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Abstract: Due to the short fruit axis, many leaves, and complex background of grapes, most grape
cluster axes are blocked from view, which increases robot positioning difficulty in harvesting. This
study discussed the location method for picking points in the case of partial occlusion and proposed
a grape cluster-detection algorithm “You Only Look Once v5-GAP” based on “You Only Look Once
v5”. First, the Conv layer of the first layer of the YOLOv5 algorithm Backbone was changed to the
Focus layer, then a convolution attention operation was performed on the first three C3 structures,
the C3 structure layer was changed, and the Transformer in the Bottleneck module of the last layer
of the C3 structure was used to reduce the computational amount and execute a better extraction
of global feature information. Second, on the basis of bidirectional feature fusion, jump links were
added and variable weights were used to strengthen the fusion of feature information for different
resolutions. Then, the adaptive activation function was used to learn and decide whether neurons
needed to be activated, such that the dynamic control of the network nonlinear degree was realized.
Finally, the combination of a digital image processing algorithm and mathematical geometry was
used to segment grape bunches identified by YOLOv5-GAP, and picking points were determined after
finding centroid coordinates. Experimental results showed that the average precision of YOLOv5-
GAP was 95.13%, which was 16.13%, 4.34%, and 2.35% higher than YOLOv4, YOLOv5, and YOLOv7
algorithms, respectively. The average positioning pixel error of the point was 6.3 pixels, which
verified that the algorithm effectively detected grapes quickly and accurately.

Keywords: deep learning; machine vision; image processing; grape detection; picking-point positioning

1. Introduction

Grapes are one of the most important varieties of fruit production in the world. Xin-
jiang grapes, found in the three golden-grape producing areas, are thin, juicy, and nutritious
and can reach 20–24% sugar content. In recent years, with the adjustment of agricultural
structure, the grape industry has achieved rapid and green development with its own ad-
vantageous resources. However, as a characteristic forest and fruit advantageous industry,
the harvest of grapes is still labor-intensive and involves low-efficiency manual operations.
Because the maturity period of grapes is close to that of cotton, tomatoes, peppers and
other crops, labor is tight and labor costs are high, thus affecting timely harvesting. The
scale expansion of grape planting has not been synchronized and coordinated with the
mechanization of grape harvest, which has become one of the important factors restricting
the large-scale, intensive, and efficient development of the wine industry. Therefore, this
study proposes a grape-detection algorithm, YOLOv5-GAP, based on YOLOv5, which can
be used to quickly and accurately to detect the position of grape bunches and fruit stems.
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This system can provide visual technical support for harvesting institutions that conform
to grape growing methods.

With the development of artificial intelligence technology, machine vision technology
is more and more widely used in agricultural production and engineering fields [1,2].
Scholars at home and abroad have conducted much research on fruit-detection algorithms
and the positioning method of picking points under partial occlusion, so as to realize fruit
picking, automation, and intelligence [3–6].

To attain the automation and intelligence of fruit picking, the key is how to accurately
identify and locate the target. Tang et al. studied the application of picking robots and vision
technology in fruit picking [7]. Wu et al. proposed the YOLO-Banana model to accurately
identify bananas and locate the banana fruit axis and cutting point. They improved the
Bottleneck module of YOLOv5 and then used the edge-detection algorithm to segment the
contour of the fruit axis to obtain the cut-off point [8,9]. Fu et al. added a detection layer by
analyzing banana features, which reduced the weight and shortened the detection time [10].
Peng et al. used the transfer learning method and a stochastic gradient descent algorithm
to optimize the Single Shot MultiBox Detector (SSD) algorithm and used the VGG16 model
to replace the Res Net-101 model to solve, to a certain extent, the problem of low fruit
recognition rate [11]. Tian et al. used the cyclic consistent countermeasure network for data
enhancement and optimized the feature layer using a densely connected neural network
(densenet) [12]. Sa et al. proposed a multi-modal Faster R-CNN model by combining multi-
modal information through transfer learning [13]. Koirala et al. used RGB cameras and
LED lights to acquire images at night, and developed a new architecture, MangoYOLO [14].
Zhao et al. compared three different backbone CenterNet models and finally proposed
a CenterNet multiclass fruit-detection algorithm based on DLA-34 [15]. Bulanon et al.
used image fusion technology to improve the level of fruit detection, identified fruit
through machine vision technology, and then used a laser rangefinder to measure the
distance, thereby realizing effective fruit detection [16,17]. Yu et al. improved Mask R-
CNN to solve the problem of the poor robustness of traditional algorithms in unstructured
environments [18]. For research on the location method of picking points under partial
occlusion, Xiong et al. conducted a study on the location of grapes under disturbance [19].
Luo et al. used stereovision and image processing technology to identify and locate grape
clusters and picking points and then completed grape size measurement and enclosure
calculations [20–23]. Through the analysis of these studies, it was found that, for the location
of the picking point for a covered fruit axis, most of them directly segment the image of the
target to be picked, which can produce a large error in the picking-point location.

