultivar (C) | |||||||||||
Strawberry Festival | 3.21 | 0.41 b | 1.85 | 1.49 | 0.60 | 0.21 | 70.6 | 42.7 | 13.7 b | 3.3 b | 30.8 |
Camino Real | 3.15 | 0.48 a | 1.77 | 1.37 | 0.56 | 0.20 | 73.2 | 44.2 | 16.8 a | 3.8 a | 30.9 |
Significance | NS | ** | NS | NS | NS | NS | NS | NS | *** | * | NS |
M × C interaction | NS | NS | NS | NS | NS | NS | NS | NS | * | NS | NS |
After Final Harvest | |||||||||||
N | P | K | Ca | Mg | S | Fe | Mn | Zn | Cu | B | |
Treatment | (g/100 g) | (mg/kg) | |||||||||
Management (M) | |||||||||||
SF w/full N | 1.94 | 0.32 | 2.22 | 1.18 | 0.39 | 0.20 a | 69.4 | 21.6 b | 19.8 | 5.3 | 17.6 |
SH w/full N | 2.07 | 0.33 | 2.38 | 1.18 | 0.34 | 0.19 b | 72.5 | 19.6 b | 19.4 | 5.4 | 18.6 |
SH w/reduced N | 2.00 | 0.30 | 2.17 | 1.22 | 0.36 | 0.19 b | 70.9 | 29.8 a | 18.1 | 5.6 | 17.9 |
Significance | NS | NS | NS | NS | NS | * | NS | ** | NS | NS | NS |
Cultivar (C) | |||||||||||
Strawberry Festival | 2.02 | 0.33 a | 2.25 | 1.23 | 0.38 a | 0.20 a | 75.0 a | 24.8 a | 18.8 | 5.3 | 19.7 a |
Camino Real | 1.99 | 0.31 b | 2.26 | 1.16 | 0.34 b | 0.19 b | 66.8 b | 22.6 b | 19.3 | 5.5 | 16.4 b |
Significance | NS | * | NS | NS | ** | * | * | * | NS | NS | ** |
M × C interaction | NS | ** | NS | NS | NS | * | NS | NS | NS | NS | * |
Treatment | Above-Ground Biomass (g/plant) | Below-Ground Biomass (g/plant) | N (g/plant) | P (g/plant) | K (g/plant) |
Management (M) | |||||
SF w/full N | 56.06 a | 26.53 | 1.08 ab | 0.18 a | 1.25 a |
SH w/full N | 57.21 a | 26.14 | 1.18 a | 0.19 a | 1.36 a |
SH w/reduced N | 48.59 b | 24.46 | 0.97 b | 0.15 b | 1.05 b |
Significance | * | NS | ** | * | * |
Cultivar (C) | |||||
Strawberry Festival | 51.79 | 25.28 | 1.04 | 0.17 | 1.17 |
Camino Real | 56.12 | 26.14 | 1.11 | 0.17 | 1.27 |
Significance | NS | NS | NS | NS | NS |
M × C interaction | NS | NS | NS | NS | NS |
Early Season and Peak Harvest | |||||||||||||||
Leaf Number Per Plant | Canopy Size (cm) | Crown Diameter (mm) | Leaf Chlorophyll Content Index (SPAD Value) | ||||||||||||
Treatment | 31 DAT | 51 DAT | 65 DAT | 100 DAT | 31 DAT | 51 DAT | 65 DAT | 100 DAT | 31 DAT | 51 DAT | 65 DAT | 100 DAT | 31 DAT | 51 DAT | 65 DAT |
Management (M) | |||||||||||||||
SF w/full N | 3.4 a | 5.3 ab | 6.3 | 11.4 a | 13.9 ab | 21.7 | 24.1 | 26.5 | 11.9 a | 17.0 b | 19.3 ab | 27.9 | 45.0 a | 49.4 | 50.8 |
SH w/full N | 3.4 a | 5.5 a | 6.2 | 11.6 a | 14.9 a | 21.8 | 24.4 | 27.0 | 11.8 a | 17.9 a | 20.0 a | 30.9 | 45.1 a | 49.4 | 50.5 |
SH w/reduced N | 3.0 b | 4.7 b | 5.7 | 9.8 b | 12.9 b | 19.9 | 23.1 | 25.5 | 10.6 b | 16.3 b | 18.2 b | 26.0 | 41.4 b | 47.9 | 50.7 |
Significance | * | * | NS | * | * | NS | NS | NS | * | * | * | NS | * | NS | NS |
Cultivar (C) | |||||||||||||||
Strawberry Festival | 3.5 a | 6.0 a | 7.1 a | 12.7 a | 14.2 | 21.6 | 24.9 a | 27.1 a | 11.7 | 17.3 | 19.5 | 31.3 a | 43.0 | 47.8 b | 50.1 |
Camino Real | 3.1 b | 4.4 b | 5.0 b | 9.2 b | 13.6 | 20.7 | 22.8 b | 25.5 b | 11.1 | 16.8 | 18.9 | 25.2 b | 44.6 | 50.0 a | 51.2 |
Significance | *** | *** | *** | *** | NS | NS | *** | ** | NS | NS | NS | ** | NS | ** | NS |
M × C interaction | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Late Season | |||||||||||||||
Leaf Number Per Plant | Canopy Size (cm) | Crown Diameter (mm) | Leaf Chlorophyll Content Index (SPAD Value) | ||||||||||||
Treatment | 149 DAT | 190 DAT | 149 DAT | 190 DAT | 149 DAT | 190 DAT | 190 DAT | ||||||||
Management (M) | |||||||||||||||
