Insights into the Key Genes in Cucumis melo and Cucurbita moschata ToLCNDV Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Whitefly and Virus Inoculation
2.2. Virus Inoculation Experiment
2.2.1. Virus Inoculation
2.2.2. Quantitative Virus Detection
2.3. Expression Analysis
2.3.1. RNA Isolation and cDNA Synthesis
2.3.2. Gene Expression Analysis
2.3.3. Data Analysis
2.4. cDNA Sequencing
3. Results
3.1. Virus Inoculation Experiment
3.2. Expression Analysis of Candidate Genes in C. melo and C. moschata
3.3. cDNA Sequencing of Relevant Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, R.A.C.; Naidu, A.A. Global Dimensions of Plant Virus Diseases: Current Status and Future Perspectives. Annu. Rev. Virol. 2019, 6, 387–409. [Google Scholar] [CrossRef]
- Padidam, M.; Beachy, R.N.; Fauquet, C.M. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 1995, 76, 25–35. [Google Scholar] [CrossRef]
- Juárez, M.; Tovar, R.; Fiallo-Olivé, E.; Aranda, M.A.; Gosálvez, B.; Castillo, P.; Moriones, E.; Navas-Castillo, J. First detection of Tomato leaf curl New Delhi virus infecting zucchini in Spain. Plant Dis. 2014, 98, 857. [Google Scholar] [CrossRef]
- Ruiz, M.L.; Simón, A.; Velasco, L.; García, M.C.; Janssen, D. First report of Tomato leaf curl New Delhi virus infecting tomato in Spain. Plant Dis. 2015, 98, 894. [Google Scholar] [CrossRef]
- Ruiz, L.; Simon, A.; Velasco, L.; Janssen, D. Biological characterization of Tomato leaf curl New Delhi virus from Spain. Plant Pathol. 2017, 66, 376–382. [Google Scholar] [CrossRef]
- Janssen, D.; Simón, A.; Boulares, M.; Ruiz, L. Host Species-Dependent Transmission of Tomato Leaf Curl New Delhi Virus-ES by Bemisia tabaci. Plants 2022, 11, 390. [Google Scholar] [CrossRef]
- López, C.; Ferriol, M.; Picó, M.B. Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: Selection of tolerance sources in Cucumis melo. Euphytica 2015, 204, 679–691. [Google Scholar] [CrossRef]
- Sáez, C.; Esteras, C.; Martínez, C.; Ferriol, M.; Narinder, P.S.D.; López, C.; Picó, B. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep. 2017, 36, 1571–1584. [Google Scholar] [CrossRef]
- Sáez, C.; Martínez, C.; Ferriol, M.; Manzano, S.; Velasco, L.; Jamilena, M.; López, C.; Picó, B. Resistance to tomato leaf curl New Delhi virus in Cucurbita spp. Ann. Appl. Biol. 2016, 169, 91–105. [Google Scholar] [CrossRef]
- Juárez, M.; Rabadan, M.P.; Martinez, L.D.; Tayahi, M.; Grande-Perez, A.; Gomez, P. Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain. Front. Microbiol. 2019, 10, 140. [Google Scholar] [CrossRef]
- Garcia-Ruiz, H. Susceptibility Genes to Plant Viruses. Viruses 2018, 10, 484. [Google Scholar] [CrossRef]
- Garcia-Ruiz, H. Host factors against plant viruses. Mol. Plant Pathol. 2019, 20, 1588–1601. [Google Scholar] [CrossRef]
- Moshe, A.; Belausov, E.; Niehl, A.; Heinlein, M.; Czosnek, H.; Gorovits, R. The Tomato yellow leaf curl virus V2 protein forms aggregates depending on the cytoskeleton integrity and binds viral genomic DNA. Sci. Rep. 2015, 5, 9967. [Google Scholar] [CrossRef]