To enable a picking robot to walk autonomously in an orchard, Chen et al. combined
hand-eye stereovision with the SLAM system to obtain a more detailed and accurate
three-dimensional (3D) orchard map and established a new global mapping framework for
orchard picking tasks [24]. At the same time, to achieve target detection at the pixel level,
Wang et al. first found the approximate location of the fruit bunches at a distance and then
segmented the branches of the bunches at close range [25]. Thiago et al. used Mask R-CNN
to successfully detect, segment, and track grape clusters, achieving the fine separation of
grape clusters from other structures in the image [26]. Kang et al. developed an automatic
labeling algorithm and a LedNet algorithm to improve apple-detection performance, and
improved DaSNet-v2 to achieve fruit and branch instance segmentation [27,28]. Lin et al.
proposed a probability and region-based image segmentation method based on the color,
depth, and shape information of spherical or cylindrical fruits and then used support
vector machines to exclude false information [29]. Li et al. used the Deeplabv3 algorithm
to segment RGB images for irregularly scattered fruiting branches of lychee clusters and
removed fruitless branches through skeleton extraction and pruning operations to retain
the main branches [30]. Finally, the spatial clustering method and principal component
analysis method have been used to fit a 3D straight line using the noise of nonparametric
density to determine the position of the resulting branch.
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In machine vision tasks, it is sometimes necessary to count the detected fruit. Bar-
goti et al. applied ablation experiments and data augmentation techniques to the Faster
R-CNN algorithm and used the tiling method, which effectively improves the recognition
of small targets. For the detection and counting of individual fruit, watershed segmentation
and Hough circle transform algorithms have been used [31,32]. Vasconez et al. solved the
fruit counting problem with an improved Faster R-CNN and SSD algorithm [33]. Häni et al.
combined deep learning and semi-supervised methods for fruit yield estimation [34].
Stein et al. used multisensors to identify, track, and locate fruit in orchards for accurate
yield estimations [35]. Parico et al. used the YOLOv4-CSP and Deep SORT multi-object
tracking algorithm to achieve fruit-detection predictions [36].

Aiming at grape detection in the wild orchard environment, this study examined
green grapes in three scenarios—including sunny day, backlit, and partial occlusion—as
the research objects to solve the problems of grape-bunch identification and the position
determination of the picking point of partially occluded fruit axes. First, a grape-detection
algorithm, YOLOv5-GAP, was proposed based on YOLOv5. Then, the digital image
processing algorithm was combined with mathematical geometry to segment grape clusters
identified by YOLOv5-GAP. After finding the centroid coordinates, the picking point was
determined. The main contributions of this study were summarized as follows:

(1) The Conv layer of the first layer of the YOLOv5 algorithm Backbone was changed
to the Focus layer, the convolution attention operation was performed on the first three
C3 structures, the C3 structure layer was changed, and the Transformer in the Bottleneck
module of the last layer of the C3 structure was used;

(2) On the basis of bidirectional feature fusion, jump links were added and variable
weights were used to strengthen the fusion of feature information of different resolutions;

(3) The adaptive activation function was used to learn and decide whether the neuron
needed to be activated, so as to realize the dynamic control of the nonlinear degree of
the network;

(4) The digital image processing algorithm and mathematical geometry were combined
to segment the grape cluster string recognized by YOLOv5-GAP, and the picking point was
determined after finding the centroid coordinates.

The rest of this paper is organized as follows: In Section 2, the materials and methods
are described. In Section 3, the experimental results and analysis are presented, and finally,
the conclusions are summarized in Section 4.

2. Materials and Methods
2.1. Test Environment

The experiments in this study were based on the deep learning framework Pytorch
1.9.1, the programming language used was Python 3.8, and the operating system was
Ubuntu 20.04.1 LTS. An Intel(R) Core(TM) i7-10700K @ 3.80 GHz × 16 processor, 8 GB
memory, and a graphics card (NVIDIA Corp. (Santa Clara, CA, USA) TU104 [GeForce
GTX 2080 SUPER], using CUDA11.1 and CUDNN8.2.0) were employed to speed up GPU
operations and processing speed. The specific configuration is shown in Table 1.

Table 1. Test environment settings.

Parameter Configuration

Operating system Ubuntu 20.04.1 LTS
Deep learning framework Pytorch 1.9.1
Programming language Python 3.8

GPU accelerated environment CUDA 11.1
GPU NVIDIA GeForce GTX 2080 SUPER
CPU Intel(R) Core(TM) i7-10700K @ 3.80 GHz × 16
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2.2. Image and Data Collection

The grape dataset used in this paper was sampled in Zengcheng District, Guangzhou,
where the Tropic of Cancer passes north of Zengcheng, and is affected by the tropical
maritime monsoon climate of South Asia, where abundant rainfall, sufficient light time and
high temperature are suitable for viticulture. On 18 May 2022 and 19 July 2022, the Redmi
K30 Pro mobile device camera was used to collect pictures of sunshine rose grape varieties
from different angles and directions of front light and backlight; the image resolution
was 4624 × 3472 px, the distance between the camera and the fruit was kept in the range
of 250~650 mm, a total of 1844 pictures were collected for the training and testing of
grape-detection algorithms, and the grape images under front- and backlight are shown in
Figure 1. We collected grape images, using the labeling tool to label the images; that is, we
selected the grapes to be picked and obtained the grape dataset, and then 1476 pictures in
the dataset were used as the training set, and 184 pictures were tested in the set.

