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Abstract: The application of crop growth simulation and water management models will become
increasingly important in the future. They can be used to predict yield reductions due to water
scarcity and allocate water to ensure profitable crop production. The objective of this research was to
calibrate the AquaCrop model for common bean (Faseolus vulgaris L.) grown in temperate climates
and to test whether the model can be used for different irrigation strategies to achieve high yield
productivity. The model was calibrated using data obtained from two years of experimental research
in the Serbian territory of the Syrmia region. There were three sowing periods/plots: I—mid April,
II—end of May/beginning of June, and III—third decade of June/beginning of July; and three levels
of irrigation/subplots: full irrigation (F) providing 100% of crop evapotranspiration (ETc), mild
deficit irrigation (R) at 80% of ETc, and moderate deficit irrigation (S) at 60% of ETc. The results
show that the AquaCrop model accurately predicts common bean yield, biomass, canopy cover, and
water requirements. The statistical indices of the calibrated dataset, coefficient of determination
(R2), normalized root mean square error (NRMSE), mean bias error (MBE), and Willmott agreement
index (d) for yield and biomass were: 0.91, 0.99; 6.9%, 11.4%; −0.046, 1.186 and 0.9, 0.89, respectively.
When testing three irrigation strategies, the model accurately predicted irrigation requirements for
the full and two deficit irrigation strategies, with only 29 mm, 32 mm, and 34 mm more water than
was applied for the Fs, Rs, and Ss irrigation strategy, respectively. The AquaCrop model performed
well in predicting irrigated yield and can be used to estimate the yield of common bean for different
sowing periods and irrigation strategies.

Keywords: common bean; irrigation strategy; AquaCrop; sowing periods; canopy cover

1. Introduction

In Serbia, as in other temperate climate countries, common bean has largely been
grown under rainfed conditions. However, as a result of altered climatic conditions—
corroborated by formal climate studies [1]—a dramatic decline in production of this staple
food has been registered in Serbia over the past several decades, as well as lack of irrigation.
The highest risk originates from increased air temperatures, erratic precipitation patterns
and amounts, heat waves, frequent storm and hail events, increased number in dry and
tropical days, etc. [2]. In addition, according to farmers’ perception, climate change has a
negative impact on plant production in Serbia [3]. Based on analyses of future climate sce-
narios in Southeast Europe through to the end of the century, air temperatures are expected
to rise, dry periods are to lengthen, precipitation patterns will become increasingly non-
uniform, and heat waves and other unwelcome events are to occur more often [4], implying
the need to irrigate common bean. Countries poor in water resources, such as Serbia, need
to develop irrigation strategies that meet the demands of various stakeholders. As such, the
use of models for simulation of plant growth, water needs of crops, and water management
will be increasingly important in the future for crop growth monitoring, forecasting of yield
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reduction in the event of drought, and allocating water to ensure profitable crop production.
Many models have been developed to simulate plant growth or water management in
agriculture, such as DSSAT, Cropsys, EPIC, APEX, WOFOS, SWAP, AquaCrop, etc. [5–9].
The models can be categorized into three types: energy-driven, carbon-driven, and water-
driven. They can all be used in practice, with varying degrees of effectiveness [10]. As
far as we are aware, DSSAT-BEANGRO has been calibrated to simulate common bean
growth [7,11,12]. Recent research has dealt with the correlation between common bean
(Phaseolus vulgaris L.) yield and irrigation water availability, providing irrigation water
from higher elevations of a catchment to grow common bean at lower elevations in Haiti,
using the Cropping System Model (CSM)-CROPGRO-Dry of DSSAT [13] or to optimize
irrigation management as a function of the sowing date and the common bean cultivar [14].

Given that water would frequently be a growth-limiting factor in the future, the
water-driven model, AquaCrop, has often been used in recent times because it is a robust
model that requires only a limited number of input parameters, which can easily be mea-
sured in the field and is user friendly. Additionally, studies have shown that the model
accurately simulates the yields and water requirements of various crops grown world-
wide [15–19]. AquaCrop can also be used effectively to predict crop water requirements by
assimilating the canopy cover estimated from Sentinel-2 imagery [20–23], and to evaluate
the effects of optimized irrigation management on the minimization of percolation losses
and maximization of crop yield for different soil types [24].