- Roman B, Gómez P, Picó B, López C, Janssen D (2019) Candidate gene analysis of Tomato leaf curl New Delhi virus resistance in Cucumis melo. Sci. Hortic. 2019, 243, 12–20. [CrossRef]
- Steinberg, G. Tracks for traffic: Microtubules in the plant pathogen Ustilago maydis. New Phytol. 2007, 174, 721–733. [Google Scholar] [CrossRef]
- Pena, E.J.; Ferriol, I.; Sambade, A.; Buschmann, H.; Niehl, A.; Elena, S.F.; Rubio, L.; Heinlein, M. Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking. PLoS ONE 2014, 9, e105364. [Google Scholar] [CrossRef]
- Uchiyama, A.; Shimada-Beltran, H.; Levy, A.; Zheng, J.Y.; Javia, P.A.; Lazarowitz, S.G. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front. Plant Sci. 2014, 5, 584. [Google Scholar] [CrossRef]
- Robaglia, C.; Caranta, C. Translation initiation factors: A weak link in plant RNA virus infection. Trends Plant Sci. 2006, 11, 40–45. [Google Scholar] [CrossRef]
- Lapidot, M.; Karniel, U.; Gelbart, D.; Fogel, D.; Evenor, D.; Kutsher, Y.; Makhbash, Z.; Nahon, S.; Shlomo, H.; Chen, L.; et al. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet. 2015, 11, e1005538A. [Google Scholar] [CrossRef]
- Koeda, S.; Onouchi, M.; Mori, N.; Syafira, P.N.; Nagano, A.J.; Kesumawati, E. A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum. Theor. Appl. Genet. 2021, 134, 2947–2964. [Google Scholar] [CrossRef]
- Duan, C.G.; Wang, C.H.; Guo, H.S. Application of RNA silencing to plant disease resistance. Silence 2015, 3, 5. [Google Scholar]
- Bai, M.; Yang, G.S.; Chen, W.T.; Mao, Z.C.; Kang, H.X.; Chen, G.H.; Yang, Y.H.; Xie, B.Y. Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 2012, 501, 52–62. [Google Scholar] [CrossRef]
- Li, F.; Huang, C.; Li, Z.; Zhou, X. Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression. PLoS Pathog. 2014, 10, e1003921. [Google Scholar]
- Kushwaha, N.; Singh, A.; Basu, S.; Chakraborty, S. Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch. Virol. 2015, 160, 1499–1509. [Google Scholar] [CrossRef]
- Hussain, M.; Mansoor, S.; Iram, S.; Fatima, A.N.; Zafar, Y. The nuclear shuttle protein of Tomato leaf curl New Delhi virus is a pathogenicity determinant. J. Virol. 2005, 79, 4434–4439. [Google Scholar] [CrossRef]
- Machado, J.P.B.; Calil, I.P.; Santos, A.A.; Fontes, E.P.B. Translational control in plant antiviral immunity. Genet. Mol. Biol. 2017, 40, 292–304. [Google Scholar]
- Sáez, C.; Martínez, C.; Montero-Pau, J.; Esteras, C.; Blanca, J.; Sifres, A.; Ferriol, M.; López, C.; Picó, B. A major QTL located in chromosome 8 of Cucurbita moschata is responsible for resistance to tomato leaf curl New Delhi virus (ToLCNDV). Front. Plant Sci. 2020, 11, 207. [Google Scholar]
- Vicente-Dólera, N.; Troadec, C.; Moya, M.; del Río-Celestino, M.; Pomares-Viciana, T.; Bendahmane, A.; Picó, B.; Román, B.; Gómez, P. First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement. PLoS ONE 2014, 9, e112743. [Google Scholar]
