A New Approach for Extending Shelf-Life of Pomegranate Arils with Combined Application of Salicylic Acid and Methyl Jasmonate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Arils Preparation
2.2. Treatments and Storage Conditions
2.3. Weight Loss and Soluble Solids Content
2.4. Titratable Acidity and Vitamin C
2.5. Respiration Rate
2.6. Arils Surface Color
2.7. Total Anthocyanins and Total Phenolics
2.8. Antioxidant Capacity and Total Flavonoids
2.9. Statistical Analysis
3. Results and Discussions
3.1. Effect of Treatments on Weight Loss and Respiration Rate
3.2. Effect of Treatments on Hue Angle (h°) Soluble Solids Content (SSC)
3.3. Effect of Treatments on Titratable Acidity (TA) and Vitamin C
3.4. Effect of Treatments on Anthocyanin Content and Phenolic Content
3.5. Effect of Treatments on Flavonoids and Antioxidant Capacity
3.6. Correlation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Giménez, M.J.; Martínez-Romero, D.; Valero, D.; Zapata, P.J. Preharvest application of methyl jasmonate increases crop yield, fruit quality and bioactive compounds in pomegranate ‘Mollar de Elche’ at harvest and during postharvest storage. J. Sci. Food Agric. 2020, 100, 145–153. [Google Scholar] [CrossRef]
- Al-Maiman, S.A.; Ahmad, D. Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chem. 2002, 76, 437–441. [Google Scholar] [CrossRef]
- Yang, X.; Niu, Z.; Wang, X.; Lu, X.; Sun, J.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J.; Xiao, J.; Liu, C.; et al. The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review. Food Rev. Int. 2022, 1–27. [Google Scholar] [CrossRef]
- Karimi, M.; Sadeghi, R.; Kokini, J. Pomegranate as a promising opportunity in medicine and nanotechnology. Trends Food Sci. Technol. 2017, 69, 59–73. [Google Scholar] [CrossRef]
- Ayhan, Z.; Eştürk, O. Overall Quality and Shelf Life of Minimally Processed and Modified Atmosphere Packaged “Ready-to-Eat” Pomegranate Arils. J. Food Sci. 2009, 74, C399–C405. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Asrey, R. Minimal processing of pomegranates (Punica granatum L.)—A review on processing, quality, and shelf life. J. Food Process. Preserv. 2019, 43, e14281. [Google Scholar] [CrossRef]
- Molla, S.M.H.; Rastegar, S.; Omran, V.G.; Khademi, O. Ameliorative effect of melatonin against storage chilling injury in pomegranate husk and arils through promoting the antioxidant system. Sci. Hortic. 2022, 295, 110889. [Google Scholar] [CrossRef]
- Özdemir, K.S.; Gökmen, V. Extending the shelf-life of pomegranate arils with chitosan-ascorbic acid coating. LWT—Food Sci. Technol. 2017, 76, 172–180. [Google Scholar] [CrossRef]
- Nazoori, F.; Mollai, S.; Sobhani, F.; Mirdehghan, S.H.; Sahhafi, S.R. Carboxymethyl cellulose and carnauba wax treatments kept the pomegranate fruit (Punica granatum L.) quality during cold storage via improving enzymatic defense system and bioactive compounds. Sci. Hortic. 2023, 309, 111645. [Google Scholar] [CrossRef]
- Singh, J.; Pareek, S.; Maurya, V.K.; Sagar, N.A.; Kumar, Y.; Badgujar, P.C.; Fawole, O.A. Application of Aloe vera Gel Coating Enriched with Cinnamon and Rosehip Oils to Maintain Quality and Extend Shelf Life of Pomegranate Arils. Foods 2022, 11, 2497. [Google Scholar] [CrossRef]
- Sayyari, M.; Salehi, F.; Valero, D. New Approaches to Modeling Methyl Jasmonate Effects on Pomegranate Quality during Postharvest Storage. Int. J. Fruit Sci. 2017, 17, 374–390. [Google Scholar] [CrossRef]