Horticulturae 2023, 9, x FOR PEER REVIEW 4 of 19 
 

 

Table 1. Test environment settings. 

Parameter Configuration 
Operating system Ubuntu 20.04.1 LTS 

Deep learning framework Pytorch 1.9.1 
Programming language Python 3.8 

GPU accelerated environment CUDA 11.1 
GPU NVIDIA GeForce GTX 2080 SUPER 
CPU Intel(R) Core(TM) i7-10700K @ 3.80 GHz × 16 

2.2. Image and Data Collection 
The grape dataset used in this paper was sampled in Zengcheng District, Guangzhou, 

where the Tropic of Cancer passes north of Zengcheng, and is affected by the tropical 
maritime monsoon climate of South Asia, where abundant rainfall, sufficient light time 
and high temperature are suitable for viticulture. On 18 May 2022 and 19 July 2022, the 
Redmi K30 Pro mobile device camera was used to collect pictures of sunshine rose grape 
varieties from different angles and directions of front light and backlight; the image reso-
lution was 4624 × 3472 px, the distance between the camera and the fruit was kept in the 
range of 250~650 mm, a total of 1844 pictures were collected for the training and testing of 
grape-detection algorithms, and the grape images under front- and backlight are shown 
in Figure 1. We collected grape images, using the labeling tool to label the images; that is, 
we selected the grapes to be picked and obtained the grape dataset, and then 1476 pictures 
in the dataset were used as the training set, and 184 pictures were tested in the set. 

 
(A) (B) 

Figure 1. Grape images in front and back lighting. Front light (A) and back light (B). 

2.3. Grape-Bunch Detection Algorithm 
2.3.1. YOLOv5 Algorithm 

YOLOv5 is a target-detection algorithm based on regression analysis, proposed in 
June 2020, which reduces the stage of generating candidate regions in the two-stage de-
tection algorithm, such that it has a faster detection speed and can achieve the purpose of 
real-time detection. YOLOv5 is based on the Pytorch framework. Unlike the Darknet 
framework, the Pytorch framework allows users to deploy and train their own datasets 
more quickly and easily. In the official code of YOLOv5, a total of four network models 
are given: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5 is a classic single-
stage algorithm structure, and the network structure of YOLOv5s-6.0 shown in Figure 2. 
It is mainly composed of three parts: Backbone for image feature extraction, Neck for bet-
ter feature extraction using backbone, and Head for obtaining network output content 
using previously extracted features. In the YOLOv5 network architecture, the CBS module 
consists of Conv convolution, BN normalization, and SiLU activation function. Both the 

Figure 1. Grape images in front and back lighting. Front light (A) and back light (B).

2.3. Grape-Bunch Detection Algorithm
2.3.1. YOLOv5 Algorithm

YOLOv5 is a target-detection algorithm based on regression analysis, proposed in June
2020, which reduces the stage of generating candidate regions in the two-stage detection
algorithm, such that it has a faster detection speed and can achieve the purpose of real-time
detection. YOLOv5 is based on the Pytorch framework. Unlike the Darknet framework, the
Pytorch framework allows users to deploy and train their own datasets more quickly and
easily. In the official code of YOLOv5, a total of four network models are given: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5 is a classic single-stage algorithm structure,
and the network structure of YOLOv5s-6.0 shown in Figure 2. It is mainly composed of
three parts: Backbone for image feature extraction, Neck for better feature extraction using
backbone, and Head for obtaining network output content using previously extracted
features. In the YOLOv5 network architecture, the CBS module consists of Conv convo-
lution, BN normalization, and SiLU activation function. Both the Backbone and Neck of
YOLOv5 use a cross-stage local network (CSPNet) that allows the architecture to achieve
more gradient combinations, which can allow the gradient information to produce a large
correlation difference during the propagation process. Furthermore, CSPNet can reduce
computation and improve inference speed and accuracy [37]. The SPPF module serially
passes the input through multiple 5 × 5 MaxPool layers, with the output after each pooling
becoming the input of the next pooling, and then the features are concatenated to complete
the fusion.
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2.3.2. Improved YOLOv5 Grape-Detection Algorithm

To quickly and accurately calculate the image position of grapes, it was necessary to
consider the real time and accuracy of the target-detection algorithm, so as to meet the
needs of efficient picking operations by picking robots. To detect grapes in a wild orchard
environment more quickly and accurately, realize efficient automatic grape picking, and
solve the problems of labor shortage and high labor cost, this study proposes the YOLOv5-
GAP grape-detection algorithm based on the YOLOv5s-6.0 algorithm. As YOLOv5s is
the network model with the smallest depth and least speed consumption in the YOLOv5
series, this study improved the grape-detection network model on the basis of YOLOv5s.
The YOLOv5-GAP algorithm improved the Backbone network structure of the original
algorithm, changed the Conv layer of the first layer to the Focus layer, and divided the
image input into the network into several parts, which was conducive to extracting more
feature information during downsampling. A convolution attention mechanism and Trans-
formerBlock module were added, the amount of calculation was reduced to better extract
global information, a more efficient weighted Bidirectional Feature Pyramid Network was
proposed to fuse features of different resolutions, and an adaptive activation function was
used to replace SiLU. As a result, the system could learn and decide whether to activate
neurons to realize the dynamic control of the nonlinear degree of each layer of the network,
so as to further improve the accuracy of the grape-detection algorithm. After the series of
improvement methods mentioned above, the network structure diagram of YOLOv5-GAP,
a grape-detection algorithm based on YOLOv5, was finally proposed (Figure 3).
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2.3.3. Improvement of Backbone Network Structure