- Janssen, D.; Simon, A.; Crespo, O.; Ruiz, L. Genetic population structure of Bemisia tabaci in Spain associated with Tomato leaf curl New Delhi virus. Plant Protect. Sci. 2017, 53, 25–31. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta Ct) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Su, S.; Liu, Z.; Chen, C.; Zhang, Y.; Wang, X.; Zhu, L.; Miao, L.; Wang, X.C.; Yuan, M. Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 2010, 22, 1373–1387. [Google Scholar] [CrossRef]
- Naqvi, A.R.; Sarwat, M.; Pradhan, B.; Choudhury, N.R.; Haq, Q.M.; Mukherjee, S.K. Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV). Virus Res. 2011, 160, 395–399. [Google Scholar]
- Lewis, J.D.; Lazarowitz, S. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc. Natl. Acad. Sci. USA 2010, 107, 2491–2496. [Google Scholar]
- Levy, A.; Zheng, J.Y.; Lazarowitz, S.C. Synaptotagmin SYTA forms ER-Plasma membrane Junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 2015, 25, 2018–2025. [Google Scholar] [CrossRef]
- Kumar, V.; Naqvi, A.R. Tomato leaf curl New Delhi virus (ToLCNDV) encoded AC2 associates with host mirnas by directly interacting with AGO1. J. RNAi Gene Silencing 2016, 12, 515–520. [Google Scholar]
- Basu, S.; Kushwaha, N.K.; Singh, A.K.; Sahu, P.P.; Kumar, R.V.; Chakraborty, S. Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J. Exp. Bot. 2018, 69, 2085–2102. [Google Scholar] [CrossRef]
- Leibman, D.; Kravchik, M.; Wolf, D.; Haviv, S.; Weissberg, M.; Ophir, R.; Paris, H.S.; Palukaitis, P.; Ding, S.W.; Gaba, V.; et al. Differential expression of cucumber RNA-dependent RNA polymerase 1 genes during antiviral defence and resistance. Mol. Plant. Pathol. 2018, 19, 300–312. [Google Scholar] [CrossRef]
- Hussain, M.; Mansoor, S.; Iram, S.; Zafar, Y.; Briddon, R.W. The Hypersensitive Response to Tomato leaf curl New Delhi virus Nuclear Shuttle Protein Is Inhibited by Transcriptional Activator Protein. Mol. Plant-Microbe Interact. 2007, 20, 1581–1588. [Google Scholar]
- Ramakers, C.; Ruijter, J.M.; Deprez, R.H.; Moorman, A.F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar]
- Kong, Q.; Yuan, J.; Niu, P.; Xie, J.; Jiang, W.; Huang, Y.; Bie, Z. Screening suitable reference genes for normalization in reverse transcription quantitative Real-Time PCR analysis in melon. PLoS ONE 2014, 9, e87197. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar]
- Ishikawa, K.; Hashimoto, M.; Yusa, A.; Koinuma, H.; Kitazawa, Y.; Netsu, O.; Yamaji, Y.; Namba, S. Dual targeting of a virus movement protein to ER and plasma membrane subdomains is essential for plasmodesmata localization. PLoS Pathog. 2017, 13, e1006463. [Google Scholar]
- Levy, A.; Tilsner, J. Creating Contacts Between Replication and Movement at Plasmodesmata–A Role for Membrane Contact Sites in Plant Virus Infections. Front. Plant Sci. 2020, 11, 862. [Google Scholar]
- Prasad, A.; Sharma, N.; Muthamilarasan, M.; Rana, S.; Prasad, M. Recent advances in small RNA mediated plant-virus interactions. Crit. Rev. Biotechnol. 2019, 39, 587–601. [Google Scholar] [CrossRef]