AquaCrop has been parameterized and validated for common bean growth simulation
under Mediterranean climatic conditions (Davis, CA, USA), based on two experiment
datasets from two doctoral theses, where common bean was grown with different irrigation
treatments [25]. Some researchers have attempted to parameterize or calibrate AquaCrop
for dry beans using the results of only a single experiment dataset in the tropical climatic
condition of Cuba [26] or the megathermal and humid climate of Brazil [27,28]. AquaCrop
can be used effectively to test sowing dates in the case of barley [29,30], sorghum [31], or
sugar beet [32], and to optimize sowing dates in the case of sunflower and soybean [33].
Additionally, sowing date changes are proposed as a climate change impact mitigation
measure. Studies show that spring sowing dates might be advanced, or aftercrop sowing
dates delayed, due to unfavorable temperature conditions for the germination, growth,
and development [34].

Given that no reports were found in the literature concerning the calibration of this
model for temperate climates and common bean, or that AquaCrop can be used to ef-
fectively simulate sowing dates, the objectives of this research were to: (i) calibrate the
AquaCrop model v.7.0 for temperate continental climatic conditions, (ii) simulate the yield
of common bean in different growing periods and with various irrigation treatments, and
(iii) test how reliably the model estimates irrigation water requirements that will ensure
high productivity, which was a novel aspect of the research.

2. Materials and Methods

Relevant principles of the AquaCrop model are described in detail in [6,35]. In the
present research, calibration was based on the default parameters of AquaCrop v.7.0 for
common bean, as well as data collected during a two-year experiment on Chernozem soil in
Syrmia (44◦58′55.4′′ N lat., 20◦7′51.2′′ E long.), in 2019 and 2020. The two-year experiment
was of a two-factorial split-plot design, divided into subplots. The common bean cultivar
was ‘Sremac’, a vertical bush bean variety with large leaves; its growing period is short,
70–90 days, and it tolerates drought and high temperatures in the flowering stage. Thus, the
yields of this cultivar are stable in different climatic conditions. Three irrigation treatments
were applied: F—full irrigation providing 100% of ETc (crop evapotranspiration), R—
mild deficit irrigation at approximately 80% of ETc, and S—moderate deficit irrigation
at approximately 60% of ETc. There were three sowing periods: standard I, mid-April,
consistent with the climatic conditions in Serbia); late spring II, end of May/beginning
of June; and summer III, third decade of June/beginning of July. The soil characteristics
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of the experimental site are described in detail in [36]. The climate input data (maximum
and minimum air temperatures, maximum and minimum relative humidity, net radiation,
wind velocity, and precipitation) were measured daily in the field by a micrometeorological
station, and the data were validated against the nearest meteorological station of the first
order in Surčin, at a distance of 20 km. The field file was based on measured canopy
cover (CC) and soil water content data. The soil moisture was monitored by the standard
gravimetric method, every seven to ten days. The soil was drilled and sampled by layer,
at 0–20, 20–40, and 40–60 cm. The canopy cover sampling methods are described in
detail in [36]. The yield and harvest index were recorded when the common bean was
physiologically ripe and contained 10% of moisture. Table 1 shows the details of sowing
and harvesting dates, irrigation depths, and amounts of precipitation.

Table 1. Sowing and harvesting dates with lengths of important growing phases of common bean
and climatic characteristics during experiment.

