Marker-Assisted Selection of Male-Sterile and Maintainer Line in Chili Improvement by Backcross Breeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and Polymerase Chain Reaction
2.3. Pollen Viability Test
3. Results
3.1. Analysis of the Rf-Linked DNA Marker and S-Linked DNA Marker
3.2. Pollen Viability Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozada, D.N.; Bosland, P.W.; Barchenger, D.W.; Haghshenas-Jaryani, M.; Sanogo, S.; Walker, S. Chile pepper (Capsicum) breeding and improvement in the “Multi-Omics” Era. Front. Plant Sci. 2022, 13, 879182. [Google Scholar] [CrossRef]
- Techawongstien, S. Chili: Production Management and Breeding; Press Media Co.: Bangkok, Thailand, 2006; pp. 2–6. (In Thai) [Google Scholar]
- Milerue, N.; Nikornpun, M. Studies on heterosis of chili (Capsicum annuum L.). Kasetsart J. (Nat. Sci.) 2000, 34, 90–196. [Google Scholar]
- Jeeatid, N.; Suriharn, B.; Techawongstien, S.; Chanthai, S.; Bosland, P.W.; Techawongstien, S. Evaluation of the effect of genotype-by-environment interaction on capsaicinoid production in hot pepper hybrids (Capsicum chinense Jacq.) under controlled environment. Sci. Hortic. 2018, 235, 334–339. [Google Scholar] [CrossRef]
- Kim, M.K.; Jang, J.H.; Potchanasin, P.; Chae, W.B.; Yoo, E.H.; Taek-Ryoun, K. Current status and breeding perspectives of major vegetable crops in Thailand. J. Korean Soc. Int. Agric. 2019, 31, 67–75. [Google Scholar] [CrossRef]
- Buchholz, K. The Biggest Producers of Chilis. Available online: https://www.statista.com/chart/28756/countries-producing-the-biggest-amount-of-dry-chilis-and-peppers/ (accessed on 28 February 2022).
- Office of Permanent Secretary Ministry of Commerce, Exports Group Structure. Thailand Trading Report. 2019. Available online: http://www.ops3.moc.go.th/infor/menucomth/stru1export/exportre/report.asp (accessed on 17 September 2019).
- Hundal, J.S.; Dhall, R.K.; Tripathi, S.K. Breeding for hybrid hot pepper. In Hybrid Vegetable Development; Singh, P.K., Dasgupta, S.K., Tripathi, S.K., Eds.; Food Products Press: New York, NY, USA, 2004; pp. 40–44. [Google Scholar]
- Colombo, N.; Galmarini, C.R. The use of genetic, manual and chemical methods to control pollination in vegetable hybrid seed production: A review. Plant Breed. 2017, 136, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.M.; Khursheed, H.; Farwah, S.; Rizvi, S.; Rashid, M.; Saleem, S.; Andrabi, N.; Rashid, H. Male sterility in vegetable crops. J. Pharmacogn. Phytochem. 2018, 7, 3390–3393. [Google Scholar]
- Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef]
- Kim, Y.J.; Zhang, D. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci. 2018, 23, 53–65. [Google Scholar] [CrossRef]
- Ren, F.S.; Yang, H.F.; Jiao, Y.S.; Zhang, R.P.; Guo, Z.W.; Liu, H.J.; Sun, Q.; Li, X.J.; Tan, X.F.; Zhang, B.; et al. Fertility conversion between cytoplasmic maintainer lines and restorer lines through molecular marker-assisted selection in pepper (Capsicum annuum L.). Biologia 2022, 77, 2351–2358. [Google Scholar] [CrossRef]
