Evaluation of the Nutritional, Phytochemical, and Antioxidant Potential of Rourea minor Fruits: An Underutilized Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Extraction of Phytochemicals from Pulp and Seeds
2.4. Proximate Analysis
2.5. Elemental Analysis
2.6. Determination of Anti-Nutritional Factors
2.6.1. Phytate
2.6.2. Oxalate
2.7. Phytochemical Analysis
2.7.1. Total Phenolic Content
2.7.2. Total Flavonoid Content
2.7.3. Total Alkaloid Content
2.8. Antioxidant Activities
2.8.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.8.2. Total Antioxidant Activity (TAA)
2.8.3. Ferric Reducing Antioxidant Power (FRAP) Activity
2.9. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Elemental Composition
3.3. Anti-Nutritional Components
3.4. Phytochemical Composition
3.5. Antioxidant Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Plant-Based Diets and Their Impact on Health, Sustainability and the Environment: A Review of The Evidence: WHO European Office for the Prevention and Control of Noncommunicable Diseases; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2021.
- Keaver, L.; Ruan, M.; Chen, F.; Du, M.; Ding, C.; Wang, J.; Zhan, Z.; Liu, J.; Zhang, F.F. Plant- and animal-based diet quality and mortality among US adults: A cohort study. Br. J. Nutr. 2021, 125, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Padulosi, S.; Thompson, J.; Rudebjer, P. Fighting Poverty, Hunger and Malnutrition with Neglected and Underutilized Species (NUS): Needs, Challenges and the Way Forward; Biodiversity International: Rome, Italy, 2013. [Google Scholar]
- FAO. Food Systems for Better Nutrition. The State of Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013.
- Murthy, H.N.; Bapat, V.A. Importance of Underutilized Fruits and Nuts. In Bioactive Compounds in Underutilized Fruits and Nuts: Reference Series in Phytochemistry; Murthy, H.N., Bapat, V.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–19. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D. Bioactive Compounds of Wood Apple (Limonia acidissima L.). In Bioactive Compounds in Underutilized Fruits and Nuts: Reference Series in Phytochemistry; Murthy, H.N., Bapat, V.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–27. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dandin, V.S.; Dalawai, D.; Park, S.Y.; Paek, K.Y. Bioactive Compounds from Garcinia Fruits of High Economic Value for Food and Health. In Bioactive Molecules in Food; Reference Series in Phytochemistry; Merllion, J.M., Ramawat, K.G., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 1–26. [Google Scholar] [CrossRef]
- Mondal, M.S.; Guha, R. Phytogeographical notes on Indian Connaraceae. Bull. Bot. Surv. India 2000, 42, 133–142. [Google Scholar] [CrossRef]
- WFO Rourea Aubl. World Flora Online. 2023. Available online: http://www.worldfloraonline.org/taxon/wfo-4000033545 (accessed on 13 April 2023).
- Khare, C.P. Rourea Minor (Gaertn.) Alston. In Indian Medicinal Plants; Springer: New York, NY, USA, 2007; pp. 558–559. [Google Scholar]
- Ngoc, H.N.; Löffler, S.; Nghiem, D.T.; Pham, T.L.G.; Stuppner, H.; Ganzera, M. Phytochemical study of Rourea minor stems and the analysis of therein contained bergenin and catechin derivatives by capillary electrophoresis. Microchem. J. 2019, 149, 104063. [Google Scholar] [CrossRef]
- Chaudhary, A.; Bhandari, A.; Pandurangan, A. Anti-hyperglycemic potential of Rourea minor roots in streptozotocin (STZ) induced diabetic rats. Int. J. Pharm. Res. 2012, 4, 59–62. [Google Scholar]
- Kulkarni, P.; Patel, V.; Shukla, S.T.; Patel, A.; Kulkarni, V. Antidiabetic potential of Rourea minor (Gaertn.) root in streptozotocin-induced diabetic rats. Orient. Pharm. Exp. Med. 2014, 14, 69–76. [Google Scholar] [CrossRef]
- He, Z.D.; Ma, C.Y.; Tan, G.T.; Sydara, K.; Tamez, P.; Southavong, B.; Bouamanivong, S.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S.; et al. Rourinoside and rouremin, antimalarial constituents from Rourea minor. Phytochemistry 2006, 67, 1378–1384. [Google Scholar] [CrossRef]
- Supriatna, J.; Manullang, B.O.; Soekara, E. Group composition, home range, and diet of the maroon leaf monkey (Presbytis rubicunda) at Tanjung Puting Reserve, Central Kalimantan, Indonesia. Primates 1986, 27, 185–190. [Google Scholar] [CrossRef]
- Ngome, P.I.T.; Shackleton, C.; Degrande, A.; Tieguhong, J.C. Addressing constraints in promoting wild edible plants’ utilization in household nutrition: Case of the Congo Basin Forest area. Agric. Food. Secur. 2017, 6, 20. [Google Scholar] [CrossRef]
- Diba, D.; Bultosa, G.; Tolesa, G.N. Effect of maturity stages on nutritive quality and sensory properties of Fig fruits. Bots. J. Agric. Appl. Sci. 2017, 12, 15–22. [Google Scholar]
- Truong, D.H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef]
- Nielsen, S.S. Proximate Assays in Food Analysis. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- Hartree, E.F. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 1972, 48, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Sadashivam, S.; Manickam, A. Biochemical Methods, 3rd ed.; New Age International (P) Limited: New Delhi, India, 2008. [Google Scholar]
- FAO. Food Energy-Methods of Analysis and Conversion Factors; FAO: Rome, Italy, 2003.