Year Treatment Sowing Date
Length of Emergency/Leaf

Development/Flowering/Pod
Formation/Pod Maturation (Days)

Harvesting
Date

Tm
(◦C)

Precipitation
(mm)

Irrigation
Depth (mm)

2019

F-I
22 April 16/29/9/25/15 25 July 25.22 430

0
R-I 0
S-I 0
F-II

7 June 10/25/15/25/22 12 September 30.17 239
150

R-II 117
S-II 84
F-III

3 July 7/26/12/26/21 3 October 28.12 171
249

R-III 180
S-III 129

2020

F-I
15 April 12/38/15/20/16 25 July 18.11 247

228
R-I 162
S-I 126
F-II

28 May 9/33/16/19/21 3 September 22.00 314
141

R-II 90
S-II 75

For irrigation simulation, the model was set to three levels: (i) fulfill net irrigation
demand (Fs) assuming option to start drip irrigation when 50% of readily available water
(RAW) is depleted, and refill to nearly field capacity (−8 mm) for efficient use of rainfall,
(ii) fulfill partial irrigation requirements Rs—start irrigation when 80% of RAW is depleted,
and refill up to −20 mm of field capacity, and (iii) start irrigation when 100% of RAW is
depleted and refill up to −25 mm (Ss). The simulated irrigation strategy was very close
to that applied in the experiment, but it was not identical. The aim of this research was to
assess the reliability of the model to be used for irrigation planning in a moderate climate,
where irrigation is very often supplemental.

Calibration was based on local ground measured data on crop yield, biomass accumu-
lation, canopy cover, soil moisture, irrigation depth, and evapotranspiration of common
bean sown in the spring (as is standard practice in this part of Europe) and late spring,
with full irrigation (I-F, II-F) and deficit irrigation treatments (II-R, II-S) in 2020. The other
treatments in 2019 (I-F, II-F, III-F, II_R, III-R, II-S, III-S) and 2020 (I-R, I-S) were used for
model validation. Treatments III-F, III-R, and III-S were excluded because invasion of
forest bugs (Pentatoma rufipes) in the reproductive stage significantly lowered dry bean
yields [37]. The growing degree day (GDD) option was selected, given that the growing
cycle is shorter for the summer sowing date, compared to the other two. The observed
GDD varied between 930, when the highest yield was obtained for the standard spring
sowing date, and up to 1300 for the late spring sowing date, when the average yield of the
fully irrigated common bean was obtained (Table 2). Calibration was based on the average
GDD (Table 3), taking into account the duration of phenological stages (germination, leaf
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development, flowering, pod formation, senescence, and maturity). The average growing
cycle lasted for 98, 94, and 100 days in sowing periods I, II, and III, respectively (Table 1).
Iterations continued until good statistical parameters were achieved, as provided by the
model based on observed and simulated values. Default parameters were taken for WP,
crop coefficient, and the water stress.

Table 2. Growing degree days per growing cycle I (spring sowing period), II (late spring), and III
(summer).

Year/Sowing Period I II III Average

2019 978 1300 1144 1141
2020 932 1226 - 1111

Table 3. Default and calibrated data, DAP—days after planting.

Parameter Default Calibrated

Canopy decline (CDC), % per day 0.881 1.104
Canopy expansion (CGC), % per day 11.8 9.7

Maximum canopy cover (CCx), % 99 95
GDD from DAP to emergence 59 98

GDD from DAP to maximum canopy 752 605
GDD from DAP to senescence 903 945

GDD to maturity 1298 1140
GDD from DAP to flowering 556 592

Flowering duration, GDD 233 206
Length building up harvest index (HI) 668 496
Maximum effective rooting depth, m 1.7 0.6

DGG from DAP to maximum root depth 888 449
Adjusted harvest index 40 50
Harvest index (Hlo), % 90 75

Five statistical methods were used to analyze and compare yield data derived from
field experiments and simulations. The first was the root mean square error (RMSE) method
and normalized NRMSE:

RMSE =

[√
1
n

n

∑
i=1

(Si −Mi)
2

]
(1)

where Si and Mi = simulated and measured values, respectively, and n = number of
observations. The RMSE unit is the same for both variables (Mg·ha−1), and the model’s fit
improves when RMSE tends toward zero, whereas the NRMSE unit is %.