- Prasad, A.; Sharma, N.; Chirom, O.; Prasad, M. The sly-miR166-SlyHB module acts as a susceptibility factor during ToLCNDV infection. Theor. Appl. Genet. 2022, 135, 233–242. [Google Scholar] [CrossRef]
Target Gene | Sequence | Protein Coding Gene | ||
---|---|---|---|---|
Cucumis melo | Cucurbita moschata | Cucumis melo | Cucurbita moschata | |
Cm ARP4/ Cmos ARP4 Actin related protein | F: TCGAAGGCAATGTTGTAGCA R: TATTGCCCCCATTAATTTGC | F: GAAGAACATGGGGCTTCCTA R: GGATCAAGCGTCCAGAACAG | MELO3C017295T1_Ch02 | CmoCh10G002600 |
Cm TORT/ Cmos TORT Tortifolia | F: GAATTGACTGCGGAAGCATT R: TGTCCATATCACCTGCCTGA | F: TGTCGAGAAACGGACAGATG R: CTTCTGTTACCTCCGCCTTG | MELO3C018075.2.1_Ch04 | CmoCh09G009400.1 |
Cm SYTA/ Cmos SYTA Synaptotagmin | F: GACATCAAGTCAGCCCCAAC R: CCAAGCTTTCCTTGTTTTGC | F: GCCATTGGTTCCAAGCTTTC R: CCCCAACAAGTTTTAGGCCA | MELO3C013361.2.1_Ch01 | CmoCh19G007430.1 |
Cm PELOTA/ Cmos PELOTA RNA survell. factor Pelota | F: TGACGGCCATAACAGTGTCT R: CTGGTAGCGTCAAGATGGTG | F: AGTGTCAAGATGGTGCCACT R: TTCCTAACGGTGACAGCCAT | MELO3C008594.2.1_Ch05 | CmoCh05G008420.1 |
Cm SGS1/ Cmos SGS1 Suppressor of gene silencing 1 | F: GGATCTGATTATGTGGCCTCC R: ATCCATTGCTTTGTTCCCCA | F: TGATTATGTGGCCTCCTCTAGTT R: TTACTATCCATTGCCTTGTTTCC | MELO3C012650_Ch01 | CmoCh08G011180 |
Cm SGS2/ Cmos SGS2 Suppressor of gene silencing 2 | F: ACAAGTCCTCTCAGAAGCCT R: GATTTAGGGTCGGAGGGAGG | F: CCACCAGGTCGTCTCAGAAG R: AGGGAGGATTGTTGGTGGAG | MELO3C012650.2_Ch01 | CmoCh17G002200 |
Cm AGO1/ Cmos AGO1 Argonaute | F: TCATGGCTGAATTGGTGAGA R: AAAGGAAGCTCACCAGCTGTA | MELO3C006494.2.1_Ch06 | CmoCh14G017940.1 | |
Cm RDR1/ Cmos RDR1 RdRNA-pol | F: TGGAGCTCCTCGGATATATAAAA R: CCCATTGATCATCAGGTACTTC | MELO3C026815.2.1_Ch10 | CmoCh04G000890.1 | |
Cm RDR6/ Cmos RDR6 RdRNA-pol | F: TGACCGCAGCAAGTATGGA R: GGTCACGATCTTCCCTGTCT | F: GCAGTGAGTATGGAGCTTTGG R: GGCATCGTCACAATCTTCCC | MELO3C011257.2.1_Ch03 | CmoCh05G003850.1 |
Cm NIK1/ Cmos NIK1 NSP-interacting kinases | F: AAAACGCTGTGGATCCATGT R: CGACAAGCTACCGGACAAGT | F: TTGGGATGAAAACGCTGTGG R: GGCTACCCGACAAGTTCTGA | MELO3C012187_Ch10 | CmoCh18G010900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román, B.; Gómez, P.; Janssen, D.; Ruiz, L. Insights into the Key Genes in Cucumis melo and Cucurbita moschata ToLCNDV Resistance. Horticulturae 2023, 9, 231. https://doi.org/10.3390/horticulturae9020231
Román B, Gómez P, Janssen D, Ruiz L. Insights into the Key Genes in Cucumis melo and Cucurbita moschata ToLCNDV Resistance. Horticulturae. 2023; 9(2):231. https://doi.org/10.3390/horticulturae9020231
Chicago/Turabian StyleRomán, Belén, Pedro Gómez, Dirk Janssen, and Leticia Ruiz. 2023. "Insights into the Key Genes in Cucumis melo and Cucurbita moschata ToLCNDV Resistance" Horticulturae 9, no. 2: 231. https://doi.org/10.3390/horticulturae9020231
APA StyleRomán, B., Gómez, P., Janssen, D., & Ruiz, L. (2023). Insights into the Key Genes in Cucumis melo and Cucurbita moschata ToLCNDV Resistance. Horticulturae, 9(2), 231. https://doi.org/10.3390/horticulturae9020231