- Wu, L.; Wang, P.; Wang, Y.; Cheng, Q.; Lu, Q.; Liu, J.; Li, T.; Ai, Y.; Yang, W.; Sun, L.; et al. Genome-wide correlation of 36 agronomic traits in the 287 pepper (Capsicum) accessions obtained from the SLAF-seq-based GWAS. Inter. J. Molecul. Sci. 2019, 20, 5675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; An, D.; Cao, Y.; Yu, H.; Zhu, Y.; Mei, Y.; Zhang, B.; Wang, L. Development and application of KASP markers associated with Restorer-of-fertility gene in Capsicum annuum L. Physiol. Mol. Biol. Plants 2021, 27, 2757–2765. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Valde’s, M.H. A model for marker-based selection in gene introgression breeding programs. Crop Sci. 2000, 40, 91–98. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhang, X.; Li, C.Y.; Liu, Z.; Feng, Y.H. Directional transfer of a multiple-allele male sterile line in Brassica campestris L. ssp. chinensis (L.) Makino var. rosularis Tsen et Lee. Breed. Sci. 2014, 64, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, S.; Djiwanti, S.R. Genetic improvements of traits for enhancing NPK acquisition and utilization efficiency in plants. In Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants; Hossain, M.A., Kamiya, T., Burritt, D., Tran, L.S.P., Fujiwara, T., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 267–283. [Google Scholar]
- Varshney, R.K.; Roorkiwal, M.; Sorrells, M.E. Genomic selection for crop improvement: An introduction. In Genomic Selection for Crop Improvement; Varshney, R.K., Roorkiwal, M., Sorrells, M.E., Eds.; Springer: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Lee, J.; Yoon, J.B.; Han, J.H.; Lee, W.P.; Do, J.W.; Ryu, H.S.; Kim, H.; Park, H.G. A codominant SCAR marker linked to the genic male sterility gene (ms1) in chili pepper (Capsicum annuum). Plant Breed. 2010, 129, 35–38. [Google Scholar] [CrossRef]
- Ji, J.J.; Huang, W.; Yin, Y.X.; Li, Z.; Gong, Z.H. Development of a SCAR marker for early identification of S-cytoplasm based on mitochondrial SRAP analysis in pepper (Capsicum annuum L.). Mol. Breed. 2014, 33, 679–690. [Google Scholar] [CrossRef]
- Yeh, T.; Lin, S.; Shieh, H.; Teoh, Y.; Kumar, S. Markers for cytoplasmic male sterility (CMS) traits in chili peppers (Capsicum annuum L.). I: Multiplex PCR and validation. SABRAO J. Breed. Genet. 2016, 48, 465–473. [Google Scholar]
- Sun, G.S.; Dai, Z.L.; Bosland, P.W.; Wang, Q.; Sun, C.Q.; Zhang, Z.C.; Ma, Z.H. Characterizing and marker-assisting a novel chili pepper (Capsicum annuum L.) yellow bud mutant with cytoplasmic male sterility. Genet. Mol. Res. 2017, 16, gmr16019459. [Google Scholar] [CrossRef]
- Jo, Y.D.; Ha, Y.; Lee, J.H.; Park, M.; Bergsma, A.C.; Choi, H.I.; Goritschnig, S.; Kloosterman, B.; Van Dijk, P.J.; Choi, D.; et al. Fine mapping of restorer-of-fertility in pepper (Capsicum annuum L.) identified a candidate gene encoding a pentatricopeptide repeat (PPR)-containing protein. Theor. Appl. Genet. 2016, 129, 2003–2017. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus 1987, 12, 3–15. [Google Scholar]
- Winnepenninckx, B.; Backeljau, T.; de Wachter, R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993, 9, 407. [Google Scholar]
- Kumchai, J.; Wei, Y.C.; Lee, C.Y.; Chen, F.C.; Chin, S.W. Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative. S. Torvum. Genet. Mol. Res. 2013, 12, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Peterson, P.A. Cytoplasmically inherited male sterility in Capsicum. Am. Nat. 1958, 92, 111–119. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, P.; Liu, J.Q.; Wu, L.; Zhang, Z.P.; Li, T.T.; Gao, W.J.; Yang, W.C.; Sun, L.; Shen, H.L. Identification of candidate genes under lying genic male–sterile msc-1 locus via genome resequencing in Capsicum annuum L. Theor. App. Genet. 2018, 131, 1861–1872. [Google Scholar] [CrossRef]
- Gulyas, G.; Pakozdi, K.; Lee, J.S.; Hirata, Y. Analysis of fertility restoration by using cytoplasmic male-steriles red pepper (Capsicum annuum L.). Breed. Sci. 2006, 56, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Vogel, K.E. Backcross Breeding. Transgenic Maize Methods and Protocols Springer Protocals Methods in Molecular Biology; Humana Press: New York, NY, USA, 2009; pp. 161–169. [Google Scholar]