The Backbone network is usually composed of feature-extraction networks, such
as ResNet [38], VGG [39], DenseNet [40], and MobileNet [41], and extracts the surface
texture information, edge features, and position information of the image. To highlight the
characteristics of the target and improve grape-detection accuracy, this study changed the
Conv layer of the first layer of the backbone feature-extraction network CSPDarkNet53 to
the Focus layer, and a convolutional attention mechanism was added to the first three C3
modules (CBAM) [42]. The attention operation was performed on the channel and spatial
dimensions of the input feature, which retained more useful features than SENet’s attention
mechanism, which only pays attention to the channel. The schematic diagram of the CBAM
structure is shown in Figure 4.
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The channel attention mechanism first compresses the input feature map F into a
one-dimensional vector using average pooling and max pooling in the spatial dimension
(Figure 5, channel attention module). Average and max pooling can be used to aggregate
the spatial information of the feature map, and then the compressed one-dimensional
vector is passed through the shared MLP. Thus, the spatial dimension was compressed,
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then each element was summed and merged, and finally the channel attention map Mc
was generated. The channel attention mechanism was expressed as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(1)

where σ represents the sigmoid functions, W0 ∈ RC/r×C and W1 ∈ RC×C/r; W0 and W1 are
the weights of the shared MLP by the two inputs; Favg and Fmax are the average and max
pooling operations on the feature map, respectively.
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Figure 5. Channel attention module.

The spatial attention module is shown in Figure 6 below. The feature map F’ output
by the channel attention module was used as the input feature map of this module. First,
average and max pooling were performed on the input features and then the pooled results
were concatenated on the channel. Then, a convolutional layer was put through to reduce
its dimensionality to one. Finally, the spatial attention map Ms was generated through the
sigmoid function. The spatial attention mechanism was expressed as:

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))
= σ( f 7×7([Fs

avg; Fs
max]))

(2)

where σ represents the sigmoid function, f 7×7 represents the convolution operation with a
filter size of 7 × 7; Favg and Fmax are the average and max pooling operations on the feature
map, respectively.
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the last layer of the C3 structure, which became the C3TR module (Figure 7). 

Figure 6. Spatial attention module.

While adding the convolutional attention mechanism to the first three C3 modules of
the backbone feature-extraction network CSPDarkNet53, and after moving the last layer of
C3 structure to the SPPF layer, the Transformer was used in the Bottleneck module of the
last layer of the C3 structure, which became the C3TR module (Figure 7).
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Figure 7. Schematic diagram of C3TR module structure.

The advantage of using the Transformer structure over RNN for machine vision
tasks was that it largely solved the long-term dependency problem and could be trained
in parallel [43]. The Transformer obtained an optimized feature vector by stacking the
attention network and the fully connected layer, which paid attention to the relationships
between each part of the sequence and other parts and the direct relationship with the
partial results that were output. The improved Backbone network structure is shown in
Table 2. The improved network could better extract the characteristic information of grapes.

Table 2. Improved Backbone network structure.

Module Number Arguments Params

Focus 1 [3, 32, 3] 4656
Conv 1 [32, 64, 3, 2] 20,816

C3CBAM 1 [64, 64, 1] 20,130
Conv 1 [64, 128, 3, 2] 78,480

C3CBAM 3 [128, 128, 3] 116,310
Conv 1 [128, 256, 3, 2] 304,400

C3CBAM 3 [256, 256, 3] 423,670
Conv 1 [256, 512, 3, 2] 1,215,008
SPPF 1 [512, 512, 5] 700,208
C3TR 1 [512, 512, 1, False] 1,235,264

2.3.4. Improvement of Feature Fusion Method

The Neck network was designed to better utilize the features extracted by the Back-
bone network. It reprocesses and makes reasonable use of the feature maps extracted at
different stages. The Neck of the YOLOv5 algorithm adopts the path aggregation network
(PANet) [44]; a schematic diagram of the structure is shown in Figure 8A. The charac-
teristics of the PANet structure are that a top-down and bottom-up bidirectional fusion
link is established at the P2 to P6 layers. Compared with the top-down fusion strategy
proposed by FPN [45], PANet strengthens the underlying network Up-passing for more
location information.
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This study proposes to use the weighted Bidirectional Feature Pyramid Network
(BiFPN) instead of PANet. To fully express different input features, BiFPN uses learnable
weights to fuse input features of different resolutions [46]. In addition, the top-down
and bottom-up fusion strategies in PANet were used for reference and the feature fusion
was repeated many times. BiFPN added skip links in the same layer and considered that
when a node had only one input edge the contribution to feature fusion was small. BiFPN
deleted nodes with only one input edge, which did not bring too much computational
cost, and thus more features were fused. The schematic diagram of the structure is shown
in Figure 8B.