NRMSE =

[√
1
n

n

∑
i=1

(Si −Mi)
2

]
·100

M
(2)

The second method was the mean bias error (MBE), which refers only to an error that
is systematic in nature:

MBE =

[
1
n

n

∑
i=1

(Si −Mi)
2

]
(3)

The index of agreement (d) was calculated using Equation (4) [38]:

d = 1−

n
∑

i=1
(Si −Mi)

2

n
∑

i=1
(
∣∣Si −M

∣∣+ ∣∣Mi −M
∣∣)2

(4)
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where M = average values of measured data. The index of agreement d is a descriptor and
its values range from 0 to 1. The model simulated the studied parameter better as the value
approached 1.

The coefficient of determination R2 is defined as the squared value of Pearson’s
correlation coefficient.

R2 =
∑
(

Mi−M
)(

Si− S
)√

∑
(

Mi−M
)2

∑
(
Si− S

)2
(5)

where S = average values of simulated data.

3. Results

The results of model calibration are shown in Table 4. It is apparent that the model
estimated yields quite well, as the deviation ranged from 1.2% to −7.4%. The variation
range of the estimated biomass was somewhat larger (3.7% to −14.9%). Based on all tested
statistical indicators (RMSE, NRMSE, MBE, d, and R2), there was an excellent agreement
in the case of both yield and biomass (Table 5). The mean bias error (MBE) indicates the
average bias of the prediction. MBE values were low, showing that the model was well
calibrated and did not require further tuning. A negative MBE indicates that the model
yields slightly lower values, whereas a positive MBE indicates that the total biomass is
slightly higher. Figure 1 shows the seasonal trend of canopy cover and biomass accumula-
tion for the calibrated dataset. The correlation between the observed and simulated CC
and biomass was excellent, as corroborated by the statistical parameters computed by the
model. The correlation coefficient varied from 0.91 to 0.99, NRMSE was <12% for CC and
<25% for biomass, while the Willmott index d ranged from 0.92 to 0.99. The CC values
derived via unmanned aerial vehicle (UAV), manual recording and calculations closely
matched the simulated values, which will facilitate field data collection in the future.

Table 4. Simulation results of yield and biomass for calibration datasets of common bean (full (F)
and deficit (R and S) irrigation treatments), obtained from two sowing periods, I (spring) and II (late
spring) in 2020, and deviation from measured values.

Treatment Measured Simulated Deviation Measured Simulated Deviation

Yield (Mg ha−1) % Biomass (Mg ha−1) %

I-F 4.42 4.75 −7.4 8.6 9.49 −14.9
II-F 4.18 4.13 1.2 7.85 8.07 −2.8
II-R 3.92 3.71 5.4 7.77 7.48 3.7
II-S 3.5 3.25 7.1 7.24 6.82 5.8

Table 5. Statistical indices of yield and total biomass for calibration and validation datasets.

Variable
Calibration Dataset Validation Dataset

Yield Biomass Yield Biomass

RMSE
(Mg·ha−1) 0.276 0.91 0.466 0.737

NRMSE (%) 6.89 11.64 12.09 9.87

MBE −0.046 0.186 0.103 0.546

d 0.902 0.894 0.396 0.903

R2 0.98 0.988 0.152 0.507
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agreement according to NMRSE (12.09% and 0.90%) and good to moderate agreement in 
the case of the other parameters (Table 5). A better agreement was achieved for biomass 
than yield. Low MBE values indicated that the model did not systemically distort the 
results. Figure 2 shows the simulated and observed CC data during the growing period, 
and Figure 3 the biomass accumulation data. The results indicate that most of the 
treatments achieved a very good match between the simulated and observed CC and 
biomass values. Somewhat larger deviations were noted in treatments II-S and III-S, at 
which time the common bean was exposed to a higher water stress and higher summer 
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excellent agreement for most of the treatments. 
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Figure 1. Simulation of canopy cover and biomass accumulation throughout the growing cycle
of common bean used for model calibration per irrigation treatment; full (F) and deficit (R and S)
irrigation treatments and sowing periods I (spring) and II (late spring).