- Ehteshami, S.; Abdollahi, F.; Ramezanian, A.; Dastjerdi, A.M.; Rahimzadeh, M. Enhanced chilling tolerance of pomegranate fruit by edible coatings combined with malic and oxalic acid treatments. Sci. Hortic. 2019, 250, 388–398. [Google Scholar] [CrossRef]
- Babalar, M.; Pirzad, F.; Sarcheshmeh, M.A.A.; Talaei, A.; Lessani, H. Arginine treatment attenuates chilling injury of pomegranate fruit during cold storage by enhancing antioxidant system activity. Postharvest Biol. Technol. 2018, 137, 31–37. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Yang, J.; Zou, M.; Xin, L. Improving pomegranate fruit quality by short-term hypobaric treatment combined with modified atmosphere packaging storage. In Proceedings of the IV International Conference on Fresh-Cut Produce: Maintaining Quality and Safety, Shandong, China, 12–17 September 2021; pp. 217–222. [Google Scholar]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Zapata, P.J.; Valero, D. Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids, and increased aril colour and phenolics content in pomegranate. Postharvest Biol. Technol. 2020, 167, 111226. [Google Scholar] [CrossRef]
- Sayyari, M.; Castillo, S.; Valero, D.; Díaz-Mula, H.M.; Serrano, M. Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biol. Technol. 2011, 60, 136–142. [Google Scholar] [CrossRef]
- Moradi, S.; Zamani, Z.; Fatahi Moghadam, M.-R.; Koushesh Saba, M. Combination effects of preharvest tree net-shading and postharvest fruit treatments with salicylic acid or hot water on attributes of pomegranate fruit. Sci. Hortic. 2022, 304, 111257. [Google Scholar] [CrossRef]
- Wasternack, C.; Strnad, M. Jasmonate signaling in plant stress responses and development—Active and inactive compounds. New biotechnology 2016, 33, 604–613. [Google Scholar] [CrossRef]
- Abdelgawad, K.F.; Awad, A.H.R.; Ali, M.R.; Ludlow, R.A.; Chen, T.; El-Mogy, M.M. Increasing the Storability of Fresh-Cut Green Beans by Using Chitosan as a Carrier for Tea Tree and Peppermint Essential Oils and Ascorbic Acid. Plants 2022, 11, 783. [Google Scholar] [CrossRef]
- Lorente-Mento, J.M.; Guillén, F.; Martínez-Romero, D.; Carrión-Antoli, A.; Valero, D.; Serrano, M. γ-Aminobutyric acid treatments of pomegranate trees increase crop yield and fruit quality at harvest. Sci. Hortic. 2023, 309, 111633. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Salama, A.M.; Mohamed, H.F.Y.; Abdelgawad, K.F.; Abdeldaym, E.A. Responding of Long Green Pepper Plants to Different Sources of Foliar Potassium Fertiliser. Agriculture 2019, 65, 59–76. [Google Scholar] [CrossRef]
- El-Mogy, M.M.; Ali, M.R.; Darwish, O.S.; Rogers, H.J. Impact of salicylic acid, abscisic acid, and methyl jasmonate on postharvest quality and bioactive compounds of cultivated strawberry fruit. J. Berry Res. 2019, 9, 333–348. [Google Scholar] [CrossRef]
- Zarbakhsh, S.; Kazemzadeh-Beneh, H.; Rastegar, S. Quality preservation of minimally processed pomegranate cv. Jahrom arils based on chitosan and organic acid edible coatings. J. Food Saf. 2020, 40, e12752. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Shams Ardekani, M.R.; Hajimahmoodi, M.; Oveisi, M.R.; Sadeghi, N.; Jannat, B.; Ranjbar, A.M.; Gholam, N.; Moridi, T. Comparative Antioxidant Activity and Total Flavonoid Content of Persian Pomegranate (Punica granatum L.) Cultivars. Iran. J. Pharm. Res. IJPR 2011, 10, 519–524. [Google Scholar] [PubMed]