2.3.5. Improvement of Activation Function

In the neural network, the output of each layer is the linear function of the input of the
previous layer, but the expression ability of the linear model was not sufficient, such that
the activation function was introduced to improve the nonlinear expression ability of the
model. The CBS module in the YOLOv5 algorithm used the SiLU activation function for
activation, expressed in Equation (3) as:

SiLU = x · 1
1 + e−x (3)

In this study, the adaptive activation function Meta-ACON was used instead of SiLU.
The Meta-AconC activation function can learn independently and decide whether neurons
needed to be activated, so as to realize the dynamic control of the degree of nonlinearity
of the network. After the activation function was replaced, the CBS module responded
accordingly and became the CBM module. The expression of the Meta-AconC activation
function is shown in Equation (4), expressed as:

Meta−AconC = (p1− p2)x · σ[β(p1− p2)x] + p2x
β = σW1W2∑H

h=1 ∑W
w=1 xc, h, w

(4)

where p1 and p2 are responsible for the upper and lower limits of the control function and
the parameter β responsible for dynamically controlling the linearity/nonlinearity of the
activation functions, W1 ∈ RC×C/r and W2 ∈ RC/r×C, to save parameters.

2.4. Model Training

Before the grape dataset was input into the YOLOv5 network model for training,
the data augmentation method included in the algorithm was used to enrich the dataset.
Various methods such as random scaling, random cropping, and image resizing were used
to stitch the images, which not only expanded the image set but also improved the detection
of small targets. In addition, before training the model, the grape image was adaptively
scaled and filled, and the input image size was normalized to 640 × 640 pixels.
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In the algorithm training phase, nine anchor boxes of different sizes were set. During
the training process, the stochastic gradient descent (SGD) algorithm was used to optimize
the algorithm. The momentum size of the momentum optimizer was set to 0.937, the
attenuation coefficient was 0.0005, and the number of target categories was 1. The number
of training iterations was 150, the number of samples input for each iteration was 8, and
the algorithm with the best detection effect was selected as the grape-detection algorithm.
A total of 9 algorithms were trained in this experiment, which included YOLOv4, YOLOv5,
YOLOv7, YOLOv5-GAP, and 5 ablation test algorithms of YOLOv5-GAP.

2.5. Picking-Point Positioning

After grape bunches were detected using the proposed YOLOv5-GAP algorithm, it
was necessary to further determine the picking-point locations. However, the fruit stems
of the grapes were blocked by branches and leaves and the overall shape was similar to
the main vine, such that it was not suitable to use the deep learning method directly. This
study used the digital image processing algorithm combined with mathematical geometry
to locate the picking points. The difficulty in locating the picking point lay in how to
accurately find the growth direction of the fruit stem. The geometric shape of the grape
bunches was mostly long conical and affected by gravity. The fruit stem is generally
vertically downward and the picking point on the fruit bunch is above the center. However,
some fruit stems are not in the center of the fruit bunch, in which case, there may be an
error in positioning the picking point directly above the center of the fruit bunch. In this
study, the picking point was determined by the centroid. First, the grape clusters were
identified by the YOLOv5-GAP algorithm and then the centroid of the fruit cluster was
obtained through a series of digital image processing algorithms. The fruit axis was usually
above the centroid of the fruit cluster and the centroid and upper boundary was in the
vertical direction. The intersection point was defined as the lower extreme point of the
fruit stem and the position 10 pixels directly above the lower extreme point was used as
the picking point. Here, 40 sample images were used to locate the picking point on the
fruit axis.

2.5.1. Image Segmentation

Grape image segmentation is the basis for finding picking points. First, the YOLOv5-
GAP algorithm proposed in this study was used to identify grape bunches to reduce
noise; a detected image is shown in Figure 9. However, the recognized original image
still contained the influence of some green leaves, branches, and other sundries. Here, the
original image was converted to HSV color space and binary images of grape bunches were
obtained. Then, the isolated noise pixels were processed by a median filter, which did not
cause obvious blur to the image and maintained the edge characteristics of the image.
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The open operation in mathematical morphology can smooth the contours of an image,
break narrow connections, and eliminate burrs. The filtered binary image noise here was
mainly composed of surrounding noise blocks and inner noise holes. For noise blocks,
the morphological opening operation was used to eliminate part of the influence. The
findContours function for internal noise holes was used to select the RETR_CCOMP mode,
find the contour of the hole in the grape bunch, judge the size of each contour, and fill it
when it was <60 pixels; the image segmentation process is shown in Figure 10. After image
segmentation, some green leaves might be separated from the overall outline of the grape.
However, the size of these green leaves was negligible.

Horticulturae 2023, 9, x FOR PEER REVIEW 11 of 19 
 

 

mode, find the contour of the hole in the grape bunch, judge the size of each contour, and 
fill it when it was <60 pixels; the image segmentation process is shown in Figure 10. After 
image segmentation, some green leaves might be separated from the overall outline of the 
grape. However, the size of these green leaves was negligible. 

      
(A) (B) (C) (D) (E) (F) 

Figure 10. Image segmentation. Original image (A), S channel image (B), binary image (C), median 
filter (D), open operation (E), and hole filling (F). 