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists, 17th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 2000. [Google Scholar]
- Fernandez-Hernandez, A.; Mateos, R.; Garcia-Mesa, J.A.; Beltran, G.; Fernadez-Escobar, R. Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. Span. J. Agric. Res. 2010, 8, 1183–1190. [Google Scholar] [CrossRef]
- Liu, W.J.; Zeng, F.X.; Jiang, H. Determination of total nitrogen in solid samples by two-step digestion–ultraviolet spectrophotometry method. Commun. Soil Sci. Plant Anal. 2013, 44, 1080–1091. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, C.; Maroof, M.A.S.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, J.W.; Buss, G.R. A modified colorimetric method for phytic acid analysis in soybean. Crop. Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef]
- Dye, W.B. Chemical studies on Halogeton glomeratus. Weeds 1956, 4, 55–60. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dalawai, D.; Arer, I.; Kadadakatti, P.; Hafiz, K. Nutritional value of underutilized fruit: Diospyros chloroxylon Roxb. (green ebony persimmon). Int. J. Fruit Sci. 2022, 22, 249–263. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Shamsa, F.; Monsef, H.; Rouhollah, G.; Verdian-rizi, M. Spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai J. Pharm. Sci. 2008, 32, 17–20. [Google Scholar]
- Yadav, G.G.; Murthy, H.N.; Dewir, Y.H. Nutritional composition and in vitro antioxidant activities of seed kernel and seed oil of Balanites roxburghii: An underutilized species. Horticulturae 2022, 8, 798. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 15–27. [Google Scholar] [CrossRef]
- Nitcheu Ngemakwe, P.H.; Remize, F.; Thaoge, M.L.; Sivakumar, D. Phytochemical and nutritional properties of underutilized fruits in the southern African region. S. Afr. J. Bot. 2017, 113, 137–149. [Google Scholar] [CrossRef]
- Perera, S.; Silva, A.B.G.; Amarathung, Y.; De Silva, S.; Jayatissa, R.; Gamage, A.; Merah, O.; Madhujith, T. Nutritional composition and antioxidant activity of selected underutilized fruits grown in Sri Lanka. Agronomy 2022, 12, 1073. [Google Scholar] [CrossRef]
- Singh, D.R.; Singh, S.; Salim, K.M.; Srivastava, R.C. Estimation of phytochemicals and antioxidant activity of underutilized fruits of Andaman Islands (India). Int. J. Food Sci. Nutr. 2012, 63, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Satpathy, G.; Gupta, R.K. Evaluation of nutritional and phytochemical profiling of Baccaurea ramiflora Lour. Syn. Baccaurea sapida (Roxb.) Mull. Arg. fruits. Indian J. Tradit. Knowl. 2016, 15, 135–142. [Google Scholar]
- Murthy, H.N.; Dalawai, D.; Mamatha, U.; Angadi, N.B.; Dewir, Y.H.; Al-Suhaibani, N.A.; El-Hendawy, S.; Ai-Ali, A.M. Bioactive constituents and nutritional composition of Bridelia stipularis L. Blume fruits. Int. J. Food Prop. 2021, 24, 796–805. [Google Scholar] [CrossRef]
- Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptica (L.) Delile). Plants 2021, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Joseph, K.S.; Bolla, S.; Joshi, K.; Bhat, M.; Naik, K.; Patil, S.; Bendre, S.; Gangappa, B.; Haibatti, V.; Payamalle, S.; et al. Determination of chemical composition and nutritive value with fatty acid compositions of African mangosteen (Garcinia livingstonei). Erwerbs-Obstbau 2017, 59, 195–202. [Google Scholar] [CrossRef]
- Payamalle, S.; Patil, G.; Kagankar, K.; Revannavar, S.; Naik, S.; Dandin, V.S.; Joseph, K.S.; Shinde, S.; Murthy, H.N.; Lee, E.J.; et al. Characterization of nutritional constituents of Garcinia morella seeds and seed oil. Int. Food Res. J. 2016, 23, 1949–1952. [Google Scholar]
- Murthy, H.N.; Dalawai, D.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activities of Garcinia morella (Gaertn.) Desr.: A review. Molecules 2020, 25, 5690. [Google Scholar] [CrossRef]
- Ahmed, M.; Saeid, A. Citrus Fruits: Nutritive Value and Value-Added Products. In Citrus—Research, Development, and Biotechnology; Khan, M.S., Khan, I.A., Eds.; IntechOpen: London, UK, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Basu, A.; Nguyen, A.; Betts, N.M.; Lyons, T.J. Strawberry as a functional food: An evidence-based review. Crit. Rev. Food Sci. 2014, 54, 790–806. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Esatbeyoglu, T.; Zhang, B.; Sheri, V.; Dhumal, S.; Rais, N.; Radha; Masry, E.M.S.A.; Chandran, D.; et al. Apple (Malus domestica Borkh.) seed: A review on health promoting bioactivities and its application as functional food ingredient. Food Biosci. 2022, 50, 101155. [Google Scholar] [CrossRef]
- Natesh, H.N.; Abbey, L.; Asiedu, S.K. An overview of nutritional and anti-nutritional factors in green leafy vegetables. Hortic. Int. J. 2017, 1, 58–65. [Google Scholar] [CrossRef]
- Jayathilake, C.; Rizliya, V.; Liyanage, R. Antioxidant and free radical scvanging capacity of extensively used medicinal plants in Sri Lanka. Procedia. Food. Sci. 2016, 6, 123–126. [Google Scholar] [CrossRef]
- Thavamoney, N.; Sivanadian, L.; Tee, L.H.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. J. Food Sci. Technol. 2018, 55, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Murthy, H.N.; Yadav, G.G.; Kadapatti, S.S.; Sandhya, M. Phytochemical analysis, GC–MS identification of bioactive compounds, and in vitro antioxidant activities of resin of Garcinia indica (Thouars) Choisy. Appl. Biochem. Biotechnol. 2023. [Google Scholar] [CrossRef]
- Lamani, S.; Anu-Appaiah, K.A.; Murthy, H.N.; Dewir, Y.H.; Rikisahedew, J.J. Analysis of free sugars, organic acids, and fatty acids of wood apple (Limonia acidissima L.) fruit pulp. Horticulturae 2022, 8, 67. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Hangun-Balkir, Y.; McKenney, M. Determination of antioxidant activities of berries and resveratrol. Green Chem. Lett. Rev. 2012, 5, 147–153. [Google Scholar] [CrossRef]