- Breda, C.A.; Morgado, D.L.; de Assis, O.B.G.; Duarte, M.C.T. Effect of chitosan coating enriched with pequi (Caryocar brasiliense Camb.) peel extract on quality and safety of tomatoes (Lycopersicon esculentum Mill.) during storage. J. Food Process. Preserv. 2017, 41, e13268. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G.J. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. ‘Acco’ and ‘Herskawitz’). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Hanif, A.; Ahmad, S.; Shahzad, S.; Liaquat, M.; Anwar, R. Postharvest application of salicylic acid reduced decay and enhanced storage life of papaya fruit during cold storage. J. Food Meas. Charact. 2020, 14, 3078–3088. [Google Scholar] [CrossRef]
- Tareen, M.J.; Abbasi, N.A.; Hafiz, I.A. Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. ‘Flordaking’ fruit during storage. Sci. Hortic. 2012, 142, 221–228. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Zhang, S.; Ferguson, I. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol. Technol. 2003, 28, 67–74. [Google Scholar] [CrossRef]
- Soleimani Aghdam, M.; Asghari, M.; Babalar, M.; Askari Sarcheshmeh, M.A. 8—Impact of salicylic acid on postharvest physiology of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 243–268. [Google Scholar]
- Zheng, Y.; Zhang, Q. Effects of Polyamines and Salicylic Acid on Postharvest Storage of ‘Ponkan’ Mandarin. Acta Hortic. 2004, 632, 317–320. [Google Scholar]
- Fan, L.; Shi, J.; Zuo, J.; Gao, L.; Lv, J.; Wang, Q. Methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biol. Technol. 2016, 120, 76–83. [Google Scholar] [CrossRef]
- Wang, C.Y. Methyl jasmonate inhibits postharvest sprouting and improves storage quality of radishes. Postharvest Biol. Technol. 1998, 14, 179–183. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Guillén, F.; Valero, D.; Serrano, M. The Effects of Salicylic Acid and Its Derivatives on Increasing Pomegranate Fruit Quality and Bioactive Compounds at Harvest and During Storage. Front. Plant Sci. 2020, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, J.; Shang, H.; Meng, X. Effect of methyl jasmonate on the anthocyanin content and antioxidant activity of blueberries during cold storage. J. Sci. Food Agric. 2015, 95, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Shaarawi, S.A.M.A.; Salem, A.S.E.; Elmaghraby, I.M.K.; Abd El-Moniem, E.A.A. Effect of Salicylic Acid, Calcium Chloride and Calcium Lactate Applications on Quality Attributes of Minimally-Processed ‘Wonderful’ Pomegranate Arils. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 508–517. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Miao, H.; Chen, S.; Yin, T.; Hu, S.; Shao, Z.; Liu, Y.; Gao, L.; Zhu, C.; et al. Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chem. 2018, 263, 194–200. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, L.; Sigge, G.; Caleb, O.J.; Opara, U.L. Effects of storage temperature and duration on chemical properties, proximate composition and selected bioactive components of pomegranate (Punica granatum L.) arils. LWT—Food Sci. Technol. 2014, 57, 508–515. [Google Scholar] [CrossRef]
- Dokhanieh, A.Y.; Aghdam, M.S.; Sarcheshmeh, M.A.A. Impact of postharvest hot salicylic acid treatment on aril browning and nutritional quality in fresh-cut pomegranate. Hortic. Environ. Biotechnol. 2016, 57, 378–384. [Google Scholar] [CrossRef]
- Sayyari, M.; Babalar, M.; Kalantari, S.; Serrano, M.; Valero, D. Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biol. Technol. 2009, 53, 152–154. [Google Scholar] [CrossRef]
- Jin, P.; Zheng, Y.; Tang, S.; Rui, H.; Wang, C.Y. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biol. Technol. 2009, 52, 24–29. [Google Scholar] [CrossRef]