SF w/full N | 15.6 | 17.9 | 25.9 | 28.5 | 36.3 | 55.1 | 41.1 | ||||||||
SH w/full N | 16.9 | 16.5 | 26.7 | 28.9 | 42.1 | 62.6 | 40.7 | ||||||||
SH w/reduced N | 14.0 | 16.7 | 25.1 | 29.5 | 37.9 | 58.5 | 41.6 | ||||||||
Significance | NS | NS | NS | NS | NS | NS | NS | ||||||||
Cultivar (C) | |||||||||||||||
Strawberry Festival | 15.8 | 16.8 | 25.8 | 29.3 | 40.0 | 62.3 | 42.1 | ||||||||
Camino Real | 15.1 | 17.3 | 25.9 | 28.6 | 37.6 | 55.2 | 40.1 | ||||||||
Significance | NS | NS | NS | NS | NS | NS | NS | ||||||||
M × C interaction | NS | NS | NS | NS | NS | NS | NS |
Treatment | Marketable Fruit Number (No./plant) | Total Fruit Number (No./plant) | Marketable Fruit Yield (g/plant) | Total Fruit Yield (g/plant) | Average Marketable Fruit Weight (g/plant) |
Management (M) | |||||
SF w/full N | 11.0 | 22.9 a | 203.1 | 357.0 a | 19.0 |
SH w/full N | 10.6 | 22.8 a | 194.5 | 353.3 a | 18.9 |
SH w/reduced N | 10.3 | 20.4 b | 179.5 | 309.9 b | 18.3 |
Significance | NS | ** | NS | * | NS |
Cultivar (C) | |||||
Strawberry Festival | 13.4 a | 25.4 a | 216.9 a | 351.8 | 16.2 b |
Camino Real | 7.9 b | 18.6 b | 167.8 b | 328.4 | 21.3 a |
Significance | *** | *** | *** | NS | *** |
M × C interaction | NS | NS | NS | NS | NS |
Marketable Fruit Number (No./plant) | Total Fruit Number (No./plant) | Marketable Fruit Yield (g/plant) | Total Fruit Yield (g/plant) | |||||||||||||
Treatment | Dec | Jan | Feb | Mar–Apr | Dec | Jan | Feb | Mar–Apr | Dec | Jan | Feb | Mar–Apr | Dec | Jan | Feb | Mar–Apr |
Management (M) | ||||||||||||||||
SF w/full N | 0.9 a | 2.6 | 3.2 | 4.4 | 0.9 a | 4.4 | 5.2 | 12.3 a | 13.5 a | 48.1 | 67.1 | 74.3 | 14.1 a | 74.9 a | 100.7 a | 167.4 |
SH w/full N | 0.7 b | 2.3 | 3.2 | 4.4 | 0.7 b | 4.1 | 5.2 | 12.8 a | 9.9 b | 42.1 | 65.5 | 77.0 | 10.5 b | 64.7 b | 99.6 a | 178.4 |
SH w/reduced N | 0.6 b | 2.5 | 2.9 | 4.3 | 0.6 b | 4.4 | 4.7 | 10.7 b | 8.1 b | 41.4 | 57.1 | 72.8 | 8.8 b | 65.6 b | 87.3 b | 148.1 |
Significance | * | NS | NS | NS | ** | NS | NS | * | * | NS | NS | NS | * | * | * | NS |
Cultivar (C) | ||||||||||||||||
Strawberry Festival | 1.1 a | 3.0 a | 4.5 a | 4.7 | 1.2 a | 4.9 a | 6.8 a | 12.6 a | 15.1 a | 47.7 a | 83.2 a | 70.7 | 16.2 a | 68.9 | 115.9 a | 150.7 b |
Camino Real | 0.3 b | 1.9 b | 1.7 b | 4.0 | 0.3 b | 3.7 b | 3.4 b | 11.2 b | 5.9 b | 40.0 b | 43.2 b | 78.7 | 6.2 b | 67.9 | 75.8 b | 178.5 a |
Significance | *** | *** | *** | NS | *** | *** | *** | * | *** | * | *** | NS | *** | NS | *** | * |
M × C interaction | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Black, Z.E.; Xu, N.; Brecht, J.K.; Huff, D.M.; Zhao, X. Influence of Sunn Hemp Biomass Incorporation on Organic Strawberry Production. Horticulturae 2023, 9, 1247. https://doi.org/10.3390/horticulturae9111247
Xie Y, Black ZE, Xu N, Brecht JK, Huff DM, Zhao X. Influence of Sunn Hemp Biomass Incorporation on Organic Strawberry Production. Horticulturae. 2023; 9(11):1247. https://doi.org/10.3390/horticulturae9111247
Chicago/Turabian StyleXie, Yurui, Zachary E. Black, Nan Xu, Jeffrey K. Brecht, Dustin M. Huff, and Xin Zhao. 2023. "Influence of Sunn Hemp Biomass Incorporation on Organic Strawberry Production" Horticulturae 9, no. 11: 1247. https://doi.org/10.3390/horticulturae9111247
APA StyleXie, Y., Black, Z. E., Xu, N., Brecht, J. K., Huff, D. M., & Zhao, X. (2023). Influence of Sunn Hemp Biomass Incorporation on Organic Strawberry Production. Horticulturae, 9(11), 1247. https://doi.org/10.3390/horticulturae9111247