Fruit Parts | Seed | Ripe | Pulp | Ripe |
---|---|---|---|---|
Unripe | Unripe | |||
Moisture (g/100 g FW) | 82.66 ± 0.50 b | 52.55 ± 0.55 c | 94.03 ± 0.82 a | 93.86 ± 0.75 a |
Fat (g/100 g FW) | 0.20 ± 0.02 b | 0.28 ± 0.08 a | 0.20 ± 0.03 b | 0.19 ± 0.04 b |
Protein (g/100 g FW) | 4.30 ± 0.06 b | 12.39 ± 0.53 a | 0.31 ± 0.01 c | 0.34 ± 0.01 c |
Carbohydrate (g/100 g FW) | 6.17 ± 0.08 b | 25.70 ± 1.47 a | 0.63 ± 0.02 c | 0.90 ± 0.03 c |
Ash (g/100 g FW) | 0.31 ± 0.06 b | 1.4 ± 0.23 a | 0.28 ± 0.04 b | 0.35 ± 0.07 b |
Fiber (g/100 g FW) | 0.82 ± 0.09 b | 3.4 ± 0.30 a | 0.30 ± 0.01 c | 0.98 ± 0.12 b |
Energy (Kcal/100 g) | 41.7 | 149.93 | 4.98 | 5.97 |
Fruit Parts | Seed | Ripe | Pulp | Ripe | |
---|---|---|---|---|---|
Unripe | Unripe | ||||
Major elements (mg/g DW of sample) | P | 0.98 ± 0.09 ab | 1.04 ± 0.09 a | 0.91 ± 0.07 b | 0.92 ± 0.11 b |
N | 5.53 ± 0.12 b | 6.25 ± 0.30 a | 4.43 ± 0.20 d | 4.98 ± 0.30 c | |
K | 4.80 ± 0.13 c | 5.30 ± 0.22 c | 10.30 ± 0.28 b | 12.20 ± 0.40 a | |
Na | 0.27 ± 0.05 c | 1.05 ± 0.08 a | 0.58 ± 0.06 b | 0.96 ± 0.05 a | |
S | 2.10 ± 0.15 c | 4.56 ± 0.18 b | 1.08 ± 0.08 d | 5.80 ± 0.20 a | |
Mg | 3.60 ± 0.12 c | 5.80 ± 0.14 b | 6.00 ± 0.24 b | 7.20 ± 0.22 a | |
Ca | 4.02 ± 0.10 c | 5.20 ± 0.23 b | 5.04 ± 0.21 b | 6.80 ± 0.12 a | |
Minor elements (µg/g DW of sample) | B | 22.98 ± 2.30 b | 33.65 ± 1.86 a | 32.50 ± 2.25 a | 25.98 ± 1.50 b |
Fe | 780.50 ± 15.10 b | 798.34 ± 14.40 b | 2627.28 ± 22.20 a | 2523.56 ± 21.20 a | |
Zn | 535.12 ± 12.5 a | 542.26 ± 13.3 a | 492.23 ± 11.6 b | 499.12 ± 9.20 b | |
Cu | 17.30 ± 0.80 d | 42.56 ± 1.34 a | 22.90 ± 0.90 c | 33.62 ± 2.32 b | |
Mn | 118.40 ± 5.60 a | 98.70 ± 4.12 b | 38.30 ± 3.32 c | 40.30 ± 1.23 c |
Fruit Parts | Phytate (mg/g FW of Sample) | Oxalate (mg/g FW of Sample) | |
---|---|---|---|
Seed | Unripe | 3.00 ± 0.09 b | 6.19 ± 0.12 c |
Ripe | 6.91 ± 0.58 a | 31.88 ± 1.50 a | |
Pulp | Unripe | 0.37 ± 0.01 c | 11.11 ± 0.43 b |
Ripe | 0.59 ± 0.03 c | 6.50 ± 0.20 c |
Fruit Parts | Solvent | Total Phenolics (mg GAE/g DW of the Sample) | Flavonoids (mg QE/g DW of the Sample) | Alkaloids (mg AE/g DW of the Sample) | |
---|---|---|---|---|---|
Seed | Unripe | Acetone | 82.79 ± 6.44 d | 27.43 ± 1.23 c | 0.68 ± 0.12 def |
Methanol | 56.40 ± 3.41 e | 24.56 ± 0.20 d | 1.09 ± 0.01 bc | ||
Water | 3.16 ± 0.02 g | 1.84 ± 0.01 e | 0.07 ± 0.01 h | ||
70% Methanol | 180.47 ± 7.53 a | 68.95 ± 3.30 a | 0.35 ± 0.03 g | ||
Ripe | Acetone | 14.40 ± 0.66 f | 2.99 ± 0.05 e | 0.61 ± 0.04 ef | |
Methanol | 100.82 ± 1.24 c | 12.80 ± 0.48 e | 0.32 ± 0.01 g | ||
Water | 2.78 ± 0.23 g | 1.55 ± 0.03 e | 0.01 ± 0.00 h | ||
70% Methanol | 119.45 ± 4.29 b | 44.10 ± 1.50 b | 0.88 ± 0.01 cd | ||
Pulp | Unripe | Acetone | 2.64 ± 0.24 g | 0.92 ± 0.1 e | 0.88 ± 0.08 cd |
Methanol | 6.04 ± 0.21f g | 2.42 ± 0.17 e | 0.64 ± 0.06 def | ||