- BaltacioĞLu, C.E.M.; VelioĞLu, S.; Karacabey, E. Changes in total phenolic and flavonoid contents of rowanberry fruit during postharvest storage. J. Food Qual. 2011, 34, 278–283. [Google Scholar] [CrossRef]
- Qin, G.Z.; Tian, S.P.; Xu, Y.; Wan, Y.K. Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiol. Mol. Plant Pathol. 2003, 62, 147–154. [Google Scholar] [CrossRef]
- Wen, P.-F.; Chen, J.-Y.; Wan, S.-B.; Kong, W.-F.; Zhang, P.; Wang, W.; Zhan, J.-C.; Pan, Q.-H.; Huang, W.-D. Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation 2008, 55, 1–10. [Google Scholar] [CrossRef]
- Huang, R.-H.; Liu, J.-H.; Lu, Y.-M.; Xia, R.-X. Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biol. Technol. 2008, 47, 168–175. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ali, M.R.; Ramadan, K.M.A.; Anwar, R.; Shalaby, T.A.; Rezk, A.A.; El-Ganainy, S.M.; Mahmoud, S.F.; Alkafafy, M.; El-Mogy, M.M. Exogenous postharvest application of calcium chloride and salicylic acid to maintain the quality of broccoli florets. Plants 2022, 11, 1513. [Google Scholar] [CrossRef] [PubMed]
WL | Respiration | h° | SSC | TA | Vitamin C | Anthocyanin | Phenolics | Flavonoids | Antioxidant | |
---|---|---|---|---|---|---|---|---|---|---|
WL | −0.557 ** | 0.789 ** | 0.485 ** | −0.727 ** | −0.826 ** | −0.618 ** | 0.012 | −0.341 ** | −0.323 * | |
Respiration | −0.557 ** | −0.253 * | −0.073 | 0.249 * | 0.509 ** | 0.112 | −0.352 ** | −0.044 | −0.092 | |
h° | 0.789 ** | −0.253 * | 0.629 ** | −0.760 ** | −0.708 ** | −0.635 ** | −0.330 * | −0.469 ** | −0.558 ** | |
SSC | 0.485 ** | −0.073 | 0.629 ** | −0.611 ** | −0.533 ** | −0.464 ** | −0.339 ** | −0.467 ** | −0.624 ** | |
TA | −0.727 ** | 0.249 * | −0.760 ** | −0.611 ** | 0.602 ** | 0.534 ** | 0.111 | 0.410 ** | 0.523 ** | |
Vitamin C | −0.826 ** | 0.509 ** | −0.708 ** | −0.533 ** | 0.602 ** | 0.655 ** | 0.171 | 0.392 ** | 0.435 ** | |
Anthocyanin | −0.618 ** | 0.112 | −0.635 ** | −0.464 ** | 0.534 ** | 0.655 ** | 0.338 ** | 0.390 ** | 0.560 ** | |
Phenolics | 0.012 | −0.352 ** | −0.330 * | −0.339 ** | 0.111 | 0.171 | 0.338 ** | 0.454 ** | 0.587 ** | |
Flavonoids | −0.341 ** | −0.044 | −0.469 ** | −0.467 ** | 0.410 ** | 0.392 ** | 0.390 ** | 0.454 ** | 0.608 ** | |
Antioxidant | −0.323 * | −0.092 | −0.558 ** | −0.624 ** | 0.523 ** | 0.435 ** | 0.560 ** | 0.587 ** | 0.608 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Beltagi, H.S.; Al-Otaibi, H.H.; Ali, M.R. A New Approach for Extending Shelf-Life of Pomegranate Arils with Combined Application of Salicylic Acid and Methyl Jasmonate. Horticulturae 2023, 9, 225. https://doi.org/10.3390/horticulturae9020225
El-Beltagi HS, Al-Otaibi HH, Ali MR. A New Approach for Extending Shelf-Life of Pomegranate Arils with Combined Application of Salicylic Acid and Methyl Jasmonate. Horticulturae. 2023; 9(2):225. https://doi.org/10.3390/horticulturae9020225
Chicago/Turabian StyleEl-Beltagi, Hossam S., Hala Hazam Al-Otaibi, and Marwa R. Ali. 2023. "A New Approach for Extending Shelf-Life of Pomegranate Arils with Combined Application of Salicylic Acid and Methyl Jasmonate" Horticulturae 9, no. 2: 225. https://doi.org/10.3390/horticulturae9020225
APA StyleEl-Beltagi, H. S., Al-Otaibi, H. H., & Ali, M. R. (2023). A New Approach for Extending Shelf-Life of Pomegranate Arils with Combined Application of Salicylic Acid and Methyl Jasmonate. Horticulturae, 9(2), 225. https://doi.org/10.3390/horticulturae9020225