The model validation results are shown in Table 6. The simulated yields deviated
the least in the case of full irrigation, from −0.05% to 13.3%, and the most in the late
sowing periods or high water-stress treatments (I-S, II-S, and III-S). The statistical indicators
of the yield and final biomass simulations for the entire validation dataset showed an
excellent agreement according to NMRSE (12.09% and 0.90%) and good to moderate
agreement in the case of the other parameters (Table 5). A better agreement was achieved
for biomass than yield. Low MBE values indicated that the model did not systemically
distort the results. Figure 2 shows the simulated and observed CC data during the growing
period, and Figure 3 the biomass accumulation data. The results indicate that most of
the treatments achieved a very good match between the simulated and observed CC and
biomass values. Somewhat larger deviations were noted in treatments II-S and III-S, at
which time the common bean was exposed to a higher water stress and higher summer
month temperatures. The statistical indicators computed by the model confirm good to
excellent agreement for most of the treatments.
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Table 6. Measured vs. simulated results for validation datasets of common bean grown under
different water treatments; full (F) and deficit (R and S) irrigation and sowing period conditions I
(spring), II (late spring), and III (summer).

Year Treatment
Measured Simulated Deviation Measured Simulated Deviation

Yield (Mg ha−1) % Biomass (Mg ha−1) %

2019

I-F 4.21 3.65 13.3 7.84 7.52 4.1
II-F 3.84 3.95 −2.9 7.44 7.73 −3.9
III-F 4.19 4.19 −0.05 8.07 8.14 −0.9
II-R 3.75 3.92 −4.4 7.01 7.70 −9.8
III-R 3.76 4.18 −11.1 7.4 8.11 −9.6
II-S 3.27 3.79 −16.0 6.64 7.58 −14.2
III-S 3.47 4.14 −19.3 7.05 8.05 −14.1

2020
I-R 4.26 4.62 −8.4 8.03 9.37 −16.7
I-S 3.96 3.20 19.2 7.72 7.92 −2.5
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Figure 3. Simulated and observed data of biomass accumulation during the growing period of the
treatments used for model validation; full (F) and deficit (R and S) irrigation treatments and sowing
periods I (spring), II (late spring), and III (summer).

The model computed the irrigation norms for the full and two deficit irrigation
treatments, based on the values set for the beginning of irrigation and the level to which
the soil water reservoir needed to be refilled. Table 7 shows the average values. The model
simulated only 29 mm, 32 mm, and 34 mm of more water for the Fs, Rs, and Ss irrigation
strategies, compared to the actual amounts applied in the experiment. The deviations of
the average values were larger in the case of the applied than the simulated norms. This
was due to the adjustment of the beginning of irrigation to the occurrence and duration
of rainfall, which the model could not identify; it recognized the daily precipitation total,
but not whether rainfall lasted the entire day. Considering the yields achieved with these
irrigation strategies, the model estimates were excellent in the case of full irrigation (Fs),
since the deviations were from −0.8% to −9.3% (Table 8). The Rs deficit irrigation option
resulted in a good agreement, with deviations ranging from −10.7% to 20.3%. The larger-
deficit irrigation treatment (Ss) exhibited the poorest agreement, with deviations as high
as 25%. Considering all irrigation options (Fs, Rs, and Ss) and sowing dates, the modeled
yields were comparable to those achieved in the field. The statistical indicators showed
that the model approximated well for the yields and irrigation norms (Table 9). It predicted
a somewhat shorter growing period by about nine days. Taking all statistical indicators
into account, the best results were achieved for total biomass, followed by yield. In the case
of R2, the descending order of agreement was growing cycle (GC), biomass (B), irrigation
requirement (In), and yield (Y); for NRMSE it was Y, B, In, and GC; and for Willmott index
d it was B, Y, GC, and In.
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Table 7. Average applied and simulated irrigation norms In (mm) per irrigation treatment; full (F)
and deficit (R and S) irrigation, including standard deviation.