2.5.2. Geometric Calculation of Picking-Point Position 
The binary image after morphological operation segmented the grape bunches well, 

with the fruit bunch area displayed as white (pixel value 1) and the rest of the area dis-
played as black (pixel value 0). However, to find the centroid of an irregularly shaped 
bunch of grapes, the center of a blob needed to be determined, which was a group of in-
terconnected pixels with the same properties in an image. In this study, OpenCV was used 
to find the center of a binary blob. 

In image processing, each shape is composed of pixels and the centroid is the 
weighted average of all the pixels that make up the shape. OpenCV uses moments to find 
the center of a blob. Image moments are a special weighted average of image pixel inten-
sities that can be used to calculate the radius, area, and centroid [47]. The centroid was 
calculated using Equation (5), expressed as: 

00

01

00

10

M
MC

M
MC

y

x

=

=
 

(5) 

where Cx is the x-coordinate of the center of mass, Cy the y-coordinate of the center of 
mass, and M the moment. 

The centroid of the grape bunch obtained through the above calculation is shown in 
Figure 11. The P coordinate of the centroid was (x0, y0) and, when the fruit axis pointed 
vertically downward, it was usually above the centroid of the bunch. Here, A(x0,0) directly 
above the centroid P(x0, y0) was taken as the lower extreme point of the fruit stem, the 
position 10 pixels directly above the lower extreme point was the picking point, and the 
position coordinates of the picking point were (x0, −10). Notably, the lower extreme point 
of the actual fruit stem was B(x1,0), such that Equation (6) for the pixel error value of the 
lower extreme point was: 

|| 01 xx −=λ  (6)

When picking, the accuracy of the axial dimension of the cut fruit shaft belonged to 
the free precision range, but in actual scenarios, some fruit stems were not vertically 
downward and had a certain angle. Considering the fault tolerance of the end mechanism, 
when the error of the extreme point under the fruit stem was within the allowable range, 
the detection of the grape-bunch axis by the end mechanism had a certain robustness. 

Figure 10. Image segmentation. Original image (A), S channel image (B), binary image (C), median
filter (D), open operation (E), and hole filling (F).

2.5.2. Geometric Calculation of Picking-Point Position

The binary image after morphological operation segmented the grape bunches well,
with the fruit bunch area displayed as white (pixel value 1) and the rest of the area displayed
as black (pixel value 0). However, to find the centroid of an irregularly shaped bunch of
grapes, the center of a blob needed to be determined, which was a group of interconnected
pixels with the same properties in an image. In this study, OpenCV was used to find the
center of a binary blob.

In image processing, each shape is composed of pixels and the centroid is the weighted
average of all the pixels that make up the shape. OpenCV uses moments to find the center
of a blob. Image moments are a special weighted average of image pixel intensities that can
be used to calculate the radius, area, and centroid [47]. The centroid was calculated using
Equation (5), expressed as:

Cx =
M10

M00

Cy =
M01

M00

(5)

where Cx is the x-coordinate of the center of mass, Cy the y-coordinate of the center of mass,
and M the moment.

The centroid of the grape bunch obtained through the above calculation is shown in
Figure 11. The P coordinate of the centroid was (x0, y0) and, when the fruit axis pointed
vertically downward, it was usually above the centroid of the bunch. Here, A(x0, 0) directly
above the centroid P(x0, y0) was taken as the lower extreme point of the fruit stem, the
position 10 pixels directly above the lower extreme point was the picking point, and the
position coordinates of the picking point were (x0, −10). Notably, the lower extreme point
of the actual fruit stem was B(x1,0), such that Equation (6) for the pixel error value of the
lower extreme point was:

λ =|x1 − x0| (6)
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When picking, the accuracy of the axial dimension of the cut fruit shaft belonged
to the free precision range, but in actual scenarios, some fruit stems were not vertically
downward and had a certain angle. Considering the fault tolerance of the end mechanism,
when the error of the extreme point under the fruit stem was within the allowable range,
the detection of the grape-bunch axis by the end mechanism had a certain robustness.

3. Results
3.1. Algorithm Evaluation Indicators

These experiments used precision (P), recall (R), average precision (AP), Fβ score [48],
and model weight size as the evaluation metrics for the algorithm. Among these, the AP
was the area under the P-R curve and the Fβ score was the balance of P (the proportion of
positive samples that were correctly predicted of all detected samples) and the R metric
(the proportion of all positive samples). In this experiment, β = 2 was taken to calculate the
Fβ score. The specific calculation equations of the above evaluation indicators are shown in
Equations (7)–(10), expressed as:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
∫ 1

0
P(R)d(R) (9)

Fβ =
(1 + β2)× (P× R)

(β2 × P + R)
(10)

where TP is the number of positive samples predicted as positive by the algorithm, FP
is the number of negative samples predicted as positive by the algorithm, and FN is the
number of positive samples predicted as negative by the algorithm.

In this paper, the Intersection over Union (IOU) ratio between the prediction results
and the real target label was used to determine whether the detected target was grapes.
When the value of the IOU is greater than the set threshold, it was considered to have suc-
cessfully detected grapes, and the calculation of the IOU can be expressed by Equation (11).
The IOU was set to 0.55 during the experiment in this article.