- Briggs, F.N.; Knowles, P.F. Introduction to Plant Breeding; Reinhold Publishing Coorperation: New York, NY, USA, 1967; pp. 162–174. [Google Scholar]
- Bellundagi, A.; Ramya, K.T.; Krishna, H.; Jain, N.; Shashikumara, P.; Singh, P.K.; Singh, G.P.; Prabhu, K.V. Marker-assisted backcross breeding for heat tolerance in bread wheat (Triticum aestivum L.). Front. Genet. 2022, 13, 1056783. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.G.; Rafii, M.Y.; Yusuff, O.; Martini, M.Y.; Ismail, M.R.; Ridzuan, R. Molecular confirmation of candidate Hsp70 gene associated with heat tolerancein BC3F2 advanced backcross lines and their phenotypic resemblance with recurrent chilli Kulai. Acta Agric. Scand. B 2020, 70, 252–264. [Google Scholar]
- Lee, J.; Yoon, J.B.; Park, H.G. A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.). Mol. Breed. 2008, 21, 95–104. [Google Scholar] [CrossRef]
- Jo, Y.D.; Kim, Y.M.; Park, M.N.; Yoo, J.H.; Park, M.; Kim, B.D.; Kang, B.C. Development and evaluation of broadly applicable markers for restorer-of-fertility in pepper. Mol. Breed. 2010, 25, 187–201. [Google Scholar] [CrossRef]
- Min, W.K.; Kim, S.; Sung, S.K.; Kim, B.D.; Lee, S. Allelic discrimination of the restorer of fertility gene and its inheritance in peppers (Capsicum annuum L.). Theor. Appl. Genet. 2009, 119, 1289–1299. [Google Scholar] [CrossRef]
- Nei, Z.; Song, Y.; Wang, H.; Chen, J.; Niu, Q.; Zhu, W. Fine mapping and gene analysis of restorer-of -fertility gene CaRfHZ in pepper (Capsicum annuum L.). Int. J. Mol. Sci. 2022, 23, 7633. [Google Scholar]
- Dhaliwal, M.S.; Jindal, S.K. Induction and exploitation of nuclear and cytoplasmic male sterility in pepper (Capsicum spp.): A review. J. Hortic. Sci. Biotechnol. 2014, 89, 471–479. [Google Scholar] [CrossRef]
- Usman, M.; Ziaf, K.; Ye, Z. Breeding and crop improvement. In Breeding of Horticultural Crops; Khan, A.S., Ziaf, K., Eds.; Horticulture Science and Technology, University of Agriculture: Faisalabad, Pakistan, 2017; pp. 25–65. [Google Scholar]
- Jugulam, M.; Ziauddin, A.; So, K.K.Y.; Chen, S.; Hall, J.C. Transfer of Dicamba tolerance from Sinapis arvensis to Brassica napus via embryo rescue and recurrent backcross breeding. PLoS ONE 2015, 10, e0141418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.I.; Havey, M.J. Variable penetrance among different sources of the male fertility restoration allele of onion. Hortscience 2020, 55, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Rattenbury, J.A. Specific staining of nucleolar substance with aceto-carmine. Stain Technol. 1952, 27, 113–120. [Google Scholar] [CrossRef]
- Dapson, R.W. The history, chemistry, and modes of action of carmine and related dyes. Biotech. Histochem. 2007, 82, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Ting, L.; Yixin, A.; Qiaohua, L.; Yihao, W.; Lang, W.; Jinqiu, L.; Liang, S.; Huolin, S. Phenotypic, genetic, and molecular function of msc-2, a genic male sterile mutant in pepper (Capsicum annuum L.). Theor. Appl. Genet. 2019, 133, 843–855. [Google Scholar] [CrossRef]
- Sanders, P.M.; Bui, A.Q.; Weterings, K.; McIntire, K.N.; Hsu, Y.C.; Lee, P.Y.; Truong, M.T.; Beals, T.P.; Goldberg, R.B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod. 1999, 11, 297–322. [Google Scholar] [CrossRef]