Irrigation Treatment Applied In SD Simulated In SD

F 206 54 221 9
R 137 41 169 24
S 104 28 137 17

Table 8. Measured and simulated yields (Mg ha−1) based on modeled irrigation depths; full (F) and
deficit (R and S) irrigation treatments and sowing periods I (spring), II (late spring), and III (summer).

Treatment Measured Simulated Deviation

I_F_2019 4.21 4.08 3.0
II_F_2019 3.84 4.13 −7.6
II_R_2019 3.75 4.10 −9.3
II_S_2019 3.27 4.10 −25.3
III_F_2019 4.19 4.22 −0.8
III_R_2019 3.76 4.20 −11.6
III_S_2019 3.47 4.10 −18.2
I_F_2020 4.42 4.75 −7.5
I_R_2020 4.26 4.72 −10.7
I_S_2020 3.96 4.53 −14.3
II_F_2020 4.18 4.20 −0.6
II_R_2020 3.92 4.72 −20.3
II_S_2020 3.5 4.17 −19.0

Table 9. Statistical indices of simulated irrigation norms, yield, total biomass, and growing cycle.

Variables Yield (Y)
(Mg ha−1)

Biomass (B)
(Mg ha−1)

Irrigation Norms (In)
(mm)

Growing Cycle (GC)
(Days)

RMSE
(Mg·ha−1) 0.161 0.33 15.06 10.5

NRMSE (%) 4.124 4.31 7.73 13.42
MBE 0.406 0.94 30.8 −8.8

d 0.64 0.78 −28.68 −11
R2 0.56 0.73 0.66 0.84

4. Discussion

The AquaCrop model was calibrated for common bean and a temperate continental
climate, where this crop is often both irrigated and rainfed. To better utilize the soil and
extend the growing season, three sowing dates and three different levels of irrigation were
applied, to determine the productive capability of a local common bean cultivar and arrive
at the best irrigation strategy. Given that the model has a default file, in the first iteration
all the conservative parameters were retained and only those characteristic of the farming
technology were entered. However, the temperate continental climatic conditions required
adjustment to reflect the actual GDD for the length of the growing cycle. Although the
highest yields were achieved with the lowest GDD and longest growing cycle, averages
were selected for all three growing dates in the two-year period. Additionally, changes
were entered for the characteristics of the ‘Sremac’ common bean cultivar, including HI
50% [38] and water productivity (WP*) reduction at maturity to 75%, based on experimental
data (not shown). Low MBE values show that the model does not systemically distort
the results.

Considering the seasonal trends of CC and biomass accumulation, the results showed
that most treatments achieved a very good agreement between the observed and simulated
values. Somewhat larger deviations were noted in the treatments of the second and third
sowing dates (S-II and S-III), when the common bean was exposed to a higher water stress
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and higher summer month temperatures. Similar findings are reported in [32]. Namely,
the authors state that the deviation of the simulated from the observed CC values were
also noted in the case of deep-rooted crops, such as sugar beet, where the model did not
recognize the subtle significance of even low precipitation levels for root revitalization
and delayed senescence, which increased the biomass and yield. Other researchers claim
that the AquaCrop model predictions were less accurate in the case of the largest deficit
irrigation treatments [10,39,40].