IOU =
prediction results∩ real target label
prediction results∪ real target label

(11)
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For the object-detection model, we generally used the final output of a confidence level,
by setting a confidence threshold—for example, this paper sets the confidence threshold
to 0.6, and then higher than 0.6 was considered to be detected as a positive sample. Then,
on the basis of this set of positive samples, we set an IOU threshold (the IOU threshold
of this paper is 0.55) greater than the threshold considered to be TP, and the others were
considered to be FP.

3.2. Algorithm Training Results

The divided training and validation sets were input into the YOLOv5 and YOLOv5-
GAP networks for training. After 150 batches of training, the obj loss and box loss function
value curves during training were obtained (Figure 12).
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The box loss value of the YOLOv5 algorithm decreased rapidly between training
batches 0 and 20, and then the decline rate slowed (Figure 12). After the improvement of
YOLOv5-GAP and applying the training set after 150 training cycles, the box loss value
was slightly larger than the box loss value of the YOLOv5 algorithm. However, the box
loss value of YOLOv5-GAP on the validation set was smaller than that of YOLOv5, and
it finally stabilized around 0.015 (Figure 12). When the training batch was between 0 and
50, the obj loss value of YOLOv5 on the validation set decreased, but after 50 batches, the
loss value volatility increased. Meanwhile, the obj loss value of the YOLOv5-GAP on the
validation set decreased steadily, and the final loss value stabilized around 0.008.

3.3. Ablation Test Results and Analysis

To clearly examine the impact of each improvement point on the algorithm, incre-
mental ablation experiments were used to verify a test set of 184 grape images (Table 3).
Algorithm A represented the original YOLOv5 algorithm, Algorithm B represented the
replacement of the first Conv layer in the Backbone of the original YOLOv5 algorithm with
Focus; Algorithm C, with the basis of Algorithm B, represented the first three C3 structures
of the Backbone of the original YOLOv5 algorithm, with attention paid to the channel and
space dimensions; Algorithm D, on the basis of Algorithm C, represented the situation
after moving the last layer of the Backbone C3 structure to the SPPF layer, and the original
Bottleneck of the last layer of C3 structure being replaced by the Transformer-Block module,
becoming a TR structure; Algorithm E, on the basis of Algorithm D, represented a weighted
Bidirectional Feature Pyramid Network (BiFPN) proposed to perform more-efficient multi-
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scale feature fusion; and the YOLOv5-GAP Algorithm F proposed here, based on Algorithm
E, represented using the Meta-ACON activation function to replace SiLU. Compared with
Algorithm A, the P rate, R rate, and AP rate of Algorithm B were increased by 0.61%,
1.19%, and 0.88%, respectively, which yielded that the algorithm was more accurate in
identifying grapes. Although the accuracy of Algorithm C was significantly different from
that of Algorithm A and B, the R rate was 2.07% higher than that of Algorithm A, which
showed that the CBAM module effectively improved the R rate. Algorithm D improved
the accuracy of Algorithm C after using the Transformer module. Algorithm E slightly
improved the AP rate of the model. The P rate of YOLOv5-GAP Algorithm F proposed
here was 1.74% lower than that of Algorithm E, but the R rate, AP rate, and Fβ scores were
the highest, at 97.34%, 95.13%, and 0.9331, respectively, and the weight only increased by
0.5 M, compared with the original model. This demonstrated that YOLOv5-GAP better
balanced the P rate, R rate, AP rate, Fβ score, and weight, which effectively improved
effective grape detection.

Table 3. Ablation test results of different algorithms.

Algorithm Abbreviation Precision (%) Recall (%) Average
Precision (%) Fβ Score Weight Size/M

YOLOv5 A 81.94 92.60 90.79 0.9025 13.7
YOLOv5 + Focus B 82.55 93.79 91.67 0.9130 13.7

YOLOv5 + Focus + CBAM C 79.01 94.67 92.32 0.9103 13.2
YOLOv5 + Focus + CBAM + TR D 81.33 94.08 91.94 0.9122 13.2

YOLOv5 + Focus + CBAM + TR + BiFPN E 81.79 94.97 92.98 0.9200 13.3
YOLOv5 + Focus + CBAM + TR + BiFPN +

Meta-ACON F 80.05 97.34 95.13 0.9331 14.2

3.4. Comparative Test Results and Analysis

The effectiveness of the YOLOv5-GAP algorithm for grape detection was further
verified under the same experimental conditions in comparison with the existing main-
stream single-stage target-detection algorithm. The experiment utilized P rate, R rate, AP
rate, Fβ score, and weight size as evaluation indicators for algorithm performance. The
performance comparison results of different detection algorithms are shown in Table 4.

Table 4. Performance comparison of different detection algorithms.

Algorithm Resolution Precision (%) Recall (%) Average Precision (%) Fβ Score Weight Size/M

YOLOv4 640 × 640 90.32 69.98 79.00 0.7328 244
YOLOv5 640 × 640 81.94 92.60 90.79 0.9025 13.7
YOLOv7 640 × 640 78.43 94.67 92.78 0.9091 71.3

YOLOv5-GAP 640 × 640 80.05 97.34 95.13 0.9331 14.2

The YOLOv4 algorithm, with the same dataset, had the highest precision rate for grape
detection, with a precision rate of 90.32% (Table 4). However, its R rate was the lowest
and the weight of YOLOv4 reached 244 M, which affected the inference speed. The AP
rate of YOLOv5-GAP was 95.13%, which was 16.13%, 4.34%, and 2.35% higher than that
of YOLOv4, YOLOv5, and YOLOv7, respectively. The YOLOv5-GAP algorithm proposed
here achieved the highest Fβ score, reaching 0.9331, which indicated that it offered a better
balance of detection precision and recall and could meet the requirements of efficient
grape detection.