Water | 1.58 ± 0.03 g | 0.54 ± 0.02 e | 0.54 ± 0.06 fg | ||
70% Methanol | 8.21 ± 0.20f g | 2.97 ± 0.04 e | 1.20 ± 0.11 b | ||
Ripe | Acetone | 2.44 ± 0.02 g | 1.37 ± 0.15 e | 1.61 ± 0.10 a | |
Methanol | 2.97 ± 0.16 g | 1.27 ± 0.02 e | 0.77 ± 0.01 def | ||
Water | 2.33 ± 0.16 g | 3.25 ± 0.08 e | 0.82 ± 0.10 de | ||
70% Methanol | 5.67 ± 0.18f g | 1.61 ± 0.01 e | 0.67 ± 0.01 def |
Fruit Parts | Solvent | DPPH (mg GAE/g DW of the Sample) | TAA (mg AAE/g DW of Sample) | FRAP (mg AAE/g DW of the Sample) | |
---|---|---|---|---|---|
Seed | Unripe | Acetone | 46.77 ± 2.57 c | 58.30 ± 1.08 de | 104.21 ± 2.12 c |
Methanol | 43.67 ± 3.41 c | 69.59 ± 3.92 d | 73.05 ± 7.88 d | ||
Water | 1.33 ± 0.16 d | 4.45 ± 0.15 i | 11.81 ± 0.61 f | ||
70% Methanol | 210.47 ± 8.28 a | 237.98 ± 17.77 a | 1783.87 ± 45.15 a | ||
Ripe | Acetone | 13.68 ± 1.69 d | 9.72 ± 0.62 i | 2.63 ± 0.25 f | |
Methanol | 12.99 ± 3.85 d | 50.89 ± 5.20 ef | 34.84 ± 1.06 e | ||
Water | 3.07 ± 0.37 d | 6.58 ± 0.51 i | 0.55 ± 0.04 f | ||
70% Methanol | 174.01 ± 23.69 b | 177.21 ± 15.03 b | 363.51 ± 8.25 b | ||
Pulp | Unripe | Acetone | 5.62 ± 0.40 d | 102.97 ± 3.91 c | 8.80 ± 0.55 f |
Methanol | 1.00 ± 0.04 d | 7.59 ± 0.59 i | 2.67 ± 0.25 f | ||
Water | 0.59 ± 0.03 d | 6.10 ± 0.49 i | 1.11 ± 0.03 f | ||
70% Methanol | 3.46 ± 0.34 d | 32.81 ± 1.62 gh | 6.24 ± 0.35 f | ||
Ripe | Acetone | 1.14 ± 0.12 d | 22.04 ± 0.96 hi | 3.17 ± 0.33 f | |
Methanol | 1.37 ± 0.13 d | 36.80 ± 4.30 fgh | 3.03 ± 0.29 f | ||
Water | 0.96 ± 0.08 d | 15.62 ± 0.66 i | 6.15 ± 0.10 f | ||
70% Methanol | 2.15 ± 0.10 d | 39.60 ± 0.92 fg | 4.13 ± 0.29 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murthy, H.N.; Yadav, G.G.; Kadapatti, S.S.; Pote, A.H.; Jagali, R.; Yarashi, V.; Dewir, Y.H. Evaluation of the Nutritional, Phytochemical, and Antioxidant Potential of Rourea minor Fruits: An Underutilized Species. Horticulturae 2023, 9, 606. https://doi.org/10.3390/horticulturae9050606
Murthy HN, Yadav GG, Kadapatti SS, Pote AH, Jagali R, Yarashi V, Dewir YH. Evaluation of the Nutritional, Phytochemical, and Antioxidant Potential of Rourea minor Fruits: An Underutilized Species. Horticulturae. 2023; 9(5):606. https://doi.org/10.3390/horticulturae9050606
Chicago/Turabian StyleMurthy, Hosakatte Niranjana, Guggalada Govardhana Yadav, Sathish Shekhappa Kadapatti, Akarsha H. Pote, Ramalinga Jagali, Vidya Yarashi, and Yaser Hassan Dewir. 2023. "Evaluation of the Nutritional, Phytochemical, and Antioxidant Potential of Rourea minor Fruits: An Underutilized Species" Horticulturae 9, no. 5: 606. https://doi.org/10.3390/horticulturae9050606
APA StyleMurthy, H. N., Yadav, G. G., Kadapatti, S. S., Pote, A. H., Jagali, R., Yarashi, V., & Dewir, Y. H. (2023). Evaluation of the Nutritional, Phytochemical, and Antioxidant Potential of Rourea minor Fruits: An Underutilized Species. Horticulturae, 9(5), 606. https://doi.org/10.3390/horticulturae9050606