In the present research, the results obtained with the calibration dataset show that
AquaCrop accurately predicted both biomass and yield, as corroborated by the results
reported for common bean [26,27] and other crops under similar or different climatic and
soil conditions [17,20,32]. Considering the validation dataset, the model predicted the yield
and biomass better when there was no water stress. Such findings were also reported
by Espandafor et al. [25], who state that the best simulation results were achieved with
well-irrigated or non-irrigated common bean. Katerji et al. [16] obtained higher deviations
of yield and biomass of tomato grown in no-water stress conditions and under mild stress,
from 4.2% up to 16.7%, respectively, which is consistent with the present research, where
the variation was from −0.05 to 19.3%. Although the model is complex and comprehensive
with regard to the plant response to water, it cannot recognize local conditions, such as
the duration of rainfall and the occurrence of heavy dew, which reduce water stress, or a
protracted fog event which extends the growing cycle. This is why the model yielded higher
deviation results in the case of treatments R and S, and sowing dates II and III in comparison
to F treatments. The length of the common bean growing cycle depends on GDD, but
some phenological stages also require a certain photoperiod because the estimated and
observed growing cycles were not closely matched. Namely, in the case of the spring sowing
date (I), the model extended the growing period by 4-5 days and shortened it for growing
periods II and III by 14 and 4 days, respectively. This might have been caused by biomass
and yield estimation errors. Based on the statistical indicators, the model approximated
soil moisture fairly (data not shown). It generally provided values higher than observed,
occasionally lower, possibly due to the sampling procedure associated with drip irrigation.
An error might also occur because the model considers runoff and deep percolation, but not
interceptions on the leaves, and might overestimate the soil water content. This is expected
more often when rainfall events occur frequently with low depths, which was the case in
this experiment. Statistical indices for the calibration dataset obtained by the model showed
a strong correlation between the measured and simulated soil water content according
to Pearson correlation coefficient r > 0.8, and moderate agreement according to NRMSE
(15.9–20.9%) and d (0.54–0.72). The results obtained for the validation data set indicated a
moderate correlation (r varied from 0.41–0.8), with an NRMSE of 10–30.1%, and d varying
from 0.46 to 0.72. In the same experiment, a strong correlation was noted between the
normalized difference vegetation index (NDVI) and CC, leaf area index and transpiration,
and a weak and negative correlation with soil moisture [36]. A sample collected close to a
drip will certainly exhibit a higher soil moisture. Other reports also state that the model
does not offer good soil moisture simulation results. For example, Cheng et al. [19] claim
that AquaCrop overestimated SWC of cherry tomato grown in a greenhouse under plastic
mulch. Similarly, Ćosić et al. [18] reported that a good agreement between simulated and
observed SWC values is not always achieved. They indicate that a good agreement was
noted at the beginning and towards the end of the growing season. There were considerable
deviations in the middle of the period. This is consistent with our findings.

Testing of the model with regard to the determination of irrigation strategies for
several sowing dates revealed that it estimated well for the water requirements of common
bean and that the yields were high. According to NRMSE, the deviation of the estimated
irrigation norms for all three strategies was 7.7% and that of yield even less, 4.31%. The
statistical indicators showed that AquaCrop can be used to schedule irrigation of common
bean grown during multiple sowing periods. Similar findings and observations are reported
in [32], after testing of the model for several sowing dates and different climatic conditions
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in the case of sugar beet. Namely, the researchers conclude that AquaCrop can be a
useful tool to determine the irrigation water allocation strategy to achieve high water
productivity of sugar beet, taking into account the impact of seasonal rainfall and water
saving. Consequently, in a temperate continental climate AquaCrop estimates irrigation
needs well, where irrigation is often supplemental to rainfall for spring sowing dates.
A number of papers conclude that AquaCrop can be used effectively to determine the
optimal irrigation norms for various sowing dates, including Araja [31] for sorghum,
Martínez-Romero [40] for barley, Li [41] for cotton and Huang [42] for wheat.

5. Conclusions

The results of this study confirm that the AquaCrop model can be used to estimate
the seasonal pattern of canopy cover, biomass, and yield of field beans grown under three
different water supply conditions and in three sowing periods. Some deviation of simulated
from measured data was observed in the deficit irrigation treatments (R and S) in the late
spring seeding period. The model underestimated the length of the growing season by up
to 9 days but predicted yield and total biomass very well. For multiple irrigation strategies,
the model estimated yields for full irrigation (Fs) with deviations ranging from −0.8% to
−9.3%. In the case of deficit irrigation Rs, the agreement with observed values was good. A
larger deviation was noted in the case of deficit irrigation Ss. Considering all the irrigation
simulation options (Fs, Rs, and Ss) and sowing dates, the simulated yields corresponded to
those observed in the field. The conclusion of this research is that the model is reliable for
agricultural water management of common bean in temperate climates.
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