3.5. Comparison of Test Results

In this paper, the grape pictures of Zengcheng District, Guangzhou (Figure 13(A1)),
and the grape pictures of Babao Baron Winery, Shihezi, Xinjiang (Figure 13(A2)), were
tested, respectively, and compared with the original YOLOv5 network, to demonstrate
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the detection effect of the YOLOV5-GAP algorithm on grapes. The test results are shown
in Figure 13.
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(0.62, 0.91, 0.77, 0.77) ((C2), YOLOv5-GAP).

The YOLOv5-GAP algorithm detected some occluded, shadowed, and overlapping
grape clusters (Figure 13). Compared with YOLOv5, the missed detection of grape clusters
was significantly improved. Therefore, the YOLOv5-GAP proposed here had the better
detection performance.

3.6. Picking-Point Positioning-Error Test

Here, 40 sample pictures were selected for the picking-point location experiment. The
intersection of the centroid and upper boundary in the vertical direction was defined as the
lower extreme point of the fruit stem. A positioning process image of the lower extreme
point is shown in Figure 14, and due to the complex background, most of the short fruit
axes were obscured. The problem of finding picking-point locations when the fruit axes
are partially obscured was discussed above. Here, grape clusters were detected by the
improved YOLOv5, the geometric algorithm was then used to estimate the position of the
fruit axis, and the fruit-axis picking point with pixel error was calculated.



Horticulturae 2023, 9, 498 16 of 19

Horticulturae 2023, 9, x FOR PEER REVIEW 16 of 19 
 

 

point was calculated according to Equation (6), λ = |x1 – x0|. The pixel error of the lower 
extreme points of the 40 sample images is shown in Figure 16. 

    
(A) (B) (C) (D) 

Figure 14. Positioning process diagram. Original image (A). H channel image (B). Center of mass 
(C) and Lower extreme point (D). 

 
Figure 15. Location of lower extreme point. Abscissa, number of trials and ordinates, pixel value. 

By analyzing the pixel error value of the lower extreme point positioning (Figure 16), 
the average pixel positioning error of the lower extreme point of the fruit stalk was used 
to determine the picking point at 6.3 pixels. Of these images, 33 images had pixel error 
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Figure 14. Positioning process diagram. Original image (A). H channel image (B). Center of mass
(C) and Lower extreme point (D).

Assuming that the position 10 pixels directly above the lower extreme point was used
as the picking point, the positioning error of the picking point was mainly derived from
the pixel positioning error of the lower extreme point. First, the position of the extreme
point under the grape cluster axis was manually measured, the algorithm proposed here
was then used for calculation and comparison, and the error was estimated. The position
of the lower extreme point measured manually was marked as (x1, 0), and the calculated
position was marked as (x0, 0) (Figure 15). Thus, the pixel error value of the lower extreme
point was calculated according to Equation (6), λ = |x1 – x0|. The pixel error of the lower
extreme points of the 40 sample images is shown in Figure 16.
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By analyzing the pixel error value of the lower extreme point positioning (Figure 16),
the average pixel positioning error of the lower extreme point of the fruit stalk was used
to determine the picking point at 6.3 pixels. Of these images, 33 images had pixel error
values below 10 pixels and the pixel errors of the lower extreme points of the other 7 images
were greater than 10 pixels, with the lower extreme point located in the area outside the
fruit stalk. The analysis of the extreme point calculation method used here showed that it
might be that some green branches and leaves and adjacent grape clusters interfered with
centroid calculation during image segmentation. The fault tolerance of the picking robot
end mechanism of this system was >10 pixels, which could make up for the direction pixel
error generated by the method used here.
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4. Conclusions

In view of the characteristics of a wild orchard environment, to quickly and accurately
calculate the image position and picking point of grapes, a grape-detection algorithm,
YOLOv5-GAP, was proposed based on YOLOv5. This algorithm integrated the network
structure of YOLOv5’s Backbone and feature fusion method, and the activation function
was improved for grape-detection performance. The digital image processing algorithm
combined with mathematical geometry was used to locate the picking point.

Compared with the original YOLOv5 algorithm, the average precision of YOLOv5-
GAP was 95.13%, which was 4.34% higher than the average precision of YOLOv5, and the
Fβ score was improved by 3.39%. The detection performance was better than the single-
stage target-detection algorithms YOLOv4, YOLOv5, and YOLOv7. The average pixel
positioning error of the extreme point under the fruit stalk used to determine the picking
point was 6.3 pixels, which verified that the algorithm was effective in grape detection.

The YOLOv5-GAP algorithm proposed here was not ideal for the detection of some
small-target grape clusters in shadows. In the future, the network model structure will be
further optimized to improve the detection performance of small-target grape clusters in
shadows and an end mechanism will be developed that meets the picking-point positioning
method proposed in this study. At the same time, to enable the grape harvester to walk in
the orchard independently, the harvester will be positioned by a visual odometer in the
next step.
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