- Luo, X.D.; Dai, L.F.; Wang, S.B.; Wolukau, J.; Jáhn, M.; Chen, J.F. Male gamete development and early tapetal degeneration in cytoplasmic male-sterile pepper investigated by meiotic, anatomical and ultrastructural analyse. Plant Breed. 2006, 125, 395–399. [Google Scholar] [CrossRef]
- Guo, J.; Wang, P.; Cheng, Q.; Sun, L.; Wang, H.; Wang, Y.; Kao, L.; Li, Y.; Qiu, T.; Yang, W.; et al. Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.). J. Proteom. 2017, 168, 15–27. [Google Scholar] [CrossRef]
- Ahmadikhah, A.; Mirarab, M.; Pahlevani, M.H.; Nayyeripasand, L. Marker-assisted backcrossing to develop an elite cytoplasmic male sterility line in rice. Plant Genome 2015, 8, plantgenome2014.07.0031. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B 2008, 363, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Code | Genotype | Phenotype |
---|---|---|---|
A-line | A1 | S rfrf | Sterile |
B-line | B1 | N rfrf | Maintainer (Fertile) |
C-line | C1 | N RfRf | Restorer (Fertile) |
C3 | N RfRf | Restorer (Fertile) | |
cross | |||
BC2F2A1 × C1 | - | - | |
BC2F2A1 × C3 | - | - | |
BC1F2B1 × C1 | - | - | |
BC1F2B1 × C3 | - | - |
Marker Name | 5′ to 3′ Sequence | Annealing Temperature (°C) | Product Size (bp) | References |
---|---|---|---|---|
S or N cytoplasm | ||||
CMS-SCAR130/140 | F: TTACGGCTCGTTACCGCAGCG R: CAATTGACCGACCCGCCAT | 57 | 130/140 | Ji et al. (2014) [21] |
Rf locus | ||||
3336-last2-SCAR | F: CATCGAACTGATACGGAAGGAC R: TAACACTACTTGGGGAAAGCG | 52 | 1639 | Jo et al. (2016) [24] |
4162-SCAR | F: GCAGTTCGGTTTTACGGAGTTAC R: CCATTGGACAAAAGGGGATC | 51 | 1046 | Jo et al. (2016) [24] |
1.85-HRM | F: GACATGCAAGGTAAGGCTGC R: CACAAATTCTGGCTATCGGTC | 52 | 250 | Jo et al. (2016) [24] |
BC2F2 | Plant No. | Markers | Genotype | Phenotype | |
---|---|---|---|---|---|
3336-last2-SCAR | 4162-SCAR | ||||
A1 × C1 | 1–2, 4–6, 9–13, 15–21, 23 | + | + | S Rf_ | Fertile |
A1 × C1 | 3, 7–8, 14, 22, 24 | − | + | S rfrf | Sterile |
A1 × C3 | 1–8, 10–13, 15, 18–24 | + | + | S Rf_ | Fertile |
A1 × C3 | 9, 14, 16–17, | − | + | S rfrf | Sterile |
BC1F2 | Plant No. | Markers | Genotype | Phenotype | |
---|---|---|---|---|---|
3336-last2-SCAR | 4162-SCAR | ||||
B1 × C1 | 1–13, 15 | + | + | N Rf_ | Fertile |
B1 × C1 | 14 | − | − | N rfrf | Maintainer |
B1 × C3 | 1–9, 12–15 | + | + | S Rf_ | Fertile |
B1 × C3 | 10–11 | − | − | N rfrf | Maintainer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na Jinda, A.; Nikornpun, M.; Jeeatid, N.; Thumdee, S.; Thippachote, K.; Pusadee, T.; Kumchai, J. Marker-Assisted Selection of Male-Sterile and Maintainer Line in Chili Improvement by Backcross Breeding. Horticulturae 2023, 9, 357. https://doi.org/10.3390/horticulturae9030357
Na Jinda A, Nikornpun M, Jeeatid N, Thumdee S, Thippachote K, Pusadee T, Kumchai J. Marker-Assisted Selection of Male-Sterile and Maintainer Line in Chili Improvement by Backcross Breeding. Horticulturae. 2023; 9(3):357. https://doi.org/10.3390/horticulturae9030357
Chicago/Turabian StyleNa Jinda, Aatjima, Maneechat Nikornpun, Nakarin Jeeatid, Siwaporn Thumdee, Kamon Thippachote, Tonapha Pusadee, and Jutamas Kumchai. 2023. "Marker-Assisted Selection of Male-Sterile and Maintainer Line in Chili Improvement by Backcross Breeding" Horticulturae 9, no. 3: 357. https://doi.org/10.3390/horticulturae9030357
APA StyleNa Jinda, A., Nikornpun, M., Jeeatid, N., Thumdee, S., Thippachote, K., Pusadee, T., & Kumchai, J. (2023). Marker-Assisted Selection of Male-Sterile and Maintainer Line in Chili Improvement by Backcross Breeding. Horticulturae, 9(3), 357. https://doi.org/10.3390/horticulturae9030357